1
|
Park SY, Baek YJ, Kim JH, Seong H, Kim B, Kim YC, Yoon JG, Heo N, Moon SM, Kim YA, Song JY, Choi JY, Park YS. Guidelines for Antibacterial Treatment of Carbapenem-Resistant Enterobacterales Infections. Infect Chemother 2024; 56:308-328. [PMID: 39231504 PMCID: PMC11458495 DOI: 10.3947/ic.2024.0038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 06/19/2024] [Indexed: 09/06/2024] Open
Abstract
This guideline aims to promote the prudent use of antibacterial agents for managing carbapenem-resistant Enterobacterales (CRE) infections in clinical practice in Korea. The general section encompasses recommendations for the management of common CRE infections and diagnostics, whereas each specific section is structured with key questions that are focused on antibacterial agents and disease-specific approaches. This guideline covers both currently available and upcoming antibacterial agents in Korea.
Collapse
Affiliation(s)
- Se Yoon Park
- Division of Infectious Diseases, Department of Internal Medicine, Hanyang University Seoul Hospital, Seoul, Korea
| | - Yae Jee Baek
- Department of Internal Medicine, Soonchunhyang University Seoul Hospital, Soonchunhyang University College of Medicine, Seoul, Korea
| | - Jung Ho Kim
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - Hye Seong
- Division of Infectious Diseases, Department of Internal Medicine, Korea University Guro Hospital, Korea University College of Medicine, Seoul, Korea
| | - Bongyoung Kim
- Division of Infectious Diseases, Department of Internal Medicine, Hanyang University Seoul Hospital, Seoul, Korea
- Department of Internal Medicine, Hanyang University College of Medicine, Seoul, Korea
| | - Yong Chan Kim
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
- Department of Infectious Diseases, Yonsei University Yongin Severance Hospital, Yongin, Korea
| | - Jin Gu Yoon
- Division of Infectious Diseases, Department of Internal Medicine, Korea University Guro Hospital, Korea University College of Medicine, Seoul, Korea
| | - Namwoo Heo
- Department of Infectious Diseases, Yonsei University Yongin Severance Hospital, Yongin, Korea
| | - Song Mi Moon
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Korea
| | - Young Ah Kim
- Department of Laboratory Medicine, National Health Insurance Service Ilsan Hospital, Goyang, Korea
| | - Joon Young Song
- Division of Infectious Diseases, Department of Internal Medicine, Korea University Guro Hospital, Korea University College of Medicine, Seoul, Korea
| | - Jun Yong Choi
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - Yoon Soo Park
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
- Department of Infectious Diseases, Yonsei University Yongin Severance Hospital, Yongin, Korea.
| |
Collapse
|
2
|
Ma L, Xie M, Yang Y, Ding X, Li Y, Yan Z, Chan EWC, Chen S, Chen G, Zhang R. Prevalence and genomic characterization of clinical Escherichia coli strains that harbor the plasmid-borne tet(X4) gene in China. Microbiol Res 2024; 285:127730. [PMID: 38805981 DOI: 10.1016/j.micres.2024.127730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 04/15/2024] [Accepted: 04/15/2024] [Indexed: 05/30/2024]
Abstract
The tigecycline resistance gene tet(X4) has been widely reported in animals and animal products in some Asian countries including China in recent years but only sporadically detected in human. In this study, we investigated the prevalence and genetic features of tet(X4)-positive clinical E. coli strains. A total of 462 fecal samples were collected from patients in four hospitals located in four provinces in China in 2023. Nine tet(X4)-positive E. coli strains were isolated and subjected to characterization of their genetic and phenotypic features by performing antimicrobial susceptibility test, whole-genome sequencing, bioinformatic and phylogenetic analysis. The majority of the test strains were found to exhibit resistance to multiple antimicrobial agents including tigecycline but remained susceptible to colistin and meropenem. A total of seven different sequence types (STs) and an unknown ST type were identified among the nine tet(X4)-positive strains. Notably, the tet(X4) gene in six out of these nine tet(X4)-positive E. coli strains was located in a IncFIA-HI1A-HI1B hybrid plasmid, which was an tet(X4)-bearing epidemic plasmid responsible for dissemination of the tet(X4) gene in China. Furthermore, the tet(X4) gene in four out of nine tet(X4)-positive E. coli isolates could be successfully transferred to E. coli EC600 through conjugation. In conclusion, this study characterized the epidemic tet(X4)-bearing plasmids and tet(X4)-associated genetic environment in clinical E. coli strains, suggested the importance of continuous surveillance of such tet(X4)-bearing plasmids to control the increasingly widespread dissemination of tigecycline-resistant pathogens in clinical settings in China.
Collapse
Affiliation(s)
- Lan Ma
- Department of Clinical Laboratory, Second Hospital of Lanzhou University, Lanzhou, People's Republic of China
| | - Miaomiao Xie
- Department of Food Science and Nutrition, Faculty of Science, The Hong Kong Polytechnic University, Hong Kong Special Administrative Region
| | - Yongxin Yang
- Department of Clinical Laboratory, Second Hospital of Lanzhou University, Lanzhou, People's Republic of China
| | - Xinying Ding
- Department of Clinical Laboratory, Zibo First Hospital, Zibo, People's Republic of China
| | - Yuanyuan Li
- Department of Clinical Laboratory, The First Affiliated Hospital of Henan University of Science and Technology, Luoyang, People's Republic of China
| | - Zelin Yan
- Department of Clinical Laboratory, Second Affiliated Hospital of Zhejiang University, Hangzhou, People's Republic of China
| | - Edward Wai-Chi Chan
- Department of Food Science and Nutrition, Faculty of Science, The Hong Kong Polytechnic University, Hong Kong Special Administrative Region
| | - Sheng Chen
- Department of Food Science and Nutrition, Faculty of Science, The Hong Kong Polytechnic University, Hong Kong Special Administrative Region.
| | - Gongxiang Chen
- Department of Clinical Laboratory, Second Affiliated Hospital of Zhejiang University, Hangzhou, People's Republic of China
| | - Rong Zhang
- Department of Clinical Laboratory, Second Affiliated Hospital of Zhejiang University, Hangzhou, People's Republic of China.
| |
Collapse
|
3
|
Chirabhundhu N, Luk-In S, Phuadraksa T, Wichit S, Chatsuwan T, Wannigama DL, Yainoy S. Occurrence and mechanisms of tigecycline resistance in carbapenem- and colistin-resistant Klebsiella pneumoniae in Thailand. Sci Rep 2024; 14:5215. [PMID: 38433246 PMCID: PMC10909888 DOI: 10.1038/s41598-024-55705-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 02/27/2024] [Indexed: 03/05/2024] Open
Abstract
Tigecycline has been regarded as one of the most important last-resort antibiotics for the treatment of infections caused by extensively drug-resistant (XDR) bacteria, particularly carbapenem- and colistin-resistant Klebsiella pneumoniae (C-C-RKP). However, reports on tigecycline resistance have been growing. Overall, ~ 4000 K. pneumoniae clinical isolates were collected over a five-year period (2017-2021), in which 240 isolates of C-C-RKP were investigated. Most of these isolates (91.7%) were resistant to tigecycline. Notably, a high-risk clone of ST16 was predominantly identified, which was associated with the co-harboring of blaNDM-1 and blaOXA-232 genes. Their major mechanism of tigecycline resistance was the overexpression of efflux pump acrB gene and its regulator RamA, which was caused by mutations in RamR (M184V, Y59C, I141T, A28T, C99/C100 insertion), in RamR binding site (PI) of ramA gene (C139T), in MarR (S82G), and/or in AcrR (L154R, R13Q). Interestingly, four isolates of ST147 carried the mutated tet(A) efflux pump gene. To our knowledge, this is the first report on the prevalence and mechanisms of tigecycline resistance in C-C-RKP isolated from Thailand. The high incidence of tigecycline resistance observed among C-C-RKP in this study reflects an ongoing evolution of XDR bacteria against the last-resort antibiotics, which demands urgent action.
Collapse
Affiliation(s)
- Nachat Chirabhundhu
- Department of Clinical Microbiology and Applied Technology, Faculty of Medical Technology, Mahidol University, Nakhon Pathom, Thailand
| | - Sirirat Luk-In
- Department of Clinical Microbiology and Applied Technology, Faculty of Medical Technology, Mahidol University, Nakhon Pathom, Thailand
| | - Thanawat Phuadraksa
- Department of Clinical Microbiology and Applied Technology, Faculty of Medical Technology, Mahidol University, Nakhon Pathom, Thailand
| | - Sineewanlaya Wichit
- Department of Clinical Microbiology and Applied Technology, Faculty of Medical Technology, Mahidol University, Nakhon Pathom, Thailand
| | - Tanittha Chatsuwan
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok, Thailand
- Center of Excellence in Antimicrobial Resistance and Stewardship, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Dhammika Leshan Wannigama
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok, Thailand
- Center of Excellence in Antimicrobial Resistance and Stewardship, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Department of Infectious Diseases and Infection Control, Yamagata Prefectural Central Hospital, Yamagata, Japan
- School of Medicine, Faculty of Health and Medical Sciences, The University of Western Australia, Nedlands, WA, Australia
- Biofilms and Antimicrobial Resistance Consortium of ODA Receiving Countries, The University of Sheffield, Sheffield, UK
- Pathogen Hunter's Research Collaborative Team, Department of Infectious Diseases and Infection Control, Yamagata Prefectural Central Hospital, Yamagata, Japan
| | - Sakda Yainoy
- Department of Clinical Microbiology and Applied Technology, Faculty of Medical Technology, Mahidol University, Nakhon Pathom, Thailand.
| |
Collapse
|
4
|
Mekonnen Y, Solomon S, Gebreyohanns A, Teklu DS, Ayenew Z, Mihret A, Bonger ZT. Fecal Carriage of Carbapenem Resistant Enterobacterales and Associated Factors Among Admitted Patients in Saint Paul's Hospital Millennium Medical College, Addis Ababa, Ethiopia. Infect Drug Resist 2023; 16:6345-6355. [PMID: 37789843 PMCID: PMC10542572 DOI: 10.2147/idr.s418066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 09/15/2023] [Indexed: 10/05/2023] Open
Abstract
Purpose The Enterobacterales family colonizes the human gut as normal flora in all age groups, with bacterial infections being the most common cause. Resistance is currently observed in all normal flora. The aim of this study was to determine the frequency of fecal carriage of carbapenem-resistant Enterobacterales (CRE), carbapenemase-producing Enterobacterales (CPE), and associated factors in the faeces of admitted patients. Methods A cross-sectional study was conducted in Saint Paul's Hospital Millennium Medical College, Addis Ababa, Ethiopia. A total of 384 rectal swabs were collected from various wards in admitted patients who have consented to participate. The specimens were inoculated on a MacConkey agar plate, and then they were incubated at 37 °C for 18 to 24 hours. Using the BD PhoenixTM M50 compact system identification and antimicrobial susceptibility testing were performed. Using the modified carbapenem inactivation method, it was determined whether the carbapenem-resistant bacterial isolate produced carbapenemase or not. Results Overall prevalence of carbapenem-resistant Enterobacterales carriage and carbapenemase producing Enterobacterales in admitted patients was 17.2% (95%, Confidence Interval: 13.3-21.1%) and 7% (95%, Confidence Interval: 4.7-9.9%), respectively. The predominate carbapenem-resistant Enterobacterales in fecal carriage was K. pneumoniae, 15.4% (23/149), E. cloacae 15.4% (6/39), followed by E. coli 12.4% (37/307) of carbapenem-resistant Enterobacterales (CRE) isolate. Carbapenem-resistant Enterobacterales carriage isolates showed large level of resistance to ciprofloxacin, and sulfamethoxazole-trimethoprim. Prior intake of antibiotics (Odds Ratio 2.42, 95% CI: 11.186-4.95) was significantly associated with higher carbapenem-resistant Enterobacterales carriage. Conclusion We observed a high prevalence of carbapenem-resistant Enterobacterales carriage and carbapenemase-producing Enterobacterales among admitted patients. There were only amikacin and colistin that could be effective for carbapenem-resistant Enterobacterales isolates. Hence, the control of carbapenem-resistant Enterobacterales carriage should be given priority by carbapenem-resistant Enterobacterales screening for fecal of admitted patients, and adhering to good infection prevention practice in hospital settings.
Collapse
Affiliation(s)
- Yonas Mekonnen
- Department of Medical Microbiology, Immunology and Parasitology, Saint Paul’s Hospital Millennium Medical College, Addis Ababa, Ethiopia
- Clinical Bacteriology and Mycology National Reference Laboratory, Ethiopian Public Health Institute, Addis Ababa, Ethiopia
| | - Semaria Solomon
- Department of Medical Microbiology, Immunology and Parasitology, Saint Paul’s Hospital Millennium Medical College, Addis Ababa, Ethiopia
| | - Alganesh Gebreyohanns
- Department of Medical Microbiology, Immunology and Parasitology, Saint Paul’s Hospital Millennium Medical College, Addis Ababa, Ethiopia
| | - Dejenie Shiferaw Teklu
- Clinical Bacteriology and Mycology National Reference Laboratory, Ethiopian Public Health Institute, Addis Ababa, Ethiopia
| | - Zeleke Ayenew
- Clinical Bacteriology and Mycology National Reference Laboratory, Ethiopian Public Health Institute, Addis Ababa, Ethiopia
| | - Amete Mihret
- Clinical Bacteriology and Mycology National Reference Laboratory, Ethiopian Public Health Institute, Addis Ababa, Ethiopia
| | | |
Collapse
|
5
|
Kontou A, Kourti M, Iosifidis E, Sarafidis K, Roilides E. Use of Newer and Repurposed Antibiotics against Gram-Negative Bacteria in Neonates. Antibiotics (Basel) 2023; 12:1072. [PMID: 37370391 DOI: 10.3390/antibiotics12061072] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 06/12/2023] [Accepted: 06/14/2023] [Indexed: 06/29/2023] Open
Abstract
Antimicrobial resistance has become a significant public health problem globally with multidrug resistant Gram negative (MDR-GN) bacteria being the main representatives. The emergence of these pathogens in neonatal settings threatens the well-being of the vulnerable neonatal population given the dearth of safe and effective therapeutic options. Evidence from studies mainly in adults is now available for several novel antimicrobial compounds, such as new β-lactam/β-lactamase inhibitors (e.g., ceftazidime-avibactam, meropenem-vaborbactam, imipenem/cilastatin-relebactam), although old antibiotics such as colistin, tigecycline, and fosfomycin are also encompassed in the fight against MDR-GN infections that remain challenging. Data in the neonatal population are scarce, with few clinical trials enrolling neonates for the evaluation of the efficacy, safety, and dosing of new antibiotics, while the majority of old antibiotics are used off-label. In this article we review data about some novel and old antibiotics that are active against MDR-GN bacteria causing sepsis and are of interest to be used in the neonatal population.
Collapse
Affiliation(s)
- Angeliki Kontou
- 1st Department of Neonatology and Neonatal Intensive Care Unit, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Hippokration General Hospital, Thessaloniki 54642, Greece
| | - Maria Kourti
- Infectious Diseases Unit, 3rd Department of Pediatrics, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Hippokration General Hospital, Thessaloniki 54642, Greece
| | - Elias Iosifidis
- Infectious Diseases Unit, 3rd Department of Pediatrics, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Hippokration General Hospital, Thessaloniki 54642, Greece
- Basic and Translational Research Unit, Special Unit for Biomedical Research and Education, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki 54642, Greece
| | - Kosmas Sarafidis
- 1st Department of Neonatology and Neonatal Intensive Care Unit, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Hippokration General Hospital, Thessaloniki 54642, Greece
| | - Emmanuel Roilides
- Infectious Diseases Unit, 3rd Department of Pediatrics, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Hippokration General Hospital, Thessaloniki 54642, Greece
- Basic and Translational Research Unit, Special Unit for Biomedical Research and Education, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki 54642, Greece
| |
Collapse
|
6
|
Alemayehu E, Fiseha T, Gedefie A, Alemayehu Tesfaye N, Ebrahim H, Ebrahim E, Fiseha M, Bisetegn H, Mohammed O, Tilahun M, Gebretsadik D, Debash H, Gobezie MY. Prevalence of carbapenemase-producing Enterobacteriaceae from human clinical samples in Ethiopia: a systematic review and meta-analysis. BMC Infect Dis 2023; 23:277. [PMID: 37138285 PMCID: PMC10155349 DOI: 10.1186/s12879-023-08237-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Accepted: 04/10/2023] [Indexed: 05/05/2023] Open
Abstract
INTRODUCTION Carbapenemase-producing Enterobacteriaceae are by far the most public health and urgent clinical problems with antibiotic resistance. They cause longer hospital stays, more expensive medical care, and greater mortality rates. This systematic review and meta-analysis aimed to indicate the prevalence of carbapenemase-producing Enterobacteriaceae in Ethiopia. METHODS This systematic review and meta-analysis was conducted based on Preferred Reporting Items for Systematic Reviews and Meta-Analysis guidelines. Electronic databases like PubMed, Google Scholar, CINAHL, Wiley Online Library, African Journal Online, Science Direct, Embase, ResearchGate, Scopus, and the Web of Sciences were used to find relevant articles. In addition, the Joanna Briggs Institute quality appraisal tool was used to assess the quality of the included studies. Stata 14.0 was used for statistical analysis. Heterogeneity was assessed by using Cochran's Q test and I2 statistics. In addition, publication bias was assessed using a funnel plot and Egger's test. A random effect model was used to estimate the pooled prevalence. Sub-group and sensitivity analysis were also done. RESULTS The overall pooled prevalence of carbapenemase-producing Enterobacteriaceae in Ethiopia was 5.44% (95% CI 3.97, 6.92). The prevalence was highest [6.45% (95% CI 3.88, 9.02)] in Central Ethiopia, and lowest [(1.65% (95% CI 0.66, 2.65)] in the Southern Nations and Nationalities People Region. In terms of publication year, 2017-2018 had the highest pooled prevalence [17.44 (95% CI 8.56, 26.32)] and 2015-2016 had the lowest [2.24% (95% CI 0.87, 3.60)]. CONCLUSION This systematic review and meta-analysis showed a high prevalence of carbapenemase-producing Enterobacteriaceae. So, to alter the routine use of antibiotics, regular drug susceptibility testing, strengthening the infection prevention approach, and additional national surveillance on the profile of carbapenem resistance and their determining genes among Enterobacteriaceae clinical isolates are required. SYSTEMATIC REVIEW REGISTRATION PROSPERO (2022: CRD42022340181).
Collapse
Affiliation(s)
- Ermiyas Alemayehu
- Department of Medical Laboratory Sciences, College of Medicine and Health Sciences, Wollo University, Dessie, Ethiopia.
| | - Temesgen Fiseha
- Department of Medical Laboratory Sciences, College of Medicine and Health Sciences, Wollo University, Dessie, Ethiopia
| | - Alemu Gedefie
- Department of Medical Laboratory Sciences, College of Medicine and Health Sciences, Wollo University, Dessie, Ethiopia
| | | | - Hussen Ebrahim
- Department of Medical Laboratory Sciences, College of Medicine and Health Sciences, Wollo University, Dessie, Ethiopia
| | - Endris Ebrahim
- Department of Medical Laboratory Sciences, College of Medicine and Health Sciences, Wollo University, Dessie, Ethiopia
| | - Mesfin Fiseha
- Department of Medical Laboratory Sciences, College of Medicine and Health Sciences, Wollo University, Dessie, Ethiopia
| | - Habtye Bisetegn
- Department of Medical Laboratory Sciences, College of Medicine and Health Sciences, Wollo University, Dessie, Ethiopia
| | - Ousman Mohammed
- Department of Medical Laboratory Sciences, College of Medicine and Health Sciences, Wollo University, Dessie, Ethiopia
| | - Mihret Tilahun
- Department of Medical Laboratory Sciences, College of Medicine and Health Sciences, Wollo University, Dessie, Ethiopia
| | - Daniel Gebretsadik
- Department of Medical Laboratory Sciences, College of Medicine and Health Sciences, Wollo University, Dessie, Ethiopia
| | - Habtu Debash
- Department of Medical Laboratory Sciences, College of Medicine and Health Sciences, Wollo University, Dessie, Ethiopia
| | - Mengistie Yirsaw Gobezie
- Department of Pharmacy, College of Medicine and Health Sciences, Wollo University, Dessie, Ethiopia
| |
Collapse
|
7
|
Magnitude and antimicrobial susceptibility profiles of Gram-Negative bacterial isolates among patients suspected of urinary tract infections in Arba Minch General Hospital, southern Ethiopia. PLoS One 2022; 17:e0279887. [PMID: 36584225 PMCID: PMC9803306 DOI: 10.1371/journal.pone.0279887] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 12/15/2022] [Indexed: 12/31/2022] Open
Abstract
The emergence of drug-resistant Gram-negative bacterial uropathogens poses a grave threat worldwide, howbeit studies on their magnitude are limited in most African countries, including Ethiopia. Therefore, measuring the extent of their drug resistance is essential for developing strategies to confine the spread. A cross-sectional study was conducted at title hospital from 01 June to 31 August 2020. Midstream urine specimens were collected and inoculated onto MacConkey agar. Positive urine cultures showing significant bacteriuria as per the Kass count (>105 CFU/mL) were further subjected to biochemical tests to identify the type of uropathogens. Antimicrobial susceptibility testing was performed by the Kirby-Bauer disk diffusion technique, and potential carbapenemase producers were phenotypically determined by the modified carbapenem inactivation method as per the CLSI guidelines. Data were analyzed using SPSS version 26; P-value <0.05 was considered statistically significant. Totally, 422 patients were included, and the majority were females (54.7%). The prevalence of carbapenem-resistant Gram-negative uropathogens was 12.9%, and 64.7% of them were carbapenemase producers. Klebsiella pneumoniae (n = 5) was the predominant carbapenemase producer, followed by Pseudomonas aeruginosa (n = 4). Consumption of antibiotics prior to six months of commencement of the study, the presence of chronic diseases and hospitalizations were statistically associated with UTI caused by carbapenem-resistant Gram-negative uropathogens. Carbapenemase producers were resistant to most of the antibiotics tested. Our findings highlight the need for periodic regional bacteriological surveillance programs to guide empirical antibiotic therapy of UTI.
Collapse
|
8
|
Jiang Y, Yang S, Deng S, Lu W, Huang Q, Xia Y. Epidemiology and mechanisms of tigecycline- and carbapenem- resistant Enterobacter cloacae in Southwest China: a five-year retrospective study. J Glob Antimicrob Resist 2022; 28:161-167. [PMID: 35021124 DOI: 10.1016/j.jgar.2022.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 07/12/2021] [Accepted: 01/05/2022] [Indexed: 10/19/2022] Open
Abstract
BACKGROUND The prevalence and molecular epidemiology of tigecycline resistance in carbapenem-resistant Enterobacter cloacae (CREC) in mainland China is unknown. In this study, we aimed to investigate the molecular characteristics and resistance mechanism of tigecycline-resistant CREC (TCREC) in Southwest China. METHODS We conducted a five-year retrospective study. TCREC isolates were subjected to antimicrobial susceptibility testing, pulsed-field gel electrophoresis, and multilocus sequence typing. We determined the presence of genes, deficiency of outer membrane proteins, and expression of efflux pumps using polymerase chain reaction (PCR), reverse transcription-polymerase chain reaction (RT-PCR), and sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). RESULTS We found that a high incidence rate of 21.7% (36/166) of isolates were positive for TCREC. All isolates were resistant to ertapenem whereas 67% remained susceptible to imipenem and meropenem. ST88 (10/36, 27.8%) was predominant and associated with moderate resistance to tigecycline and high resistance to carbapenems, followed by ST256 (3/36, 8.3%), ST78 (2/36, 5.6%), ST577 (2/36, 5.6%), and ST102 (2/36, 5.6%). blaNDM-1 (6/36, 16.6%) carriers was the most common carbapenemase gene and ST88 (5/6, 83.3%) was the most common type, followed by blaIMP-8 (n=3/36, 8.3%). Coexistence of extensive-spectrum β-lactamase (ESBL) genes and outer membrane protein OmpF and/or OmpC loss were found in 27 out of 36 isolates, in addition, increased co-expression of efflux pump genes acrB and oqxA was identified in 25 out of 36 isolates, which may together contribute to co-resistance to carbapenem and tigecycline. CONCLUSION Most ST88 strains carried carbapenemases, especially New Delhi metallo-β-lactamase 1 (NDM-1). Overexpression of efflux pumps contributed to tigecycline resistance. The presence of carbapenemase and/or ESBL genes and lack of outer membrane proteins, but not overexpression of efflux pumps, may confer carbapenem resistance. Reasonable supervision and management the epidemic of TCREC will help to stem the transmission of the isolates.
Collapse
Affiliation(s)
- Yuansu Jiang
- Department of Laboratory Medicine, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China; Department of Clinical Laboratory, Daping Hospital of Army Medical University, Chongqing, China
| | - Shuangshuang Yang
- Department of Laboratory Medicine, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Shaoli Deng
- Department of Clinical Laboratory, Daping Hospital of Army Medical University, Chongqing, China
| | - Weiping Lu
- Department of Clinical Laboratory, Daping Hospital of Army Medical University, Chongqing, China
| | - Qing Huang
- Department of Clinical Laboratory, Daping Hospital of Army Medical University, Chongqing, China.
| | - Yun Xia
- Department of Laboratory Medicine, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| |
Collapse
|
9
|
Tilahun M, Kassa Y, Gedefie A, Ashagire M. Emerging Carbapenem-Resistant Enterobacteriaceae Infection, Its Epidemiology and Novel Treatment Options: A Review. Infect Drug Resist 2021; 14:4363-4374. [PMID: 34707380 PMCID: PMC8544126 DOI: 10.2147/idr.s337611] [Citation(s) in RCA: 86] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Accepted: 10/13/2021] [Indexed: 12/15/2022] Open
Abstract
Infections due to multidrug-resistant Enterobacteriaceae have become major international public health problem due to the inadequate treatment options and the historically lagged pace of development of novel antimicrobial drugs. Inappropriate antimicrobial use in humans and animals coupled with increased global connectivity aided to the transmission of drug-resistant Enterobacteriaceae infections. Carbapenems are the medications of choice for extended-spectrum beta-lactamase and AmpC producers, but alternatives are currently needed because carbapenem resistance is increasing globally. This review pointed to discuss emerging drug-resistant Enterobacteriaceae, its epidemiology and novel treatment options for infections, which date back from 2010 to 2019 by searching Google Scholar, PubMed, PMC, Hinari and other different websites. The occurrence of carbapenem-resistant Enterobacteriaceae is reported worldwide with great regional variability. The rise of carbapenem-resistant Enterobacteriaceae poses a threat to all nations. Enzyme synthesis, efflux pumps, and porin mutations are the main methods by which Enterobacteriaceae acquire resistance to carbapenems. The major resistance mechanism among these is enzyme synthesis. Most carbapenem resistance is caused by three enzyme groups: Klebsiella pneumoniae carbapenemase (Ambler class A), metallo-ß-lactamases (Ambler class B), and oxacillinase-48 (Ambler class D). Ceftazidime–avibactam, which was newly licensed for carbapenemase producers, is the most common treatment option for infections. Meropenem–vaborbactam, imipenem–relebactam, plazomicin, cefiderocol, eravacycline, and aztreonam–avibactam are recently reported to be active against carbapenem-resistant Enterobacteriaceae; and are also in ongoing trials for different populations and combinations with other antibacterial agents. Overall, treatment must be tailored to the patient’s susceptibility profile, type and degree of infection, and personal characteristics.
Collapse
Affiliation(s)
- Mihret Tilahun
- Department of Medical Laboratory Sciences, College of Medicine and Health Science, Wollo University, Dessie, Ethiopia
| | - Yeshimebet Kassa
- Department of Medical Laboratory Sciences, College of Medicine and Health Science, Wollo University, Dessie, Ethiopia
| | - Alemu Gedefie
- Department of Medical Laboratory Sciences, College of Medicine and Health Science, Wollo University, Dessie, Ethiopia
| | - Melaku Ashagire
- Department of Medical Laboratory Sciences, College of Medicine and Health Science, Wollo University, Dessie, Ethiopia
| |
Collapse
|
10
|
Moghimi M, Haeili M, Mohajjel Shoja H. Characterization of Tigecycline Resistance Among Tigecycline Non-susceptible Klebsiella pneumoniae Isolates From Humans, Food-Producing Animals, and in vitro Selection Assay. Front Microbiol 2021; 12:702006. [PMID: 34421858 PMCID: PMC8374936 DOI: 10.3389/fmicb.2021.702006] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 07/09/2021] [Indexed: 01/07/2023] Open
Abstract
Emergence of extensively drug-resistant isolates of Klebsiella pneumoniae has prompted increased reliance on the last-resort antibiotics such as tigecycline (TGC) for treating infections caused by these pathogens. Consumption of human antibiotics in the food production industry has been found to contribute to the current antibiotic resistance crisis. In the current study, we aimed to investigate the mechanisms of TGC resistance among 18 TGC-non-susceptible (resistant or intermediate) K. pneumoniae (TGC-NSKP) isolates obtained from human (n = 5), food animals (n = 7), and in vitro selection experiment (n = 6). Isolates were genotyped by multilocus sequence typing (MLST). ramR, acrR, rpsJ, tetA, and mgrB (for colistin resistance) genes were sequenced. The presence of tetX, tetX1, and carbapenemase genes was examined by PCR. Susceptibility to different classes of antibiotics was evaluated by disc diffusion and broth macrodilution methods. The expression level of acrB was quantified by RT-qPCR assay. The 12 TGC-NSKP isolates [minimum inhibitory concentrations (MICs) = 4–32 mg/l] belonged to 10 distinct sequence types including ST37 (n = 2), ST11, ST15, ST45, ST1326 (animal isolates); ST147 (n = 2, human and animal isolates); and ST16, ST377, ST893, and ST2935 (human isolates). Co-resistance to TGC and colistin was identified among 57 and 40% of animal and human isolates, respectively. All human TGC-NSKP isolates carried carbapenemase genes (blaOXA–48, blaNDM–1, and blaNDM–5). tetX/X1 genes were not detected in any isolates. About 83% of TGC-NSKP isolates (n = 15) carried ramR and/or acrR alterations including missense/nonsense mutations (A19V, L44Q, I141T, G180D, A28T, R114L, T119S, Y59stop, and Q122stop), insertions (positions +205 and +343), or deletions (position +205) for ramR, and R90G substitution or frameshift mutations for acrR. In one isolate ramR amplicon was not detected using all primers used in this study. Among seven colistin-resistant isolates, five harbored inactivated/mutated MgrB due to premature termination by nonsense mutations, insertion of IS elements, and frameshift mutations. All isolates revealed wild-type RpsJ and TetA (if present). Increased expression of acrB gene was detected among all resistant isolates, with the in vitro selected mutants showing the highest values. A combination of RamR and AcrR alterations was involved in TGC non-susceptibility in the majority of studied isolates.
Collapse
Affiliation(s)
- Mohaddeseh Moghimi
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Mehri Haeili
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Hanieh Mohajjel Shoja
- Department of Plant Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| |
Collapse
|
11
|
Zhang Q, Lin L, Pan Y, Chen J. Characterization of Tigecycline-Heteroresistant Klebsiella pneumoniae Clinical Isolates From a Chinese Tertiary Care Teaching Hospital. Front Microbiol 2021; 12:671153. [PMID: 34413834 PMCID: PMC8369762 DOI: 10.3389/fmicb.2021.671153] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 07/12/2021] [Indexed: 12/02/2022] Open
Abstract
Tigecycline has been used as one of the therapeutic choices for the treatment of infections caused by multidrug-resistant Klebsiella pneumoniae. However, the emergence of tigecycline heteroresistance has led to great challenges in treating these infections. The purpose of this study was to investigate whether tigecycline-heteroresistant K. pneumoniae (TGCHR-Kp) exists in clinical isolates, and to further characterize the underlying molecular mechanisms involved in the development of tigecycline-resistant subpopulations. Of the 268 tigecycline-susceptible clinical K. pneumoniae isolates, 69 isolates were selected as tigecycline-heteroresistant candidates in the preliminary heteroresistant phenotypic selection by a modified disk diffusion method, and only 21 strains were confirmed as TGCHR-Kp by the population analysis profile (PAP). Pulsed-field gel electrophoresis (PFGE) analysis demonstrated that all the parental TGCHR-Kp isolates were clonally unrelated, and colonies confirmed as the heteroresistant subpopulation showed no significant differences from their respective parental TGCHR-Kp isolates. Efflux pump inhibitors reversed the tigecycline susceptibility in heteroresistant subpopulations. Mutations in the ramR and soxR genes lead to upregulation of the ramA and soxS transcriptional regulators, which in turn induced overexpression of the AcrAB-TolC efflux pump genes in TGCHR-Kps-resistant subpopulations. Moreover, mutations of rpsJ were also found in resistant subpopulations, which suggested that the rpsJ mutation may also lead to tigecycline resistance. Time-kill assays showed that the efficacy of tigecycline against TGCHR-Kps was weakened, whereas the number of resistant subpopulations was enriched by the presence of tigecycline. Our findings imply that the presence of TGCHR-Kps in clinical strains causes severe challenges for tigecycline therapy in clinical practice.
Collapse
Affiliation(s)
- Qiaoyu Zhang
- Department of Nosocomial Infection Control, Fujian Medical University Union Hospital, Fuzhou, China
| | - Liping Lin
- Department of Laboratory Medicine, School of Medical Technology and Engineering, Fujian Medical University, Fuzhou, China
| | - Yuhong Pan
- Department of Clinical Laboratory, Fujian Medical University Union Hospital, Fuzhou, China
| | - Jiansen Chen
- Department of Nosocomial Infection Control, Fujian Medical University Union Hospital, Fuzhou, China
| |
Collapse
|
12
|
Ni W, Yang D, Guan J, Xi W, Zhou D, Zhao L, Cui J, Xu Y, Gao Z, Liu Y. In vitro and in vivo synergistic effects of tigecycline combined with aminoglycosides on carbapenem-resistant Klebsiella pneumoniae. J Antimicrob Chemother 2021; 76:2097-2105. [PMID: 33860309 DOI: 10.1093/jac/dkab122] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 03/15/2021] [Indexed: 02/05/2023] Open
Abstract
OBJECTIVES Carbapenem-resistant Klebsiella pneumoniae (CR-KP) infections represent severe threats to public health worldwide. The aim of this study was to assess potential synergistic interaction between tigecycline and aminoglycosides via in vitro and in vivo studies. METHODS Antibiotic resistance profiles and molecular characteristics of 168 CR-KP clinical isolates were investigated by susceptibility testing, PCR and MLST. Chequerboard tests and time-kill assays were performed for 20 CR-KP isolates to evaluate in vitro synergistic effects of tigecycline combined with aminoglycosides. A tissue-cage infection model of rats was established to evaluate in vivo synergistic effects. Different doses of tigecycline and aminoglycosides alone or in combination were administered for 7 days via tail vein injection. Antibiotic efficacy was evaluated in tissue-cage fluid and emergence of resistance was screened. RESULTS The chequerboard tests showed that this combination displayed synergistic or partial synergistic activity against CR-KP. The time-kill assays further demonstrated that strong synergistic effects of such a combination existed against isolates that were susceptible to both drugs but for resistant isolates no synergy was observed if clinical pharmacokinetics were taken into consideration. The in vivo study showed that the therapeutic effectiveness of combination therapies was better than that of monotherapy for susceptible isolates, suggesting in vivo synergistic effects. Furthermore, combinations of tigecycline with an aminoglycoside showed significant activity in reducing the occurrence of tigecycline-resistant mutants. CONCLUSIONS Compared with single drugs, tigecycline combined with aminoglycosides could exert synergistic effects and reduce the emergence of tigecycline resistance. Such a combination might be an effective alternative when treating CR-KP infections in clinical practice.
Collapse
Affiliation(s)
- Wentao Ni
- Department of Pulmonary and Critical Care Medicine, Peking University People's Hospital, Beijing 100044, China
| | - Deqing Yang
- Division of Pulmonary Diseases, State Key Laboratory of Biotherapy of China, and Department of Respiratory and Critical Care Medicine, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Jie Guan
- Clinical Laboratory, Peking University First Hospital, Beijing 100034, China
| | - Wen Xi
- Department of Pulmonary and Critical Care Medicine, Peking University People's Hospital, Beijing 100044, China
| | - Dexun Zhou
- Department of Pulmonary and Critical Care Medicine, Peking University People's Hospital, Beijing 100044, China
| | - Lili Zhao
- Department of Pulmonary and Critical Care Medicine, Peking University People's Hospital, Beijing 100044, China
| | - Junchang Cui
- Department of Respiratory Diseases, Chinese PLA General Hospital, Beijing 100853, China
| | - Yu Xu
- Department of Pulmonary and Critical Care Medicine, Peking University People's Hospital, Beijing 100044, China
| | - Zhancheng Gao
- Department of Pulmonary and Critical Care Medicine, Peking University People's Hospital, Beijing 100044, China
| | - Youning Liu
- Department of Respiratory Diseases, Chinese PLA General Hospital, Beijing 100853, China
| |
Collapse
|
13
|
Babaei S, Haeili M. Evaluating the performance characteristics of different antimicrobial susceptibility testing methodologies for testing susceptibility of gram-negative bacteria to tigecycline. BMC Infect Dis 2021; 21:709. [PMID: 34315422 PMCID: PMC8314565 DOI: 10.1186/s12879-021-06338-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 06/18/2021] [Indexed: 11/10/2022] Open
Abstract
Background The current emergence of multi-drug resistance among nosocomial pathogens has led to increased use of last-resort agents including Tigecycline (TGC). Availability of reliable methods for testing TGC susceptibility is crucial to accurately predict clinical outcomes. We evaluated the influence of different methodologies and type of media on TGC susceptibility of different gram-negative bacteria of clinical origin. Methods The TGC susceptibility of 84 clinical isolates of Klebsiella pneumoniae (n = 29), Escherichia coli (n = 30), and Acinetobacter baumannii (n = 25) was tested by broth microdilution (BMD), Etest, agar dilution (AD) and disk diffusion (DD) methods using Mueller Hinton agar from Difco and Mueller Hinton broth (MHB) from two different manufacturers (Difco and Condalab). FDA TGC susceptibility breakpoints issued for Enterobacteriaceae were used for interpretation of the results. Results MICs determined by BMD using MHB from two suppliers showed a good correlation with overall essential agreement (EA) and categorical agreement (CA) being 100% and 95% respectively. However, a twofold rise in BMD-Condalab MICs which was detected in 50% of the isolates, resulted in changes in susceptibility categories of few isolates with MICs close to susceptibility breakpoints leading to an overall minor error (MI) rate of 4.7%. Among the tested methods, Etest showed the best correlation with BMD, being characterized with the lowest error rates (only 1% MI) and highest overall EA (100%) and CA (98.8%) for all subsets of isolates. AD yielded the lowest overall agreement (EA 77%, CA 81%) with BMD in a species dependent manner, with the highest apparent discordance being found among the A. baumannii isolates. While the performance of DD for determination of TGC susceptibility among Enterobacteriaceae was excellent, (CA:100% with no errors), the CA was lower (84%) when it was used for A. baumannii where an unacceptably high minor-error rate was noted (16%). No major error or very major error was detected for any of the tested methods. Conclusions Etest can be reliably used for TGC susceptibility testing in the three groups of studied bacteria. For the isolates with close-to-breakpoint MICs, testing susceptibility using the reference method is recommended.
Collapse
Affiliation(s)
- Sima Babaei
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Mehri Haeili
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran.
| |
Collapse
|
14
|
Liu E, Jia P, Li X, Zhou M, Kudinha T, Wu C, Xu Y, Yang Q. In vitro and in vivo Effect of Antimicrobial Agent Combinations Against Carbapenem-Resistant Klebsiella pneumoniae with Different Resistance Mechanisms in China. Infect Drug Resist 2021; 14:917-928. [PMID: 33707959 PMCID: PMC7943327 DOI: 10.2147/idr.s292431] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 01/07/2021] [Indexed: 12/12/2022] Open
Abstract
Objective This study aimed to evaluate the in vitro and in vivo effects of different combinations of antimicrobial agents against carbapenemase-producing and non-producing Klebsiella pneumoniae from China. Methods A checkerboard assay of meropenem (MEM), amikacin (AK), tigecycline (TGC), colistin (COL) and their combinations was carried out against 58 clinical carbapenem-resistant K. pneumoniae (CRKp) isolates, including 11 carbapenemase-non-producing K. pneumoniae isolates and 21 isolates producing KPC-2 enzyme, 11 NDM-1, 13 IMP, one VIM-1 and one OXA-48. The checkerboard assay was analyzed by the fractional inhibitory concentration index (FICI). A time-kill assay and Galleria mellonella infection model were conducted to evaluate the in vitro and in vivo effects of the four drugs alone and in combination. Results In the checkerboard assay, TGC+AK and MEM+AK combinations showed the highest synergistic effect against KPC-2 and NDM-1 carbapenemase-producing isolates, with synergy+partial synergy (defined as FICI <1) rates of 76.2% and 71.4% against KPC-2 producers, and 54.5% and 81.8% against NDM-1 producers. TGC+AK and MEM+COL combinations showed the highest rate of synergistic effect against IMP-producing isolates. Against carbapenemase-non-producing isolates, TGC+COL and TGC+AK combinations showed the highest rate of synergy effect (63.6% and 54.5%). MEM+AK showed a synergistic effect against one VIM-1 producer (FICI=0.31) and an additivite effect (FICI=1) against one OXA-48 producer. In the time-kill assay, COL+AK, COL+TGC, COL+MEM and AK+TGC showed good synergistic effects against the KPC-2-producing isolate D16. COL+MEM and COL+TGC combinations showed good effects against the NDM-1-producing isolate L13 and IMP-4-producing isolate L34. Against the carbapenemase-non-producing isolate Y105, MEM+TGC and COL+AK showed high synergistic effects, with log10CFU/mL decreases of 6.2 and 5.5 compared to the most active single drug. In the G. mellonella survival assay, MEM-based combinations had relatively high survival rates, especially when combined with colistin, against KPC-2 producers (90% survival rate) and with amikacin against metallo-beta-lactamase producers (95-100% survival rate). Conclusion Our study suggests that different antimicrobial agent combinations should be considered against CRKp infections with different resistance mechanisms.
Collapse
Affiliation(s)
- Enbo Liu
- Department of Clinical Laboratory, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, People's Republic of China
| | - Peiyao Jia
- Department of Clinical Laboratory, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, People's Republic of China.,Graduate School, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, People's Republic of China
| | - Xue Li
- Department of Clinical Laboratory, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, People's Republic of China.,Department of Clinical Laboratory, Beijing Anzhen Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Menglan Zhou
- Department of Clinical Laboratory, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, People's Republic of China.,Graduate School, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, People's Republic of China
| | - Timothy Kudinha
- School of Biomedical Sciences, Charles Sturt University, Orange, 2800, Australia.,Pathology West, NSW Health Pathology, Orange, 2800, Australia
| | - Chuncai Wu
- Department of Clinical Laboratory, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, People's Republic of China
| | - Yingchun Xu
- Department of Clinical Laboratory, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, People's Republic of China
| | - Qiwen Yang
- Department of Clinical Laboratory, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, People's Republic of China
| |
Collapse
|
15
|
Yaghoubi S, Zekiy AO, Krutova M, Gholami M, Kouhsari E, Sholeh M, Ghafouri Z, Maleki F. Tigecycline antibacterial activity, clinical effectiveness, and mechanisms and epidemiology of resistance: narrative review. Eur J Clin Microbiol Infect Dis 2021; 41:1003-1022. [PMID: 33403565 PMCID: PMC7785128 DOI: 10.1007/s10096-020-04121-1] [Citation(s) in RCA: 105] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 12/02/2020] [Indexed: 12/14/2022]
Abstract
Tigecycline is unique glycylcycline class of semisynthetic antimicrobial agents developed for the treatment of polymicrobial infections caused by multidrug-resistant Gram-positive and Gram-negative pathogens. Tigecycline evades the main tetracycline resistance genetic mechanisms, such as tetracycline-specific efflux pump acquisition and ribosomal protection, via the addition of a glycyclamide moiety to the 9-position of minocycline. The use of the parenteral form of tigecycline is approved for complicated skin and skin structure infections (excluding diabetes foot infection), complicated intra-abdominal infections, and community-acquired bacterial pneumonia in adults. New evidence also suggests the effectiveness of tigecycline for the treatment of severe Clostridioides difficile infections. Tigecycline showed in vitro susceptibility to Coxiella spp., Rickettsia spp., and multidrug-resistant Neisseria gonnorrhoeae strains which indicate the possible use of tigecycline in the treatment of infections caused by these pathogens. Except for intrinsic, or often reported resistance in some Gram-negatives, tigecycline is effective against a wide range of multidrug-resistant nosocomial pathogens. Herein, we summarize the currently available data on tigecycline pharmacokinetics and pharmacodynamics, its mechanism of action, the epidemiology of tigecycline resistance, and its clinical effectiveness.
Collapse
Affiliation(s)
- Sajad Yaghoubi
- Department of Clinical Microbiology, Iranshahr University of Medical Sciences, Iranshahr, Iran
| | - Angelina Olegovna Zekiy
- Department of Prosthetic Dentistry, Sechenov First Moscow State Medical University, Russian Federation, Trubetskaya st., 8-2, 119991, Moscow, Russia
| | - Marcela Krutova
- Department of Medical Microbiology, 2nd Faculty of Medicine, Charles University and Motol University Hospital, Prague, Czech Republic
| | - Mehrdad Gholami
- Department of Microbiology and Virology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Ebrahim Kouhsari
- Laboratory Sciences Research Center, Golestan University of Medical Sciences, P.O. Box 6939177143, Gorgan- Sari Road, Golestan Province, Gorgan, Iran. .,Department of Laboratory Sciences, Faculty of Paramedicine, Golestan University of Medical Sciences, P.O. Box 6939177143, Gorgan- Sari Road, Golestan Province, Gorgan, Iran.
| | - Mohammad Sholeh
- Department of Microbiology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Zahra Ghafouri
- Department of Biochemistry, Biophysics and Genetics, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Farajolah Maleki
- Department of Laboratory Sciences, School of Allied Medical Sciences, Ilam University of Medical sciences, Ilam, Iran.
| |
Collapse
|
16
|
Park Y, Choi Q, Kwon GC, Koo SH. Molecular epidemiology and mechanisms of tigecycline resistance in carbapenem-resistant Klebsiella pneumoniae isolates. J Clin Lab Anal 2020; 34:e23506. [PMID: 32815626 PMCID: PMC7755817 DOI: 10.1002/jcla.23506] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 06/26/2020] [Accepted: 07/08/2020] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND The emergence and transmission of tigecycline- and carbapenem-resistant Klebsiella pneumoniae (TCRKP) have become a major concern to public health globally. Here, we investigated the molecular epidemiology and mechanisms of tigecycline resistance in carbapenem-resistant K pneumoniae (CRKP) isolates. METHODS Forty-five non-duplicate CRKP isolates were collected from January 2017 to June 2019. We performed antimicrobial susceptibility tests, multilocus sequence typing (MLST), and pulsed-field gel electrophoresis (PFGE). PCR and DNA sequencing were performed for the detection and mutation analysis of acrR, oqxR, ramR, rpsJ, tet(A), and tet(X) genes, which are related to tigecycline resistance. The expression levels of efflux pump genes acrB and oqxB and their regulator genes rarA, ramA, soxS, and marA were assessed by quantitative real-time PCR. RESULTS The resistance rate to tigecycline in CRKP isolates was 37.8% (17/45). K pneumoniae ST307 was a predominant clone type (70.6%, 12/17) among the TCRKP isolates. The expression levels of acrB (P < .001) and marA (P = .009) were significantly higher in the tigecycline-resistant group than in the tigecycline-intermediate and tigecycline-susceptible groups. Increased expression of acrB was associated with marA expression (r = 0.59, P = .013). CONCLUSIONS We found that the activated MarA-induced overexpression of AcrAB efflux pump plays an important role in the emergence of tigecycline resistance in CRKP isolates.
Collapse
Affiliation(s)
- Yumi Park
- Department of Laboratory MedicineChungnam National University HospitalDaejeonSouth Korea
- Department of Laboratory MedicineKonyang University College of MedicineDaejeonSouth Korea
- Department of Laboratory MedicineKonyang University HospitalDaejeonSouth Korea
| | - Qute Choi
- Department of Laboratory MedicineChungnam National University HospitalDaejeonSouth Korea
| | - Gye Cheol Kwon
- Department of Laboratory MedicineChungnam National University HospitalDaejeonSouth Korea
| | - Sun Hoe Koo
- Department of Laboratory MedicineChungnam National University HospitalDaejeonSouth Korea
| |
Collapse
|
17
|
[Management of Carbapenem-resistant Enterobacteriaceae (CRE) infection in patients with hematological malignancies: Chinese consensus (2020)]. ZHONGHUA XUE YE XUE ZA ZHI = ZHONGHUA XUEYEXUE ZAZHI 2020; 41:881-889. [PMID: 33333689 PMCID: PMC7767803 DOI: 10.3760/cma.j.issn.0253-2727.2020.11.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Indexed: 12/25/2022]
|
18
|
Moghnieh R, Abdallah D, Awad L, Jadayel M, Haddad N, Tamim H, Zaiter A, Awwad DC, Sinno L, El-Hassan S, Lakkis R, Khalil R, Jisr T. The effect of an antibiotic stewardship program on tigecycline use in a Tertiary Care Hospital, an intervention study. Ann Clin Microbiol Antimicrob 2020; 19:35. [PMID: 32762758 PMCID: PMC7412806 DOI: 10.1186/s12941-020-00377-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 07/30/2020] [Indexed: 12/23/2022] Open
Abstract
Background A drug-oriented antibiotic stewardship intervention targeting tigecycline utilization was launched at Makassed General Hospital, Beirut, Lebanon, in 2016 as a part of a comprehensive Antibiotic Stewardship Program (ASP). In this study, we evaluated the effect of this intervention on changing tigecycline prescription behavior in different types of infections, patient outcome and mortality, along with tigecycline drug use density, when compared to an earlier period before the initiation of ASP. Methods This is a retrospective chart review of all adult inpatients who received tigecycline for more than 72 h between Jan-2012 and Dec-2013 [period (P) 1 before ASP] and between Oct-2016 and Dec-2018 [period (P) 2 during ASP]. Results Tigecycline was administered to 153 patients during P1 and 116 patients during P2. The proportion of patients suffering from cancer, those requiring mechanical ventilation, and those with hemodynamic failure was significantly reduced between P1 and P2. The proportion of patients who received tigecycline for FDA-approved indications increased from 19% during P1 to 78% during P2 (P < 0.001). On the other hand, its use in off-label indications was restricted, including ventilator-associated pneumonia (26.1% in P1, 3.4% in P2, P < 0.001), hospital-acquired pneumonia (19.6% in P1, 5.2% in P2, P = 0.001), sepsis (9.2% in P1, 3% in P2, P = 0.028), and febrile neutropenia (15.7% in P1, 0.9% in P2, P < 0.001). The clinical success rate of tigecycline therapy showed an overall significant increase from 48.4% during P1 to 65.5% during P2 (P = 0.005) in the entire patient population. All-cause mortality in the tigecycline-treated patients decreased from 45.1% during P1 to 20.7% during P2 (P < 0.0001). In general, mean tigecycline consumption decreased by 55% between P1 and P2 (P < 0.0001). Conclusion The drug-oriented ASP intervention targeting tigecycline prescriptions improved its use and patient outcomes, where it helped curb the over-optimistic use of this drug in off-label indications where it is not a suitable treatment option.
Collapse
Affiliation(s)
- Rima Moghnieh
- Division of Infectious Diseases, Department of Internal Medicine, Makassed General Hospital, Beirut, Lebanon. .,Division of Infectious Diseases, Department of Internal Medicine, Hôtel Dieu de France, Beirut, Lebanon.
| | - Dania Abdallah
- Pharmacy Department, Makassed General Hospital, Beirut, Lebanon
| | - Lyn Awad
- Pharmacy Department, Makassed General Hospital, Beirut, Lebanon
| | - Marwa Jadayel
- School of Pharmacy, Beirut Arab University, Beirut, Lebanon
| | - Nicholas Haddad
- Infectious Disease and Residency Program, Internal Medicine, Central Michigan University, Saginaw, MI, 48602, USA
| | - Hani Tamim
- Department of Internal Medicine, American University of Beirut, Beirut, Lebanon
| | - Aline Zaiter
- Faculty of Medicine, Lebanese University, Beirut, Lebanon
| | | | - Loubna Sinno
- Department of Medical Research, Makassed General Hospital, Beirut, Lebanon
| | | | - Rawad Lakkis
- Faculty of Arts and Sciences, American University of Beirut, Beirut, Lebanon
| | - Rabab Khalil
- Department of Internal Medicine, Makassed General Hospital, Beirut, Lebanon
| | - Tamima Jisr
- Department of Laboratory Medicine, Makassed General Hospital, Beirut, Lebanon
| |
Collapse
|
19
|
Yu WL, Lee NY, Wang JT, Ko WC, Ho CH, Chuang YC. Tigecycline Therapy for Infections Caused by Extended-Spectrum β-Lactamase-Producing Enterobacteriaceae in Critically Ill Patients. Antibiotics (Basel) 2020; 9:E231. [PMID: 32380654 PMCID: PMC7277187 DOI: 10.3390/antibiotics9050231] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Revised: 04/27/2020] [Accepted: 04/29/2020] [Indexed: 02/07/2023] Open
Abstract
: We aimed to evaluate tigecycline on the clinical effectiveness in treating complicated skin and soft tissue infections (cSSTI), complicated intra-abdominal infections (cIAI), and pneumonia, caused by extended-spectrum β-lactamase (ESBL)-producing Enterobacteriaceae, as data are limited. From three medical centers in Taiwan, we retrospectively studied the cSSTI, cIAI, and/or pneumonia caused by ESBL-producing Enterobacteriaceae. Among the 71 patients, including 39 patients infected with Klebsiella pneumoniae, 30 infected with Escherichia coli and others, the clinical success rate of tigecycline-based therapy was 80%-90% for pneumonia and cSSTI caused by E. coli and 50%-60% for cIAI caused by K. pneumoniae and E. coli. Microbiological and clinical outcome of pneumonia caused by carbapenem-resistant K. pneumoniae was poor. Univariate Cox analysis showed that dyspnea, SOFA score, septic shock, thrombocytopenia, prolonged prothrombin time, and lesser microbiological eradication were significant factors associated with 30-day mortality after the end of therapy. Cox regression proportional hazards model revealed dyspnea and a SOFA score > 8 to be independently associated with time to death. For ESBL producers, tigecycline showed good effects for cSSTI and pneumonia by E. coli, ordinary for cIAI, but ineffective for pneumonia by K. pneumoniae. Dyspnea and a high SOFA score predict a poor outcome.
Collapse
Affiliation(s)
- Wen-Liang Yu
- Department of Intensive Care Medicine, Chi Mei Medical Center, Tainan 710, Taiwan;
- Department of Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 100, Taiwan
| | - Nan-Yao Lee
- Department of Internal Medicine and Center for Infection Control, National Cheng Kung University Hospital, Tainan 710, Taiwan; (N.-Y.L.); (W.-C.K.)
- Department of Medicine, College of Medicine, National Cheng Kung University, Tainan 710, Taiwan
| | - Jann-Tay Wang
- Department of Internal Medicine, National Taiwan University Hospital, Taipei 100, Taiwan;
- Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan, Miaoli 350, Taiwan
| | - Wen-Chien Ko
- Department of Internal Medicine and Center for Infection Control, National Cheng Kung University Hospital, Tainan 710, Taiwan; (N.-Y.L.); (W.-C.K.)
- Department of Medicine, College of Medicine, National Cheng Kung University, Tainan 710, Taiwan
| | - Chung-Han Ho
- Department of Medical Research, Chi Mei Medical Center, Tainan 710, Taiwan;
- Department of Hospital and Health Care Administration, Chia Nan University of Pharmacy & Science, Tainan 717, Taiwan
| | - Yin-Ching Chuang
- Department of Medical Research, Chi Mei Medical Center, Tainan 710, Taiwan;
| |
Collapse
|
20
|
Chiotos K, Hayes M, Gerber JS, Tamma PD. Treatment of Carbapenem-Resistant Enterobacteriaceae Infections in Children. J Pediatric Infect Dis Soc 2020; 9:56-66. [PMID: 31872226 PMCID: PMC7047006 DOI: 10.1093/jpids/piz085] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Accepted: 11/27/2019] [Indexed: 12/15/2022]
Abstract
Infections due to carbapenem-resistant Enterobacteriaceae (CRE) are increasingly prevalent in children and are associated with poor clinical outcomes. Optimal treatment strategies for CRE infections continue to evolve. A lack of pediatric-specific comparative effectiveness data, uncertain pediatric dosing regimens for several agents, and a relative lack of new antibiotics with pediatric indications approved by the US Food and Drug Administration (FDA) collectively present unique challenges for children. In this review, we provide a framework for antibiotic treatment of CRE infections in children, highlighting relevant microbiologic considerations and summarizing available data related to the evaluation of FDA-approved antibiotics (as of September 2019) with CRE activity, including carbapenems, ceftazidime-avibactam, meropenem-vaborbactam, imipenem/cilastatin-relebactam, polymyxins, tigecycline, eravacycline, and plazomicin.
Collapse
Affiliation(s)
- Kathleen Chiotos
- Division of Infectious Diseases, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Division of Critical Care Medicine, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Center for Pediatric Clinical Effectiveness, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Antimicrobial Stewardship Program, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Molly Hayes
- Antimicrobial Stewardship Program, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Jeffrey S Gerber
- Division of Infectious Diseases, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Center for Pediatric Clinical Effectiveness, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Antimicrobial Stewardship Program, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Pranita D Tamma
- Division of Pediatric Infectious Diseases, Department of Pediatrics, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
21
|
Veeraraghavan B, Pragasam AK, Bakthavatchalam YD, Anandan S, Swaminathan S, Sundaram B. Colistin-sparing approaches with newer antimicrobials to treat carbapenem-resistant organisms: Current evidence and future prospects. Indian J Med Microbiol 2019; 37:72-90. [PMID: 31424014 DOI: 10.4103/ijmm.ijmm_19_215] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Antimicrobial resistance is on the rise across the globe. Increasing incidence of infections due to carbapenem resistance organisms is becoming difficult to treat, due to the limited availability of therapeutic agents. Very few agents such as colistin, fosfomycin, tigecycline and minocycline are widely used, despite its toxicity. However, with the availability of novel antimicrobials, beta-lactam/beta-lactamase inhibitor-based and non-beta-lactam-based agents could be of great relief. This review covers three important aspects which include (i) current management of carbapenem-resistant infections, (ii) determination of specific types of carbapenemases produced by multidrug-resistant and extensively drug-resistant Gram-negative pathogens and (iii) the currently available novel beta-lactam/beta-lactamase inhibitors and non-beta-lactam-based agents' laboratory findings, clinical outcome and implications.
Collapse
Affiliation(s)
- Balaji Veeraraghavan
- Department of Clinical Microbiology, Christian Medical College, Vellore, Tamil Nadu, India
| | - Agila Kumari Pragasam
- Department of Clinical Microbiology, Christian Medical College, Vellore, Tamil Nadu, India
| | | | - Shalini Anandan
- Department of Clinical Microbiology, Christian Medical College, Vellore, Tamil Nadu, India
| | | | | |
Collapse
|
22
|
Cui X, Zhang H, Du H. Carbapenemases in Enterobacteriaceae: Detection and Antimicrobial Therapy. Front Microbiol 2019; 10:1823. [PMID: 31481937 PMCID: PMC6710837 DOI: 10.3389/fmicb.2019.01823] [Citation(s) in RCA: 92] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Accepted: 07/24/2019] [Indexed: 12/12/2022] Open
Abstract
Carbapenem-resistant Enterobacteriaceae (CRE) have spread rapidly around the world in the past few years, posing great challenges to human health. The plasmid-mediated horizontal transmission of carbapenem-resistance genes is the main cause of the surge in the prevalence of CRE. Therefore, the timely and accurate detection of CRE, especially carbapenemase-producing Enterobacteriaceae, is very important for the clinical prevention and treatment of these infections. A variety of methods for the rapid detection of CRE phenotypes and genotypes have been developed for use in clinical microbiology laboratories. To overcome the lack of efficient antibiotics, CRE infections are often treated with combination therapies. Moreover, novel drugs and emerging strategies appeared successively and in various stages of development. In this article, we summarized the global distribution of various carbapenemases. And we focused on summarizing and comparing the advantages and limitations of the detection methods and the therapeutic strategies of CRE primarily.
Collapse
Affiliation(s)
- Xiaoyan Cui
- Department of Clinical Laboratory, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Haifang Zhang
- Department of Clinical Laboratory, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Hong Du
- Department of Clinical Laboratory, The Second Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
23
|
Liu H, Jia X, Zou H, Sun S, Li S, Wang Y, Xia Y. Detection and characterization of tigecycline heteroresistance in E. cloacae: clinical and microbiological findings. Emerg Microbes Infect 2019; 8:564-574. [PMID: 30945610 PMCID: PMC6455127 DOI: 10.1080/22221751.2019.1601031] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Tigecycline is regarded as a last-resort treatment for carbapenem-resistant Enterobacteriaceae (CRE), however, the emergence of tigecycline heteroresistance has posted the therapeutic challenge to combat this “nightmare bacteria”. The primary purpose of this study was to demonstrate the existence of tigecycline heteroresistance in carbapenem-resistant E. cloacae (TH-CRECL) and further to explore the epidemiological characteristics and underlying molecular mechanisms. Our study identified a relative low prevalence of carbapenem-resistant E. cloacae (CRECL) isolates, about 20.0% (28/140), as heteroresistance to tigecycline. Molecular genetic relatedness of these heteroresistant isolates were characterized epidemiologically sporadic. In addition, mechanistic analysis revealed that Phe-Arg-β-naphthylamide (PAβN) significantly reversed tigecycline MIC levels of resistant colonies in heteroresistant strains, as primarily related to the marked overproduction of efflux pump genes acrAB and oqxAB, as well as overexpression of transcriptional regulators (soxS and ramA). Moreover, logistic regression analysis showed that previous fluoroquinolone therapy was identified as the only potential independent risk factor for the acquisition of TH-CRECL. Most importantly, our data indicated that patients with TH-CRECL infection might lead to a remarkably prolonged hospital stay and deterioration in functional status. These findings emphasized the necessity of timely detection and intervention of patients infected with TH-CRECL.
Collapse
Affiliation(s)
- Hang Liu
- Department of Clinical Laboratory, the First Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Xiaojiong Jia
- Department of Clinical Laboratory, the First Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Hua Zou
- Department of Clinical Laboratory, the First Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Shan Sun
- Department of Clinical Laboratory, the First Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Shuang Li
- Department of Clinical Laboratory, the First Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Yonghong Wang
- Department of Clinical Laboratory, the First Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Yun Xia
- Department of Clinical Laboratory, the First Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| |
Collapse
|
24
|
Durante-Mangoni E, Andini R, Zampino R. Management of carbapenem-resistant Enterobacteriaceae infections. Clin Microbiol Infect 2019; 25:943-950. [PMID: 31004767 DOI: 10.1016/j.cmi.2019.04.013] [Citation(s) in RCA: 118] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 04/07/2019] [Accepted: 04/10/2019] [Indexed: 12/21/2022]
Abstract
BACKGROUND Carbapenem resistance is defined as in vitro non-susceptibility to any carbapenem and/or documented production of a carbapenemase. This feature has rapidly spread worldwide among clinical isolates of Enterobacteriaceae, mostly Klebsiella spp., and is associated with diverse molecular mechanisms. Carbapenem resistance is often associated with resistance to all traditional β-lactams and other classes of antibiotics, denoting a typical example of an extensively drug-resistant phenotype. OBJECTIVES To summarize and interpret in a balanced manner the most clinically relevant data in terms of carbapenem-resistant Enterobacteriaceae (CRE) infection management. SOURCES Data were extracted by PubMed and clinicaltrials.gov search and manual scrutiny among references of analysed articles. CONTENT Features of newer and older, rediscovered antimicrobial options for CRE are described. Observational studies and randomized clinical trials (RCT) of CRE treatment are summarized, with a specific focus on the effects of monotherapy compared with combination treatment. IMPLICATIONS The available evidence on the current management of CRE mostly comes from observational, non-comparative, retrospective, small studies, with a high risk of selection bias. Very little evidence comes from RCT. Conflicting results of RCT and observational studies call for caution before combination therapies are deemed superior to monotherapy. Data on newer agents have spurred enthusiasm but remain limited as concerns severe CRE infections. A balanced approach should guide the clinician in the choice of old or new drugs, and of monotherapies or combination regimens. Efforts should be made to perform adequately sized clinical trials answering well-defined research questions.
Collapse
Affiliation(s)
- E Durante-Mangoni
- Internal Medicine, University of Campania 'L. Vanvitelli' & Unit of Infectious and Transplant Medicine, AORN Ospedali dei Colli-Monaldi Hospital, Naples, Italy.
| | - R Andini
- Internal Medicine, University of Campania 'L. Vanvitelli' & Unit of Infectious and Transplant Medicine, AORN Ospedali dei Colli-Monaldi Hospital, Naples, Italy
| | - R Zampino
- Internal Medicine, University of Campania 'L. Vanvitelli' & Unit of Infectious and Transplant Medicine, AORN Ospedali dei Colli-Monaldi Hospital, Naples, Italy
| |
Collapse
|
25
|
Xu J, Pachón-Ibáñez ME, Cebrero-Cangueiro T, Chen H, Sánchez-Céspedes J, Zhou J. Discovery of niclosamide and its O-alkylamino-tethered derivatives as potent antibacterial agents against carbapenemase-producing and/or colistin resistant Enterobacteriaceae isolates. Bioorg Med Chem Lett 2019; 29:1399-1402. [PMID: 30954430 DOI: 10.1016/j.bmcl.2019.03.032] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 03/18/2019] [Accepted: 03/22/2019] [Indexed: 01/10/2023]
Abstract
Carbapenemase-producing Enterobacteriaceae (CPE) represents the most worrisome evolution of the antibiotic resistance crisis, which is almost resistant to most of available antibiotics. This situation is getting even worse particularly due to the recent emergence of colistin resistance. Herein, niclosamide, an FDA-approved traditional drug, and its novel O-alkylamino-tethered derivatives were discovered as new and potent antibacterial agents against carbapenemase-producing and/or colistin resistant Enterobacteriaceae isolates. Among these molecules, compound 10 (HJC0431) with 4-aminobutyl moiety showed the broad antibacterial activities, effective against 6 strains. In vitro checkerboard and time-kill course studies demonstrated the synergistic effects of the screened compounds with colistin against the corresponding strains with various degrees.
Collapse
Affiliation(s)
- Jimin Xu
- Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch, 301 University Blvd, Galveston, TX 77555, United States
| | - María Eugenia Pachón-Ibáñez
- Unit of Infectious Diseases, Microbiology and Preventive Medicine, Institute of Biomedicine of Seville (IBiS), University Hospital Virgen del Rocío/CSIC/University of Seville, E41013 Seville, Spain
| | - Tania Cebrero-Cangueiro
- Unit of Infectious Diseases, Microbiology and Preventive Medicine, Institute of Biomedicine of Seville (IBiS), University Hospital Virgen del Rocío/CSIC/University of Seville, E41013 Seville, Spain
| | - Haiying Chen
- Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch, 301 University Blvd, Galveston, TX 77555, United States
| | - Javier Sánchez-Céspedes
- Unit of Infectious Diseases, Microbiology and Preventive Medicine, Institute of Biomedicine of Seville (IBiS), University Hospital Virgen del Rocío/CSIC/University of Seville, E41013 Seville, Spain.
| | - Jia Zhou
- Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch, 301 University Blvd, Galveston, TX 77555, United States.
| |
Collapse
|
26
|
Jiang Y, Jia X, Xia Y. Risk factors with the development of infection with tigecycline- and carbapenem-resistant Enterobacter cloacae. Infect Drug Resist 2019; 12:667-674. [PMID: 30936728 PMCID: PMC6430992 DOI: 10.2147/idr.s189941] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Background Tigecycline is regarded as a last resort treatment for carbapenem-resistant Enterobacter cloacae (CREC) infections, and increasing numbers of tigecycline- and carbapenem-resistant E. cloacae (TCREC) isolates have been reported in recent years. However, risk factors and clinical impacts of these isolates are poorly characterized. Patients and methods We conducted a retrospective case-case-control study of hospitalized patients with TCREC infection during the period 2012-2016 in Chongqing, China. Case patients with TCREC and those with CREC were compared to a control group with no E. cloacae infection. Multivariate logistic regression models were used to identify independent risk factors for acquiring TCREC and CREC. Results A total of 36 TCREC cases, 36 CREC cases, and 100 controls were enrolled in our study. Multivariable analysis indicated that nasal catheter (OR: 8.9; 95% CI: 1.1-75.2), exposure to penicillin (OR: 95.9; 95% CI: 8.9-1038.3), aminoglycosides (OR: 42.1; 95% CI: 2.1-830.6), and fluoroquinolones (OR: 18.6; 95% CI: 1.9-185.6) were independent predictors for acquiring TCREC. In addition, venous catheterization (OR: 12.2; 95% CI: 2.5-58.5), penicillin (OR: 30.8; 95% CI: 7.9-120.0), and broad-spectrum cephalosporin (OR: 5.0; 95% CI: 1.5-17.3) were independently associated with CREC acquisition. Conclusion Reasonable antibiotic stewardship programs and surveillance are necessary to control the tigecycline resistance among high-risk patients.
Collapse
Affiliation(s)
- Yuansu Jiang
- Department of Laboratory Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China,
| | - Xiaojiong Jia
- Department of Laboratory Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China,
| | - Yun Xia
- Department of Laboratory Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China,
| |
Collapse
|
27
|
Sader HS, Rhomberg PR, Fuhrmeister AS, Mendes RE, Flamm RK, Jones RN. Antimicrobial Resistance Surveillance and New Drug Development. Open Forum Infect Dis 2019; 6:S5-S13. [PMID: 30895210 PMCID: PMC6419994 DOI: 10.1093/ofid/ofy345] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Surveillance represents an important informational tool for planning actions to monitor emerging antimicrobial resistance. Antimicrobial resistance surveillance (ARS) programs may have many different designs and can be grouped in 2 major categories based on their main objectives: (1) public health ARS programs and (2) industry-sponsored/product-oriented ARS programs. In general, public health ARS programs predominantly focus on health care and infection control, whereas industry ARS programs focus on an investigational or recently approved molecule(s). We reviewed the main characteristics of industry ARS programs and how these programs contribute to new drug development. Industry ARS programs are generally performed to comply with requirements from regulatory agencies responsible for commercial approval of antimicrobial agents, such as the US Food and Drug Administration, European Medicines Agency, and others. In contrast to public health ARS programs, which typically collect health care and diverse clinical data, industry ARS programs frequently collect the pathogens and perform the testing in a central laboratory setting. Global ARS programs with centralized testing play an important role in new antibacterial and antifungal drug development by providing information on the emergence and dissemination of resistant organisms, clones, and resistance determinants. Organisms collected by large ARS programs are extremely valuable to evaluate the potential of new agents and to calibrate susceptibility tests once a drug is approved for clinical use. These programs also can provide early evaluations of spectrum of activity and postmarketing trends required by regulatory agencies, and the programs may help drug companies to select appropriate dosing regimens and the appropriate geographic regions in which to perform clinical trials. Furthermore, these surveillance programs provide useful information on the potency and spectrum of new antimicrobial agents against indications and organisms in which clinicians have little or no experience. In summary, large ARS programs, such as the SENTRY Antimicrobial Surveillance Program, contribute key data for new drug development.
Collapse
|
28
|
Peri AM, Doi Y, Potoski BA, Harris PNA, Paterson DL, Righi E. Antimicrobial treatment challenges in the era of carbapenem resistance. Diagn Microbiol Infect Dis 2019; 94:413-425. [PMID: 30905487 DOI: 10.1016/j.diagmicrobio.2019.01.020] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Revised: 01/14/2019] [Accepted: 01/28/2019] [Indexed: 12/22/2022]
Abstract
Infections due to carbapenem-resistant Gram-negative bacteria are burdened by high mortality and represent an urgent threat to address. Clinicians are currently at a dawn of a new era in which antibiotic resistance in Gram-negative bacilli is being dealt with by the availability of the first new antibiotics in this field for many years. Although new antibiotics have shown promising results in clinical trials, there is still uncertainty over whether their use will improve clinical outcomes in real world practice. Some observational studies have reported a survival benefit in carbapenem-resistant Enterobacteriaceae bloodstream infections using combination therapy, often including "old" antibiotics such as colistin, aminoglycosides, tigecycline, and carbapenems. These regimens, however, are linked to increased risk of antimicrobial resistance, and their efficacy has yet to be compared to new antimicrobial options. While awaiting more definitive evidence, antibiotic stewards need clear direction on how to optimize the use of old and novel antibiotic options. Furthermore, carbapenem-sparing regimens should be carefully considered as a potential tool to reduce selective antimicrobial pressure.
Collapse
Affiliation(s)
- Anna Maria Peri
- Infectious Diseases Unit, Department of Internal Medicine, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, University of Milan, Italy; The University of Queensland Centre for Clinical Research (UQCCR), Royal Brisbane and Women's Hospital, Herston, QLD, Australia
| | - Yohei Doi
- Division of Infectious Diseases, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Brian A Potoski
- Department of Pharmacy and Therapeutics, University of Pittsburgh School of Pharmacy, PA, USA
| | - Patrick N A Harris
- The University of Queensland Centre for Clinical Research (UQCCR), Royal Brisbane and Women's Hospital, Herston, QLD, Australia
| | - David L Paterson
- The University of Queensland Centre for Clinical Research (UQCCR), Royal Brisbane and Women's Hospital, Herston, QLD, Australia
| | - Elda Righi
- The University of Queensland Centre for Clinical Research (UQCCR), Royal Brisbane and Women's Hospital, Herston, QLD, Australia; Infectious Diseases, Department of Diagnostics and Public Health, University of Verona, Italy.
| |
Collapse
|
29
|
An Analysis of the Type and Antimicrobial Resistance of Carbapenemase-Producing Enterobacteriaceae Isolated at the Military Institute of Medicine in Warsaw, Poland, 2009-2016. Jundishapur J Microbiol 2019. [DOI: 10.5812/jjm.67823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
30
|
Mootien J, Zahar JR. Entérobactéries productrices de carbapénémases en médecine intensive : thérapeutique. MEDECINE INTENSIVE REANIMATION 2018. [DOI: 10.3166/rea-2018-0058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Les infections à entérobactéries productrices de carbapénémases peuvent représenter une pathologie redoutable, notamment dans les situations cliniques graves, en raison des possibilités thérapeutiques limitées. En France, les mécanismes OXA-48 et OXA-48-like (78 %) sont les plus fréquemment retrouvés. Les stratégies thérapeutiques actuelles limitées ont mis en exergue l’intérêt de certaines vieilles molécules et des associations d’antibiotiques avec une optimisation de leurs modalités d’administration. Dans l’attente de l’apport des futures options thérapeutiques, les essais contrôlés randomisés sont plus que nécessaires. Nous devons nous inspirer de l’expérience de ceux qui prennent en charge ces infections. La maîtrise du bon usage des antibiotiques reste toujours d’actualité afin de préserver l’efficacité des molécules existantes.
Collapse
|
31
|
Eiamphungporn W, Yainoy S, Jumderm C, Tan-Arsuwongkul R, Tiengrim S, Thamlikitkul V. Prevalence of the colistin resistance gene mcr-1 in colistin-resistant Escherichia coli and Klebsiella pneumoniae isolated from humans in Thailand. J Glob Antimicrob Resist 2018; 15:32-35. [PMID: 29935331 DOI: 10.1016/j.jgar.2018.06.007] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 06/10/2018] [Accepted: 06/12/2018] [Indexed: 11/26/2022] Open
Abstract
OBJECTIVES Historically, colistin has been considered a last-line therapeutic option against multidrug-resistant Gram-negative bacterial infections. However, chromosomally-encoded and plasmid-mediated colistin resistance is increasingly being reported worldwide. Spread of the plasmid-borne colistin resistance gene mcr-1 is of great concern since it can be transferred between bacteria. The aim of this study was to investigate the prevalence of mcr-1 in Escherichia coli and Klebsiella pneumoniae collected from human clinical specimens in Thailand during 2014-2017. METHODS Minimum inhibitory concentrations (MICs) of colistin were determined by the broth microdilution method for 317 non-duplicate Enterobacteriaceae clinical isolates (37 E. coli and 280 K. pneumoniae). All isolates were screened for the mcr-1 gene by PCR. RESULTS The colistin MIC50, MIC90 and MIC range for the 37 E. coli isolates were 0.5, 8 and 0.5-32mg/L, respectively. The mcr-1 gene was detected in 11 E. coli isolates (29.7%). Escherichia coli harbouring the mcr-1 gene had a colistin MIC range of 4-32mg/L. The colistin MIC50, MIC90, and MIC range for the 280 K. pneumoniae isolates were 32, >128, and 0.25 to >128mg/L, respectively. The mcr-1 gene was detected in 4 K. pneumoniae isolates (1.4%). Klebsiella pneumoniae harbouring the mcr-1 gene had a colistin MIC range of 4-64mg/L. CONCLUSIONS This is the first report on the prevalence of the mcr-1 gene in colistin-resistant E. coli and K. pneumoniae isolated from humans in Thailand. These data provide added insight into the mechanism of colistin resistance among Enterobacteriaceae pathogens.
Collapse
Affiliation(s)
- Warawan Eiamphungporn
- Department of Clinical Microbiology and Applied Technology, Faculty of Medical Technology, Mahidol University, Bangkok, Thailand
| | - Sakda Yainoy
- Department of Clinical Microbiology and Applied Technology, Faculty of Medical Technology, Mahidol University, Bangkok, Thailand
| | - Chakornpat Jumderm
- Department of Clinical Microbiology and Applied Technology, Faculty of Medical Technology, Mahidol University, Bangkok, Thailand
| | - Rachanis Tan-Arsuwongkul
- Department of Clinical Microbiology and Applied Technology, Faculty of Medical Technology, Mahidol University, Bangkok, Thailand
| | - Surapee Tiengrim
- Department of Clinical Microbiology and Applied Technology, Faculty of Medical Technology, Mahidol University, Bangkok, Thailand
| | - Visanu Thamlikitkul
- Division of Infectious Diseases and Tropical Medicine, Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, 2 Wanglang Road, Bangkoknoi, Bangkok 10700, Thailand.
| |
Collapse
|
32
|
Hong YK, Lee JY, Ko KS. Colistin resistance in Enterobacter spp. isolates in Korea. J Microbiol 2018; 56:435-440. [DOI: 10.1007/s12275-018-7449-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 02/14/2018] [Accepted: 04/06/2018] [Indexed: 12/15/2022]
|
33
|
Porreca AM, Sullivan KV, Gallagher JC. The Epidemiology, Evolution, and Treatment of KPC-Producing Organisms. Curr Infect Dis Rep 2018; 20:13. [PMID: 29730830 DOI: 10.1007/s11908-018-0617-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
PURPOSE OF REVIEW The purpose of this review is to investigate the evolution and epidemiology of Klebsiella pneumoniae carbapenemase (KPC)-producing organisms and the current and future treatment options for infections caused by KPC-producing isolates. RECENT FINDINGS The emergence of resistance in Enterobacteriaceae producing carbapenemases globally has increased the challenges in treating infections caused by these organisms. One of the prominent mechanisms of resistance is the production of KPC enzymes. Infections caused by organisms producing KPCs have limited treatment options and are associated with poor clinical outcomes. The rapid rise of KPC-producing organisms necessitated the use of drugs with pharmacokinetic and toxicity limitations, including polymyxins, tigecycline, fosfomycin, and aminoglycosides. The availability of new beta-lactamase inhibitor combinations that are effective against KPC-producing organisms represent an advance in safety and efficacy. Several agents are currently being studied that have activity against KPC-producing organisms and appear to represent promising additions to our armamentarium. KPC-producing organisms cause infections with high morbidity and mortality. Limited treatment options are available, though new therapies have been developed. Pipeline agents are likely to have a place in therapy for the treatment of infections caused by KPC-producing isolates.
Collapse
Affiliation(s)
- Ann Marie Porreca
- Temple University School of Pharmacy, 3307 North Broad Street, Philadelphia, PA, USA
| | - Kaede V Sullivan
- Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA
| | - Jason C Gallagher
- Temple University School of Pharmacy, 3307 North Broad Street, Philadelphia, PA, USA.
| |
Collapse
|
34
|
Aquino-Andrade A, Merida-Vieyra J, Arias de la Garza E, Arzate-Barbosa P, De Colsa Ranero A. Carbapenemase-producing Enterobacteriaceae in Mexico: report of seven non-clonal cases in a pediatric hospital. BMC Microbiol 2018; 18:38. [PMID: 29673319 PMCID: PMC5907697 DOI: 10.1186/s12866-018-1166-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Accepted: 03/15/2018] [Indexed: 12/15/2022] Open
Abstract
Background Carbapenemases-producing Enterobacteriaceae (CPE) are a worldwide public health emergency. In Mexico, reports of CPE are limited, particularly in the pediatric population. Here, we describe the clinical, epidemiological, and molecular characteristics of seven consecutive cases in a third-level pediatric hospital in Mexico City over a four-month period during 2016. Results The Enterobacteriaceae identified were three Escherichia coli strains (producing OXA-232, NDM-1 and KPC-2), two Klebsiella pneumoniae strains (producing KPC-2 and NDM-1), one Klebsiella oxytoca strain producing OXA-48 and one Enterobacter cloacae strain producing NDM-1. The majority of patients had underlying disesases, three were immunocompromised, and three had infections involved the skin and soft tissues. Half patients died as a result of CPE infection. Conclusions This study represents the first report of E. coli ST131-O25b clone producing NDM-1 in Latin America. In addition, this study is the first finding of K. oxytoca producing OXA-48 and E. coli producing OXA-232 in Mexican pediatric patients.
Collapse
Affiliation(s)
- Alejandra Aquino-Andrade
- Molecular Microbiology Laboratory, Instituto Nacional de Pediatría, Insurgentes Sur 3700-C, Insurgentes Cuicuilco, ZC, 04530, Coyoacán Mexico City, Mexico
| | - Jocelin Merida-Vieyra
- Molecular Microbiology Laboratory, Instituto Nacional de Pediatría, Insurgentes Sur 3700-C, Insurgentes Cuicuilco, ZC, 04530, Coyoacán Mexico City, Mexico
| | | | | | - Agustín De Colsa Ranero
- Molecular Microbiology Laboratory, Instituto Nacional de Pediatría, Insurgentes Sur 3700-C, Insurgentes Cuicuilco, ZC, 04530, Coyoacán Mexico City, Mexico. .,Pediatric Infectious Disease Department, Instituto Nacional de Pediatria, Mexico City, Mexico.
| |
Collapse
|
35
|
Rhodes NJ, Cruce CE, O'Donnell JN, Wunderink RG, Hauser AR. Resistance Trends and Treatment Options in Gram-Negative Ventilator-Associated Pneumonia. Curr Infect Dis Rep 2018; 20:3. [PMID: 29511909 DOI: 10.1007/s11908-018-0609-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
PURPOSE OF REVIEW Hospital-acquired and ventilator-associated pneumonia (VAP) are frequent causes of infection among critically ill patients. VAP is the most common hospital-acquired bacterial infection among mechanically ventilated patients. Unfortunately, many of the nosocomial Gram-negative bacteria that cause VAP are increasingly difficult to treat. Additionally, the evolution and dissemination of multi- and pan-drug resistant strains leave clinicians with few treatment options. VAP patients represent a dynamic population at risk for antibiotic failure and under-dosing due to altered antibiotic pharmacokinetic parameters. Since few antibiotic agents have been approved within the last 15 years, and no new agents specifically targeting VAP have been approved to date, it is anticipated that this problem will worsen. Given the public health crisis posed by resistant Gram-negative bacteria, it is essential to establish a firm understanding of the current epidemiology of VAP, the changing trends in Gram-negative resistance in VAP, and the current issues in drug development for Gram-negative bacteria that cause VAP. RECENT FINDINGS Rapid identification technologies and phenotypic methods, new therapeutic strategies, and novel treatment paradigms have evolved in an attempt to improve treatment outcomes for VAP; however, clinical data supporting alternative treatment strategies and adjunctive therapies remain sparse. Importantly, new classes of antimicrobials, novel virulence factor inhibitors, and beta-lactam/beta-lactamase inhibitor combinations are currently in development. Conscientious stewardship of new and emerging therapeutic agents will be needed to ensure they remain effective well into the future.
Collapse
Affiliation(s)
- Nathaniel J Rhodes
- Department of Pharmacy Practice, Midwestern University, Chicago College of Pharmacy, 555 31st St., Downers Grove, IL, 60515, USA. .,Department of Pharmacy, Northwestern Memorial Hospital, Chicago, IL, USA.
| | - Caroline E Cruce
- Department of Pharmacy Practice, Midwestern University, Chicago College of Pharmacy, 555 31st St., Downers Grove, IL, 60515, USA.,Department of Pharmacy, Northwestern Memorial Hospital, Chicago, IL, USA
| | - J Nicholas O'Donnell
- Department of Pharmacy Practice, Albany College of Pharmacy and Health Sciences, Albany, NY, USA
| | - Richard G Wunderink
- Department of Internal Medicine, Division of Pulmonary Critical Care, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Alan R Hauser
- Department of Internal Medicine, Division of Infectious Diseases, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.,Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| |
Collapse
|
36
|
Ni W, Li G, Zhao J, Cui J, Wang R, Gao Z, Liu Y. Use of Monte Carlo simulation to evaluate the efficacy of tigecycline and minocycline for the treatment of pneumonia due to carbapenemase-producing Klebsiella pneumoniae. Infect Dis (Lond) 2018; 50:507-513. [PMID: 29316830 DOI: 10.1080/23744235.2018.1423703] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Abstract
BACKGROUND Pneumonia caused by carbapenemase-producing Klebsiella pneumoniae (CP-KP) are increasingly encountered in hospitals worldwide, causing high mortality due to lack of treatment options. The goal of this study was to assess the efficacy of tigecycline and minocycline for CP-KP hospital-acquired pneumonia (HAP) by using Monte Carlo simulation. METHODS A total of 164 non-duplicated CP-KP strains were collected from sputum or blood in patients with HAP. The MICs for antimicrobials were determined by the agar dilution method. A 10,000-patient Monte Carlo Simulation based on a PK/PD model incorporating the MICs and population pharmacokinetic parameters were conducted to calculate probability of target attainment (PTA) at each MIC value and total cumulative fraction of response (CFR). RESULTS The susceptibility rate of tigecycline and minocycline were 79.9% and 41.5%, respectively. At recommended doses, an optimal PTA of 90% was obtained for treating HAP caused by CP-KP with MICs of tigecycline ≤0.5 mg/L or minocycline ≤4 mg/L. The CFR of tigecycline at the recommended dose and double dose (100 mg q12h) were 71.2% and 90.2%, respectively. The CFR of minocycline at recommended dose and double dose (200 mg q12h) was 53.4% and 77.2%, respectively. CONCLUSIONS The findings of this study suggest that the recommended dose of tigecycline was not effective in HAP caused by CP-KP, and a higher CFR indicating a better clinical efficacy can be gained by doubling the dose (100 mg q12h). minocycline (200 mg q12h) might be a potential alternative of tigecycline to against strains with MICs ≤ 8 mg/L.
Collapse
Affiliation(s)
- Wentao Ni
- a Department of Respiratory and Critical Care Medicine , Peking University People's Hospital , Beijing , China.,b Department of Respiratory Diseases , Chinese PLA General Hospital , Beijing , China
| | - Guobao Li
- c Pulmonary Department , The Third People's Hospital of Shenzhen , Shenzhen , China
| | - Jin Zhao
- b Department of Respiratory Diseases , Chinese PLA General Hospital , Beijing , China
| | - Junchang Cui
- c Pulmonary Department , The Third People's Hospital of Shenzhen , Shenzhen , China
| | - Rui Wang
- d Department of Clinical Pharmacology , Chinese PLA General Hospital , Beijing , China
| | - Zhancheng Gao
- a Department of Respiratory and Critical Care Medicine , Peking University People's Hospital , Beijing , China
| | - Youning Liu
- b Department of Respiratory Diseases , Chinese PLA General Hospital , Beijing , China
| |
Collapse
|
37
|
Abstract
PURPOSE OF REVIEW Multidrug-resistant (MDR) Enterobacteriaceae are often related to the production of extended-spectrum b-lactamases (ESBLs) and carbapenemase-producing Enterobacteriaceae (CRE), and represent an increasing global threat. Recommendations for the therapeutic management of MDR-related infections, however, are mainly derived from retrospective and nonrandomized prospective studies. The aim of this review is to discuss the challenges in the treatment of patients with infections because of MDR Enterobacteriaceae and provide an expert opinion while awaiting for more definitive data. RECENT FINDINGS To avoid the selection of carbapenemase-producing Enterobacteriaceae, carbapenem-sparing strategies should be considered. B-lactams/b-lactamase inhibitors, mainly piperacillin-tazobactam, minimum inhibitory concentration (MIC) 16/4mg/ml or less represents the best alternative to carbapenems for the treatment of ESBL-producing strains. Overall, combination therapy may be preferred over monotherapy for CRE. The combination of a carbapenem-containing regimen with colistin or high-dose tigecycline or aminoglycoside can be administered at high-dose prolonged infusion with therapeutic drug monitoring for the treatment of CRE with MIC for meropenem 8-16 mg/l or less. For MIC higher than 8-16 mg/l, the use of meropenem should be avoided and various combination therapies based on the in-vitro susceptibility of antimicrobials (e.g., colistin, high-dose tigecycline, fosfomycin, and aminoglycosides) should be selected. SUMMARY Carbapenem-sparing strategies should be used, when feasible, for ESBL infections. The majority of available nonrandomized studies highlight that combination for CRE seem to offer some therapeutic advantage over monotherapy. Strict infection control measures toward MDR Gram-negative pathogens remain necessary while awaiting for new treatment options.
Collapse
|
38
|
Lee HJ, Lee DG. Carbapenem-resistant Enterobacteriaceae: recent updates and treatment strategies. JOURNAL OF THE KOREAN MEDICAL ASSOCIATION 2018. [DOI: 10.5124/jkma.2018.61.4.281] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Affiliation(s)
- Hyo-Jin Lee
- Division of Infectious Diseases, Department of Internal Medicine, The Catholic University of Korea, Seoul, Korea
- Vaccine Bio-Research Institute, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Dong-Gun Lee
- Division of Infectious Diseases, Department of Internal Medicine, The Catholic University of Korea, Seoul, Korea
- Vaccine Bio-Research Institute, College of Medicine, The Catholic University of Korea, Seoul, Korea
| |
Collapse
|
39
|
Repurposing Zidovudine in combination with Tigecycline for treating carbapenem-resistant Enterobacteriaceae infections. Eur J Clin Microbiol Infect Dis 2017; 37:141-148. [DOI: 10.1007/s10096-017-3114-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Accepted: 09/27/2017] [Indexed: 12/22/2022]
|
40
|
Neuner EA, Gallagher JC. Pharmacodynamic and pharmacokinetic considerations in the treatment of critically Ill patients infected with carbapenem-resistant Enterobacteriaceae. Virulence 2017; 8:440-452. [PMID: 27589330 PMCID: PMC5477717 DOI: 10.1080/21505594.2016.1221021] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Revised: 07/26/2016] [Accepted: 08/02/2016] [Indexed: 01/20/2023] Open
Abstract
Carbapenem-Resistant Enterobacteriaceae (CRE) are an emerging healthcare crisis. Infections due to CRE are associated with high morbidity and mortality, especially in critically ill patients. Due to the multi-drug resistant nature of these infections only limited treatment options are available. Antimicrobials that have been described for the treatment of CRE infections include carbapenems, polymyxins, fosfomycin, tigecycline, aminoglycosides, and ceftazidime-avibactam. Given the limited treatment options it is imperative the pharmacokinetic and pharmacodynamics (PK-PD) characteristics of these agents are considered to optimize treatment regimens. This review will focus on the PK-PD challenges of the current treatment options for CRE infections.
Collapse
Affiliation(s)
| | - Jason C. Gallagher
- Department of Pharmacy Practice, Infectious Diseases, Temple University, Philadelphia, PA, USA
| |
Collapse
|
41
|
Moghnieh RA, Abdallah DI, Fawaz IA, Hamandi T, Kassem M, El-Rajab N, Jisr T, Mugharbil A, Droubi N, Al Tabah S, Sinno L, Ziade F, Daoud Z, Ibrahim A. Prescription Patterns for Tigecycline in Severely Ill Patients for Non-FDA Approved Indications in a Developing Country: A Compromised Outcome. Front Microbiol 2017; 8:497. [PMID: 28396656 PMCID: PMC5366332 DOI: 10.3389/fmicb.2017.00497] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Accepted: 03/10/2017] [Indexed: 01/19/2023] Open
Abstract
Introduction: With the rise in antibiotic resistance, tigecycline has been used frequently in off-label indications, based on its in-vitro activity against multidrug-resistant organisms. In this study, our aim was to assess its use in approved and unapproved indications. Materials and Methods: This is a retrospective chart review evaluating a 2-year experience of tigecycline use for > 72 h in 153 adult patients inside and outside critical care unit from January 2012 to December 2013 in a Lebanese tertiary-care hospital. Results: Tigecycline was mostly used in off-label indications (81%) and prescribed inside the critical care area, where the number of tigecycline cycles was 16/1,000 patient days. Clinical success was achieved in 43.4% of the patients. In the critically ill group, it was significantly higher in patients with a SOFA score <7 using multivariate analysis (Odds Ratio (OR) = 12.51 [4.29–36.51], P < 0.0001). Microbiological success was achieved in 43.3% of patients. Yet, the univariate and adjusted multivariate models failed to show a significant difference in this outcome between patients inside vs. outside critical care area, those with SOFA score <7 vs. ≥ 7, and in FDA-approved vs. off-label indications. Total mortality reached ~45%. It was significantly higher in critically ill patients with SOFA score ≥7 (OR = 5.17 [2.43–11.01], P < 0.0001) and in off-label indications (OR = 4.00 [1.30–12.31], P = 0.01) using an adjusted multivariate model. Gram-negative bacteria represented the majority of the clinical isolates (81%) and Acinetobacter baumannii predominated (28%). Carbapenem resistance was present in 85% of the recovered Acinetobacter, yet, more than two third of the carbapenem-resistant Acinetobacter species were still susceptible to tigecycline. Conclusion: In our series, tigecycline has been mostly used in off-label indications, specifically in severely ill patients. The outcome of such infections was not inferior to that of FDA-approved indications, especially inside critical care area. The use of this last resort antibiotic in complicated clinical scenarios with baseline microbiological epidemiology predominated by extensively-drug resistant pathogens ought to be organized.
Collapse
Affiliation(s)
- Rima A Moghnieh
- Division of Infectious Diseases, Department of Internal Medicine, Makassed General HospitalBeirut, Lebanon; Faculty of Medicine, Beirut Arab UniversityBeirut, Lebanon; Faculty of Medical Sciences, Lebanese UniversityBeirut, Lebanon
| | | | - Ismail A Fawaz
- Department of Infectious Diseases, University of Balamand Amioun, Lebanon
| | - Tarek Hamandi
- Department of Internal Medicine, Makassed General Hospital Beirut, Lebanon
| | - Mohammad Kassem
- Department of Internal Medicine, Makassed General Hospital Beirut, Lebanon
| | - Nabila El-Rajab
- Department of Internal Medicine, Makassed General Hospital Beirut, Lebanon
| | - Tamima Jisr
- Department of Laboratory Medicine, Makassed General Hospital Beirut, Lebanon
| | - Anas Mugharbil
- Division of Hematology-Oncology, Department of Internal Medicine, Makassed General Hospital Beirut, Lebanon
| | - Nabila Droubi
- Pharmacy Department, Makassed General Hospital Beirut, Lebanon
| | - Samaa Al Tabah
- Faculty of Health Sciences, American University of Beirut Beirut, Lebanon
| | | | - Fouad Ziade
- Faculty of Public Health, Lebanese University Beirut, Lebanon
| | - Ziad Daoud
- Clinical Microbiology, Faculty of Medicine and Medical Sciences, University of Balamand Amioun, Lebanon
| | - Ahmad Ibrahim
- Faculty of Medical Sciences, Lebanese UniversityBeirut, Lebanon; Pharmacy Department, Makassed General HospitalBeirut, Lebanon; Division of Hematology-Oncology, Department of Internal Medicine, Makassed General HospitalBeirut, Lebanon
| |
Collapse
|
42
|
Kaye KS, Gales AC, Dubourg G. Old antibiotics for multidrug-resistant pathogens: from in vitro activity to clinical outcomes. Int J Antimicrob Agents 2017; 49:542-548. [PMID: 28130072 DOI: 10.1016/j.ijantimicag.2016.11.020] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Revised: 11/18/2016] [Accepted: 11/27/2016] [Indexed: 01/07/2023]
Abstract
Antimicrobial resistance is a major and emerging threat worldwide. New antimicrobials have been unable to meet the resistance challenge, and treatment options are limited for a growing number of resistant pathogens. More and more clinicians are relying on older antimicrobials for the treatment of multidrug-resistant (MDR) bacteria. Some older antimicrobials have maintained excellent in vitro activity against highly resistant pathogens. In some instances, use of older agents is limited by unfavourable pharmacokinetic/pharmacodynamic characteristics and/or toxicities. In general, clinical data pertaining to the use of older agents for the treatment of MDR pathogens are scarce. Research efforts should be focused on the evaluation of older agents for the treatment of MDR pathogens as well as evaluating how these agents perform in complex patient populations with various and multiple co-morbid conditions.
Collapse
Affiliation(s)
- Keith S Kaye
- University of Michigan Health System, Department of Medicine, Division of Infectious Diseases, Ann Arbor, MI, USA
| | - Ana C Gales
- Division of Infectious Diseases, Department of Internal Medicine, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Grégory Dubourg
- Pôle des Maladies Infectieuses et Tropicales Clinique et Biologique, Fédération de Bactériologie-Hygiène-Virologie, University, Hospital Centre Timone, Institut Hospitalo-Universitaire (IHU) Méditerranée Infection, Assistance Publique-Hôpitaux de Marseille, Marseille, France; Université Aix-Marseille, Unité de Recherche sur les Maladies Infectieuses et Tropicales Emergentes (URMITE) UM 63 CNRS 7278 IRD 198 INSERM U1095, Facultés de Médecine et de Pharmacie, Marseille, France.
| |
Collapse
|
43
|
Yu J, Wang Y, Chen Z, Zhu X, Tian L, Li L, Sun Z. Outbreak of nosocomial NDM-1-producing Klebsiella pneumoniae ST1419 in a neonatal unit. J Glob Antimicrob Resist 2017; 8:135-139. [PMID: 28109845 DOI: 10.1016/j.jgar.2016.10.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Revised: 10/16/2016] [Accepted: 10/26/2016] [Indexed: 12/08/2022] Open
Abstract
OBJECTIVES The aim of this study was to characterise carbapenem-resistant Klebsiella pneumoniae isolates recovered from neonatal clinical specimens over a 4-month period. METHODS Seven carbapenem-resistant K. pneumoniae isolates were analysed. Antibiotic susceptibilities of the isolates were determined by the agar dilution method, and the drug resistance genes were evaluated by PCR. Clonal relatedness of the isolates was assessed using pulsed-field gel electrophoresis (PFGE) and multilocus sequence typing (MLST). Conjugation experiments and Southern blot hybridisation were performed to determine the transferability of the plasmids. RESULTS All of the K. pneumoniae isolates carried the blaNDM-1 gene but were negative for all other carbapenemases tested. All of the isolates harboured blaSHV-12, and five isolates also carried blaCTX-M-15 and/or blaTEM-1. All of the isolates exhibited multidrug resistance. The isolates belonged to sequence types ST1419 and ST101 and formed three different PFGE patterns. Plasmids carrying blaNDM-1 were successfully transferred from six of the seven isolates to the Escherichia coli recipient. These six NDM-1-producing K. pneumoniae were clonal and carried blaNDM-1 on the same plasmid, but one isolate possibly carried chromosomal blaNDM-1. CONCLUSIONS This is the first report of NDM-1-positive K. pneumoniae ST1419 from neonates in China. Closer attention should be paid to monitoring blaNDM-1 gene dissemination because it is potentially transferred horizontally.
Collapse
Affiliation(s)
- Jing Yu
- Department of Clinical Laboratory, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Road 1095#, Wuhan 430030, China
| | - Yue Wang
- Department of Clinical Laboratory, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Road 1095#, Wuhan 430030, China
| | - Zhongju Chen
- Department of Clinical Laboratory, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Road 1095#, Wuhan 430030, China
| | - Xuhui Zhu
- Department of Clinical Laboratory, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Road 1095#, Wuhan 430030, China
| | - Lei Tian
- Department of Clinical Laboratory, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Road 1095#, Wuhan 430030, China
| | - Li Li
- Department of Clinical Laboratory, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Road 1095#, Wuhan 430030, China
| | - Ziyong Sun
- Department of Clinical Laboratory, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Road 1095#, Wuhan 430030, China.
| |
Collapse
|
44
|
Carbapenem-Resistant Pseudomonas aeruginosa Bacteremia: Risk Factors for Mortality and Microbiologic Treatment Failure. Antimicrob Agents Chemother 2016; 61:AAC.01243-16. [PMID: 27821456 DOI: 10.1128/aac.01243-16] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Accepted: 11/03/2016] [Indexed: 12/11/2022] Open
Abstract
We reviewed 37 patients treated for bacteremia due to carbapenem-resistant (CR) Pseudomonas aeruginosa Although 65% of isolates were multiple-drug resistant, therapeutic options were available, as all were susceptible to ≥1 antibiotic. A total of 92% of patients received active antimicrobial therapy, but only 57% received early active therapy (within 48 h). Fourteen-day mortality was 19%. Microbiologic failure occurred in 29%. The Pitt bacteremia score (P = 0.046) and delayed active therapy (P = 0.027) were predictive of death and microbiologic failure, respectively.
Collapse
|
45
|
Shorr AF, Zilberberg MD. Continuous infusion of beta-lactams: a blissful option for the intensive care unit. J Thorac Dis 2016; 8:E1637-E1640. [PMID: 28149601 DOI: 10.21037/jtd.2016.12.47] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Andrew F Shorr
- Section of Pulmonary and Critical Care Medicine, Medstar Washington Hospital Center, Washington, DC, USA
| | | |
Collapse
|
46
|
Tsala M, Vourli S, Daikos GL, Tsakris A, Zerva L, Mouton JW, Meletiadis J. Impact of bacterial load on pharmacodynamics and susceptibility breakpoints for tigecycline and Klebsiella pneumoniae. J Antimicrob Chemother 2016; 72:172-180. [PMID: 27650184 DOI: 10.1093/jac/dkw354] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2016] [Revised: 07/18/2016] [Accepted: 07/26/2016] [Indexed: 01/13/2023] Open
Abstract
OBJECTIVES In the absence of other therapeutic options, tigecycline is used to treat bloodstream infections and pneumonia caused by carbapenemase-producing Klebsiella pneumoniae (CP-Kp). In this study, the standard and high tigecycline dosing regimens were simulated and tested against different inocula of CP-Kp isolates in an in vitro pharmacokinetic (PK)/pharmacodynamic (PD) model. METHODS Four susceptible isolates (EUCAST MICs of 0.125-1 mg/L) and two intermediately susceptible CP-Kp clinical isolates (MICs of 2 mg/L) were tested at three different inocula (107, 105 and 103 cfu/mL), simulating tigecycline serum and lung fCmax concentrations of 0.15 and 1.5 mg/L, respectively, of 50 mg tigecycline every 12 h for 48 h. The exposure-effect relationships were described and the probability of target attainment was calculated for each inoculum in order to determine PK/PD susceptibility breakpoints. RESULTS No cfu reduction was observed at serum concentrations. At lung concentrations and low inocula, a bacteriostatic and killing effect was found for isolates with MICs of 0.25 and 0.125 mg/L, respectively. The fAUC0-24/MIC (tAUC0-24/MIC) associated with half-maximal activity was 16 (150) with 103 cfu/mL, 28 (239) with 105 cfu/mL and 79 (590) with 107 cfu/mL. A PK/PD susceptibility breakpoint of ≤0.06 and ≤0.125 mg/L for bacteraemia with ≤101 cfu/mL and ≤0.25 and ≤0.5 mg/L for pneumonia with ≤103 cfu/g was determined for the standard tigecycline dose of 50 mg and the higher dose of 100 mg, respectively. CONCLUSIONS Tigecycline monotherapy with either 50 or 100 mg would not be sufficient for most patients with bacteraemia, though the higher dose of 100 mg could be effective for patients with pneumonia with low bacterial load.
Collapse
Affiliation(s)
- Marilena Tsala
- Clinical Microbiology Laboratory, Attikon University Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Sophia Vourli
- Clinical Microbiology Laboratory, Attikon University Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - George L Daikos
- First Department of Propaedeutic Medicine, Laikon Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Athanassios Tsakris
- Department of Microbiology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Loukia Zerva
- Clinical Microbiology Laboratory, Attikon University Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Johan W Mouton
- Department of Medical Microbiology and Infectious Diseases, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Joseph Meletiadis
- Clinical Microbiology Laboratory, Attikon University Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece .,Department of Medical Microbiology and Infectious Diseases, Erasmus Medical Center, Rotterdam, The Netherlands
| |
Collapse
|
47
|
Lee HJ, Choi JK, Cho SY, Kim SH, Park SH, Choi SM, Lee DG, Choi JH, Yoo JH. Carbapenem-resistant Enterobacteriaceae: Prevalence and Risk Factors in a Single Community-Based Hospital in Korea. Infect Chemother 2016; 48:166-173. [PMID: 27659436 PMCID: PMC5047997 DOI: 10.3947/ic.2016.48.3.166] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2016] [Revised: 08/18/2016] [Accepted: 09/02/2016] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND Carbapenemase-producing Enterobacteriaceae (CPE) are Gram-negative bacteria with increasing prevalence of infection worldwide. In Korea, 25 cases of CPE isolates were reported by the Korea Centers for Disease Control and Prevention in 2011. Most CPE cases were detected mainly at tertiary referral hospitals. We analyzed the prevalence and risk factors for carbapenem-resistant Enterobacteriaceae (CRE) in a mid-sized community-based hospital in Korea. MATERIALS AND METHODS We retrospectively analyzed all consecutive episodes of Enterobacteriaceae in a mid-sized community-based hospital from January 2013 to February 2014. CRE was defined as organisms of Enterobacteriaceae showing decreased susceptibility to carbapenems. Risk factors for CRE were evaluated by a case-double control design. Carbapenemase was confirmed for CRE using a combined disc test. RESULTS During 229,710 patient-days, 2,510 Enterobacteriaceae isolates were obtained. A total of 41 (1.6%) CRE isolates were enrolled in the study period. Thirteen species (31.7%) were Enterobacter aerogenes, 8 (19.5%) Klebsiella pneumoniae, 5 (12.2%) Enterobacter cloacae, and 15 other species of Enterobacteriaceae, respectively. Among the 41 isolates, only one (2.4%) E. aerogenes isolate belonged to CPE. For evaluation of risk factors, a total of 111 patients were enrolled and this included 37 patients in the CRE group, 37 in control group I (identical species), and 37 in control group II (different species). Based on multivariate analysis, regularly visiting the outpatient clinic was a risk factor for CRE acquisition in the control group I (P = 0.003), while vascular catheter and Charlson comorbidity index score ≥ 3 were risk factors in control group II (P = 0.010 and 0.011, each). Patients with CRE were more likely to experience a reduced level of consciousness, use a vasopressor, be under intensive care, and suffer from acute kidney injury. However, CRE was not an independent predictor of mortality compared with both control groups. CONCLUSION In conclusion, the prevalence of CRE was higher than expected in a mid-sized community-based hospital in Korea. CRE should be considered when patients have a vascular catheter, high comorbidity score, and regular visits to the outpatient clinic. This study suggests the need for appropriate prevention efforts and constant attention to CRE infection control in a mid-sized community-based hospital.
Collapse
Affiliation(s)
- Hyo Jin Lee
- Division of Infectious Diseases, Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Korea.,Vaccine Bio Research Institute, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Jae Ki Choi
- Division of Infectious Diseases, Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Korea.,Vaccine Bio Research Institute, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Sung Yeon Cho
- Division of Infectious Diseases, Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Korea.,Vaccine Bio Research Institute, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Si Hyun Kim
- Division of Infectious Diseases, Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Korea.,Vaccine Bio Research Institute, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Sun Hee Park
- Division of Infectious Diseases, Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Korea.,Vaccine Bio Research Institute, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Su Mi Choi
- Division of Infectious Diseases, Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Korea.,Vaccine Bio Research Institute, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Dong Gun Lee
- Division of Infectious Diseases, Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Korea.,Vaccine Bio Research Institute, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Jung Hyun Choi
- Division of Infectious Diseases, Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Korea.,Vaccine Bio Research Institute, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Jin Hong Yoo
- Division of Infectious Diseases, Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Korea.,Vaccine Bio Research Institute, College of Medicine, The Catholic University of Korea, Seoul, Korea.
| |
Collapse
|
48
|
Thaden JT, Pogue JM, Kaye KS. Role of newer and re-emerging older agents in the treatment of infections caused by carbapenem-resistant Enterobacteriaceae. Virulence 2016; 8:403-416. [PMID: 27384881 DOI: 10.1080/21505594.2016.1207834] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Antimicrobial resistance has been identified by the World Health Organization as "one of the three greatest threats to human health." Gram negative bacteria in particular drive this alarming trend. Carbapenem-resistant Enterobacteriaceae (CRE) such as Escherichia coli, Klebsiella pneumoniae, and Enterobacter species are of particular importance as they are associated with poor clinical outcomes and are common causes for a variety of infections including bacteremia, urinary tract infection, intra-abdominal infections and pneumonia. CRE are difficult to treat as carbapenem resistance is often accompanied by resistance to additional drug classes. For example, CRE may be extensively drug resistant or even pandrug resistant. Unfortunately, CRE infections have increased over the past 15 y while new and effective antibiotics have not kept pace. Recently, however, new agents have become available to help treat CRE infection, and several more are under development. This article reviews the efficacy, safety, and pharmacokinetic issues around 4 emerging agents to treat CRE - ceftazidime-avibactam, fosfomycin, tigecycline, and minocycline. In addition, an overview of agents in the antibiotic pipeline - meropenem-vaborbactam, imipenem-relebactam, plazomicin, and eravacycline is provided. More established agents, such as those in the polymyxin class and aminoglycoside class (other than the pipeline agent plazomicin), are not addressed here.
Collapse
Affiliation(s)
- Joshua T Thaden
- a Division of Infectious Diseases , Duke University Medical Center , Durham , NC , USA
| | - Jason M Pogue
- b Department of Pharmacy , Sinai Grace Hospital, Detroit Medical Center , Detroit , MI , USA
| | - Keith S Kaye
- c Division of Infectious Diseases , Wayne State University, Detroit Medical Center , Detroit , MI , USA
| |
Collapse
|
49
|
Current perspectives on tigecycline resistance in Enterobacteriaceae: susceptibility testing issues and mechanisms of resistance. Int J Antimicrob Agents 2016; 48:11-18. [DOI: 10.1016/j.ijantimicag.2016.04.017] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Revised: 03/31/2016] [Accepted: 04/02/2016] [Indexed: 11/23/2022]
|
50
|
|