1
|
Klousnitzer J, Xiang W, Polynice VM, Deslouches B. Comparative Properties of Helical and Linear Amphipathicity of Peptides Composed of Arginine, Tryptophan, and Valine. Antibiotics (Basel) 2024; 13:954. [PMID: 39452220 PMCID: PMC11504230 DOI: 10.3390/antibiotics13100954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 10/07/2024] [Accepted: 10/08/2024] [Indexed: 10/26/2024] Open
Abstract
BACKGROUND The persistence of antibiotic resistance has incited a strong interest in the discovery of agents with novel antimicrobial mechanisms. The direct killing of multidrug-resistant bacteria by cationic antimicrobial peptides (AMPs) underscores their importance in the fight against infections associated with antibiotic resistance. Despite a vast body of AMP literature demonstrating a plurality in structural classes, AMP engineering has been largely skewed toward peptides with idealized amphipathic helices (H-amphipathic). In contrast to helical amphipathicity, we designed a series of peptides that display the amphipathic motifs in the primary structure. We previously developed a rational framework for designing AMP libraries of H-amphipathic peptides consisting of Arg, Trp, and Val (H-RWV, with a confirmed helicity up to 88% in the presence of membrane lipids) tested against the most common MDR organisms. METHODS In this study, we re-engineered one of the series of the H-RWV peptides (8, 10, 12, 14, and 16 residues in length) to display the amphipathicity in the primary structure by side-by-side (linear) alignment of the cationic and hydrophobic residues into the 2 separate linear amphipathic (L-amphipathic) motifs. We compared the 2 series of peptides for antibacterial activity, red blood cell (RBC) lysis, killing and membrane-perturbation properties. RESULTS The L-RWV peptides achieved the highest antibacterial activity at a minimum length of 12 residues (L-RWV12, minimum optimal length or MOL) with the lowest mean MIC of 3-4 µM, whereas the MOL for the H-RWV series was reached at 16 residues (H-RWV16). Overall, H-RWV16 displayed the lowest mean MIC at 2 µM but higher levels of RBC lysis (25-30%), while the L-RWV series displayed minor RBC lytic effects at the test concentrations. Interestingly, when the S. aureus strain SA719 was chosen because of its susceptibility to most of the peptides, none of the L-RWV peptides demonstrated a high level of membrane perturbation determined by propidium iodide incorporation measured by flow cytometry, with <50% PI incorporation for the L-RWV peptides. By contrast, most H-RWV peptides displayed almost up to 100% PI incorporation. The results suggest that membrane perturbation is not the primary killing mechanism of the L-amphipathic RWV peptides, in contrast to the H-RWV peptides. CONCLUSIONS Taken together, the data indicate that both types of amphipathicity may provide different ideal pharmacological properties that deserve further investigation.
Collapse
Affiliation(s)
| | | | | | - Berthony Deslouches
- Department of Environmental and Occupational Health, School of Public Health, University of Pittsburgh, Pittsburgh, PA 15261, USA; (J.K.); (W.X.); (V.M.P.)
| |
Collapse
|
2
|
Zhang S, Di L, Qi Y, Qian X, Wang S. Treatment of infections caused by carbapenem-resistant Acinetobacter baumannii. Front Cell Infect Microbiol 2024; 14:1395260. [PMID: 39081869 PMCID: PMC11287075 DOI: 10.3389/fcimb.2024.1395260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 06/24/2024] [Indexed: 08/02/2024] Open
Abstract
Patients with severe carbapenem-resistant Acinetobacter baumannii (CRAB) infections currently face significant treatment challenges. When patients display signs of infection and the clinical suspicion of CRAB infections is high, appropriate treatment should be immediately provided. However, current treatment plans and clinical data for CRAB are limited. Inherent and acquired resistance mechanisms, as well as host factors, significantly restrict options for empirical medication. Moreover, inappropriate drug coverage can have detrimental effects on patients. Most existing studies have limitations, such as a restricted sample size, and are predominantly observational or non-randomized, which report significant variability in patient infection severity and comorbidities. Therefore, a gold-standard therapy remains lacking. Current and future treatment options of infections due to CRAB were described in this review. The dose and considerable side effects restrict treatment options for polymyxins, and high doses of ampicillin-sulbactam or tigecycline appear to be the best option at the time of initial treatment. Moreover, new drugs such as durlobactam and cefiderocol have substantial therapeutic capabilities and may be effective salvage treatments. Bacteriophages and antimicrobial peptides may serve as alternative treatment options in the near future. The advantages of a combination antimicrobial regimen appear to predominate those of a single regimen. Despite its significant nephrotoxicity, colistin is considered a primary treatment and is often used in combination with antimicrobials, such as tigecycline, ampicillin-sulbactam, meropenem, or fosfomycin. The Infectious Diseases Society of America (IDSA) has deemed high-dose ampicillin-sulbactam, which is typically combined with high-dose tigecycline, polymyxin, and other antibacterial agents, the best option for treating serious CRAB infections. A rational combination of drug use and the exploration of new therapeutic drugs can alleviate or prevent the effects of CRAB infections, shorten hospital stays, and reduce patient mortality.
Collapse
Affiliation(s)
- Siqin Zhang
- Department of Clinical Laboratory, Hangzhou Traditional Chinese Medicine Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, China
| | - Lingfang Di
- Department of Clinical Laboratory, Tongxiang First People’s Hospital, Tongxiang, Zhejiang, China
| | - Yan Qi
- Department of Clinical Laboratory, Hangzhou Traditional Chinese Medicine Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, China
| | - Xiang Qian
- Department of Clinical Laboratory, Hangzhou Traditional Chinese Medicine Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, China
| | - Siwei Wang
- Panvascular Diseases Research Center, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People’s Hospital, Quzhou, China
| |
Collapse
|
3
|
Our Experience over 20 Years: Antimicrobial Peptides against Gram Positives, Gram Negatives, and Fungi. Pharmaceutics 2022; 15:pharmaceutics15010040. [PMID: 36678669 PMCID: PMC9862542 DOI: 10.3390/pharmaceutics15010040] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 12/04/2022] [Accepted: 12/12/2022] [Indexed: 12/24/2022] Open
Abstract
Antibiotic resistance is rapidly increasing, and new anti-infective therapies are urgently needed. In this regard, antimicrobial peptides (AMPs) may represent potential candidates for the treatment of infections caused by multiresistant microorganisms. In this narrative review, we reported the experience of our research group over 20 years. We described the AMPs we evaluated against Gram-positive, Gram-negative, and fungi. In conclusion, our experience shows that AMPs can be a key option for treating multiresistant infections and overcoming resistance mechanisms. The combination of AMPs allows antibiotics and antifungals that are no longer effective to exploit the synergistic effect by restoring their efficacy. A current limitation includes poor data on human patients, the cost of some AMPs, and their safety, which is why studies on humans are needed as soon as possible.
Collapse
|
4
|
Cortés-Kaplan S, Kurdieh R, Hasim MS, Kaczmarek S, Taha Z, Maznyi G, McComb S, Lee SH, Diallo JS, Ardolino M. A New Functional Screening Platform Identifies Colistin Sulfate as an Enhancer of Natural Killer Cell Cytotoxicity. Cancers (Basel) 2022; 14:cancers14122832. [PMID: 35740500 PMCID: PMC9221353 DOI: 10.3390/cancers14122832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 06/07/2022] [Indexed: 12/04/2022] Open
Abstract
Simple Summary The use of small compounds in cancer immunotherapy has been limited so far. Her we screen for drugs that enhanced the ability of immune cells to kill tumor cells and identified the molecule Colistin Sulfate as a booster of immune activity. Abstract Due to their crucial role in tumor immunity, NK cells have quickly became a prime target for immunotherapies, with the adoptive transfer of NK cells and the use of NK cell engagers quickly moving to the clinical stage. On the other hand, only a few studies have focused on small molecule drugs capable of unleashing NK cells against cancer. In this context, repurposing small molecules is an attractive strategy to identify new immunotherapies from already approved drugs. Here, we developed a new platform to screen small molecule compounds based on a high-throughput luciferase-release cytotoxicity assay. We tested 1200 FDA approved drugs from the Prestwick Chemical Library, to identify compounds that increase NK cells’ cytotoxic potential. We found that the antibiotic colistin sulfate increased the cytotoxicity of human NK cells towards cancer cells. The effect of colistin was short lived and was not observed when NK cells were pretreated with the drug, showing how NK cell activity was potentiated only when the compound was present at the time of recognition of cancer cells. Further studies are needed to uncover the mechanism of action and the pre-clinical efficacy of colistin sulfate in mouse cancer models.
Collapse
Affiliation(s)
- Serena Cortés-Kaplan
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada; (S.C.-K.); (R.K.); (M.S.H.); (Z.T.); (G.M.); (J.-S.D.)
- CI3, University of Ottawa, Ottawa, ON K1N 6N5, Canada; (S.K.); (S.M.); (S.-H.L.)
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | - Reem Kurdieh
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada; (S.C.-K.); (R.K.); (M.S.H.); (Z.T.); (G.M.); (J.-S.D.)
- CI3, University of Ottawa, Ottawa, ON K1N 6N5, Canada; (S.K.); (S.M.); (S.-H.L.)
| | - Mohamed S. Hasim
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada; (S.C.-K.); (R.K.); (M.S.H.); (Z.T.); (G.M.); (J.-S.D.)
- CI3, University of Ottawa, Ottawa, ON K1N 6N5, Canada; (S.K.); (S.M.); (S.-H.L.)
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | - Shelby Kaczmarek
- CI3, University of Ottawa, Ottawa, ON K1N 6N5, Canada; (S.K.); (S.M.); (S.-H.L.)
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | - Zaid Taha
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada; (S.C.-K.); (R.K.); (M.S.H.); (Z.T.); (G.M.); (J.-S.D.)
- CI3, University of Ottawa, Ottawa, ON K1N 6N5, Canada; (S.K.); (S.M.); (S.-H.L.)
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | - Glib Maznyi
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada; (S.C.-K.); (R.K.); (M.S.H.); (Z.T.); (G.M.); (J.-S.D.)
- CI3, University of Ottawa, Ottawa, ON K1N 6N5, Canada; (S.K.); (S.M.); (S.-H.L.)
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | - Scott McComb
- CI3, University of Ottawa, Ottawa, ON K1N 6N5, Canada; (S.K.); (S.M.); (S.-H.L.)
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1N 6N5, Canada
- Human Health Therapeutics Research Centre, National Research Council, Ottawa, ON K1A 0R6, Canada
| | - Seung-Hwan Lee
- CI3, University of Ottawa, Ottawa, ON K1N 6N5, Canada; (S.K.); (S.M.); (S.-H.L.)
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | - Jean-Simon Diallo
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada; (S.C.-K.); (R.K.); (M.S.H.); (Z.T.); (G.M.); (J.-S.D.)
- CI3, University of Ottawa, Ottawa, ON K1N 6N5, Canada; (S.K.); (S.M.); (S.-H.L.)
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | - Michele Ardolino
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada; (S.C.-K.); (R.K.); (M.S.H.); (Z.T.); (G.M.); (J.-S.D.)
- CI3, University of Ottawa, Ottawa, ON K1N 6N5, Canada; (S.K.); (S.M.); (S.-H.L.)
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1N 6N5, Canada
- Correspondence: ; Tel.: +1-613-737-8899 (ext. 77257)
| |
Collapse
|
5
|
Yesil C, Yalcin AN, Ogunc D, Ongut G, Ozhak B, Colak D, Er H, Sarıtas ZE. Use of colistin with rifampicin, trimethoprim-sulfamethoxazole and teicoplanin in acinetobacter mouse infection model. Future Microbiol 2022; 17:665-671. [DOI: 10.2217/fmb-2021-0216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Background: Infections with multidrug-resistant Gram-negative bacteria such as Acinetobacter baumannii are major cause of morbidity and mortality. Colistin is used commonly to treat these infections. In this study, we evaluated the efficacy of different colistin combinations in a A. baumannii infection mouse model. Materials & methods: An A. baumannii mouse infection model was developed in 150 experimental animals. Treatment groups were as follows: colistin, colistin + rifampicin, colistin + trimethoprim/sulfamethoxazole, colistin + teicoplanin and a control group. The outcome was bacterial burden in the lung and liver tissues. The treatment groups were subdivided into 24-, 48- and 72-h groups. Results: Colistin and combinations reduce the A. baumannii burden significantly in lung and liver tissues compared with the control group. Compared with colistin alone colistin + rifampicin and colistin + TMP-SMX provided significantly better reduction in the bacterial burden. Conclusion: These results may suggest that rifampicin and TMP-SMX combination with colistin may have a potential role in the treatment of A. baumannii infections.
Collapse
Affiliation(s)
| | - Ata N Yalcin
- Akdeniz University Medical School, Department of Infectious Diseases & Clinical Microbiology, Antalya, Turkey
| | - Dilara Ogunc
- Akdeniz University Medical School, Department of Medical Microbiology, Antalya, Turkey
| | - Gozde Ongut
- Akdeniz University Medical School, Department of Medical Microbiology, Antalya, Turkey
| | - Betül Ozhak
- Akdeniz University Medical School, Department of Medical Microbiology, Antalya, Turkey
| | - Dilek Colak
- Akdeniz University Medical School, Department of Medical Microbiology, Antalya, Turkey
| | - Halil Er
- University of Health Sciences, Antalya Training & Research Hospital, Department of Medical Microbiology, Antalya, Turkey
| | - Zubeyde E Sarıtas
- University of Health Sciences, Antalya Training & Research Hospital, Department of Medical Microbiology, Antalya, Turkey
| |
Collapse
|
6
|
Ma XL, Guo YZ, Wu YM, Gong WT, Sun J, Huang Z. In vivo bactericidal effect of colistin-linezolid combination in a murine model of MDR and XDR Acinetobacter baumannii pneumonia. Sci Rep 2020; 10:17518. [PMID: 33060737 PMCID: PMC7567802 DOI: 10.1038/s41598-020-74503-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 10/01/2020] [Indexed: 11/09/2022] Open
Abstract
Recently, paradoxical combinations of colistin with anti-Gram-positive bacterial agents were introduced as a treatment alternative for multidrug-resistant Acinetobacter baumannii (MDRAB) infection. We assessed the therapeutic efficacy of the colistin–linezolid combination regimen in vitro and in a murine model of Acinetobacter baumannii pneumonia. A multidrug-resistant clinical strain (MDRAB31) and an extensively drug-resistant clinical strain (XDRAB78) were used in this study. The survival rates of mice and bacterial counts in lung tissue were used to assess the effects of colistin–linezolid combination. The survival rates of colistin–linezolid combination groups significantly increased compared with colistin groups for MDRAB31 (72% versus 32%, P = 0.03) and for XDRAB78 (92% versus 68%, P = 0.031). The colistin–linezolid combination groups significantly reduced the bacterial counts in lung tissue compared with colistin groups for MDRAB31 and for XDRAB78 (P < 0.05). The colistin–linezolid combination had a bactericidal and synergistic effect compared with colistin alone in time-kill assay and in murine model of pneumonia. Our data demonstrated the synergistic effect of colistin–linezolid combination regimen as a treatment alternative for the severe pulmonary infection caused by MDRAB and XDRAB.
Collapse
Affiliation(s)
- Xiao-Lin Ma
- Department of Neurology, XuZhou Central Hospital, The Xuzhou School of Clinical Medicine of Nanjing Medical University, XuZhou Clinical School of Xuzhou Medical University, Xuzhou, 221009, Jiangsu, China
| | - Yong-Zhong Guo
- Department of Respiratory and Critical Care Medicine, XuZhou Central Hospital, The Xuzhou School of Clinical Medicine of Nanjing Medical University, XuZhou Clinical School of Xuzhou Medical University, Xuzhou, 221009, Jiangsu, China
| | - Yan-Min Wu
- Department of Respiratory and Critical Care Medicine, XuZhou Central Hospital, The Xuzhou School of Clinical Medicine of Nanjing Medical University, XuZhou Clinical School of Xuzhou Medical University, Xuzhou, 221009, Jiangsu, China
| | - Wei-Tao Gong
- Department of Respiratory and Critical Care Medicine, XuZhou Central Hospital, The Xuzhou School of Clinical Medicine of Nanjing Medical University, XuZhou Clinical School of Xuzhou Medical University, Xuzhou, 221009, Jiangsu, China.
| | - Jie Sun
- Department of Respiratory and Critical Care Medicine, XuZhou Central Hospital, The Xuzhou School of Clinical Medicine of Nanjing Medical University, XuZhou Clinical School of Xuzhou Medical University, Xuzhou, 221009, Jiangsu, China
| | - Zhen Huang
- Department of Respiratory and Critical Care Medicine, XuZhou Central Hospital, The Xuzhou School of Clinical Medicine of Nanjing Medical University, XuZhou Clinical School of Xuzhou Medical University, Xuzhou, 221009, Jiangsu, China
| |
Collapse
|
7
|
Chen W. Host Innate Immune Responses to Acinetobacter baumannii Infection. Front Cell Infect Microbiol 2020; 10:486. [PMID: 33042864 PMCID: PMC7521131 DOI: 10.3389/fcimb.2020.00486] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Accepted: 08/05/2020] [Indexed: 12/23/2022] Open
Abstract
Acinetobacter baumannii has emerged as a major threat to global public health and is one of the key human pathogens in healthcare (nosocomial and community-acquired)-associated infections. Moreover, A. baumannii rapidly develops resistance to multiple antibiotics and is now globally regarded as a serious multidrug resistant pathogen. There is an urgent need to develop novel vaccines and immunotherapeutics as alternatives to antibiotics for clinical management of A. baumannii infection. However, our knowledge of host immune responses to A. baumannii infection and the identification of novel therapeutic targets are significantly lacking. This review highlights the recent advances and critical gaps in our understanding how A. baumannii interacts with the host innate pattern-recognition receptors, induces a cascade of inflammatory cytokine and chemokine responses, and recruits innate immune effectors (such as neutrophils and macrophages) to the site of infection for effective control of the infection. Such knowledge will facilitate the identification of new targets for the design and development of effective therapeutics and vaccines to fight this emerging threat.
Collapse
Affiliation(s)
- Wangxue Chen
- Human Health and Therapeutics (HHT) Research Center, National Research Council Canada, Ottawa, ON, Canada.,Department of Biology, Brock University, St. Catharines, ON, Canada
| |
Collapse
|
8
|
Vázquez-López R, Solano-Gálvez SG, Juárez Vignon-Whaley JJ, Abello Vaamonde JA, Padró Alonzo LA, Rivera Reséndiz A, Muleiro Álvarez M, Vega López EN, Franyuti-Kelly G, Álvarez-Hernández DA, Moncaleano Guzmán V, Juárez Bañuelos JE, Marcos Felix J, González Barrios JA, Barrientos Fortes T. Acinetobacter baumannii Resistance: A Real Challenge for Clinicians. Antibiotics (Basel) 2020; 9:antibiotics9040205. [PMID: 32340386 PMCID: PMC7235888 DOI: 10.3390/antibiotics9040205] [Citation(s) in RCA: 130] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Revised: 01/29/2020] [Accepted: 02/05/2020] [Indexed: 12/21/2022] Open
Abstract
Acinetobacter baumannii (named in honor of the American bacteriologists Paul and Linda Baumann) is a Gram-negative, multidrug-resistant (MDR) pathogen that causes nosocomial infections, especially in intensive care units (ICUs) and immunocompromised patients with central venous catheters. A. baumannii has developed a broad spectrum of antimicrobial resistance, associated with a higher mortality rate among infected patients compared with other non-baumannii species. In terms of clinical impact, resistant strains are associated with increases in both in-hospital length of stay and mortality. A. baumannii can cause a variety of infections; most involve the respiratory tract, especially ventilator-associated pneumonia, but bacteremia and skin wound infections have also been reported, the latter of which has been prominently observed in the context of war-related trauma. Cases of meningitis associated with A. baumannii have been documented. The most common risk factor for the acquisition of MDR A baumannii is previous antibiotic use, following by mechanical ventilation, length of ICU/hospital stay, severity of illness, and use of medical devices. Current efforts focus on addressing all the antimicrobial resistance mechanisms described in A. baumannii, with the objective of identifying the most promising therapeutic scheme. Bacteriophage- and artilysin-based therapeutic approaches have been described as effective, but further research into their clinical use is required.
Collapse
Affiliation(s)
- Rosalino Vázquez-López
- Departamento de Microbiología del Centro de Investigación en Ciencias de la Salud (CICSA), FCS, Universidad Anáhuac México Norte, Huixquilucan 52786, Mexico; (J.J.J.V.-W.); (J.A.A.V.); (L.A.P.A.); (A.R.R.); (M.M.Á.); (D.A.Á.-H.); (V.M.G.); (J.E.J.B.)
- Correspondence: or ; Tel.: +52-56-270210 (ext. 7302)
| | - Sandra Georgina Solano-Gálvez
- Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de Mexico 04510, Mexico;
| | - Juan José Juárez Vignon-Whaley
- Departamento de Microbiología del Centro de Investigación en Ciencias de la Salud (CICSA), FCS, Universidad Anáhuac México Norte, Huixquilucan 52786, Mexico; (J.J.J.V.-W.); (J.A.A.V.); (L.A.P.A.); (A.R.R.); (M.M.Á.); (D.A.Á.-H.); (V.M.G.); (J.E.J.B.)
| | - Jorge Andrés Abello Vaamonde
- Departamento de Microbiología del Centro de Investigación en Ciencias de la Salud (CICSA), FCS, Universidad Anáhuac México Norte, Huixquilucan 52786, Mexico; (J.J.J.V.-W.); (J.A.A.V.); (L.A.P.A.); (A.R.R.); (M.M.Á.); (D.A.Á.-H.); (V.M.G.); (J.E.J.B.)
| | - Luis Andrés Padró Alonzo
- Departamento de Microbiología del Centro de Investigación en Ciencias de la Salud (CICSA), FCS, Universidad Anáhuac México Norte, Huixquilucan 52786, Mexico; (J.J.J.V.-W.); (J.A.A.V.); (L.A.P.A.); (A.R.R.); (M.M.Á.); (D.A.Á.-H.); (V.M.G.); (J.E.J.B.)
| | - Andrés Rivera Reséndiz
- Departamento de Microbiología del Centro de Investigación en Ciencias de la Salud (CICSA), FCS, Universidad Anáhuac México Norte, Huixquilucan 52786, Mexico; (J.J.J.V.-W.); (J.A.A.V.); (L.A.P.A.); (A.R.R.); (M.M.Á.); (D.A.Á.-H.); (V.M.G.); (J.E.J.B.)
| | - Mauricio Muleiro Álvarez
- Departamento de Microbiología del Centro de Investigación en Ciencias de la Salud (CICSA), FCS, Universidad Anáhuac México Norte, Huixquilucan 52786, Mexico; (J.J.J.V.-W.); (J.A.A.V.); (L.A.P.A.); (A.R.R.); (M.M.Á.); (D.A.Á.-H.); (V.M.G.); (J.E.J.B.)
| | - Eunice Nabil Vega López
- Medical IMPACT, Infectious Diseases Department, Mexico City 53900, Mexico; (E.N.V.L.); (G.F.-K.)
| | - Giorgio Franyuti-Kelly
- Medical IMPACT, Infectious Diseases Department, Mexico City 53900, Mexico; (E.N.V.L.); (G.F.-K.)
| | - Diego Abelardo Álvarez-Hernández
- Departamento de Microbiología del Centro de Investigación en Ciencias de la Salud (CICSA), FCS, Universidad Anáhuac México Norte, Huixquilucan 52786, Mexico; (J.J.J.V.-W.); (J.A.A.V.); (L.A.P.A.); (A.R.R.); (M.M.Á.); (D.A.Á.-H.); (V.M.G.); (J.E.J.B.)
| | - Valentina Moncaleano Guzmán
- Departamento de Microbiología del Centro de Investigación en Ciencias de la Salud (CICSA), FCS, Universidad Anáhuac México Norte, Huixquilucan 52786, Mexico; (J.J.J.V.-W.); (J.A.A.V.); (L.A.P.A.); (A.R.R.); (M.M.Á.); (D.A.Á.-H.); (V.M.G.); (J.E.J.B.)
| | - Jorge Ernesto Juárez Bañuelos
- Departamento de Microbiología del Centro de Investigación en Ciencias de la Salud (CICSA), FCS, Universidad Anáhuac México Norte, Huixquilucan 52786, Mexico; (J.J.J.V.-W.); (J.A.A.V.); (L.A.P.A.); (A.R.R.); (M.M.Á.); (D.A.Á.-H.); (V.M.G.); (J.E.J.B.)
| | - José Marcos Felix
- Coordinación Ciclos Clínicos Medicina, FCS, Universidad Anáhuac México Norte, Huixquilucan 52786, Mexico;
| | - Juan Antonio González Barrios
- Laboratorio de Medicina Genómica, Hospital Regional “1º de Octubre”, ISSSTE, Av. Instituto Politécnico Nacional 1669, Lindavista, Gustavo A. Madero, Ciudad de Mexico 07300, Mexico;
| | - Tomás Barrientos Fortes
- Dirección Sistema Universitario de Salud de la Universidad Anáhuac México (SUSA), Huixquilucan 52786, Mexico;
| |
Collapse
|
9
|
Morris FC, Dexter C, Kostoulias X, Uddin MI, Peleg AY. The Mechanisms of Disease Caused by Acinetobacter baumannii. Front Microbiol 2019; 10:1601. [PMID: 31379771 PMCID: PMC6650576 DOI: 10.3389/fmicb.2019.01601] [Citation(s) in RCA: 158] [Impact Index Per Article: 31.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 06/26/2019] [Indexed: 01/29/2023] Open
Abstract
Acinetobacter baumannii is a Gram negative opportunistic pathogen that has demonstrated a significant insurgence in the prevalence of infections over recent decades. With only a limited number of “traditional” virulence factors, the mechanisms underlying the success of this pathogen remain of great interest. Major advances have been made in the tools, reagents, and models to study A. baumannii pathogenesis, and this has resulted in a substantial increase in knowledge. This article provides a comprehensive review of the bacterial virulence factors, the host immune responses, and animal models applicable for the study of this important human pathogen. Collating the most recent evidence characterizing bacterial virulence factors, their cellular targets and genetic regulation, we have encompassed numerous aspects important to the success of this pathogen, including membrane proteins and cell surface adaptations promoting immune evasion, mechanisms for nutrient acquisition and community interactions. The role of innate and adaptive immune responses is reviewed and areas of paucity in our understanding are highlighted. Finally, with the vast expansion of available animal models over recent years, we have evaluated those suitable for use in the study of Acinetobacter disease, discussing their advantages and limitations.
Collapse
Affiliation(s)
- Faye C Morris
- Infection and Immunity Program, Department of Microbiology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Carina Dexter
- Infection and Immunity Program, Department of Microbiology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Xenia Kostoulias
- Infection and Immunity Program, Department of Microbiology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Muhammad Ikhtear Uddin
- Infection and Immunity Program, Department of Microbiology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Anton Y Peleg
- Infection and Immunity Program, Department of Microbiology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia.,Department of Infectious Diseases, The Alfred Hospital and Central Clinical School, Monash University, Melbourne, VIC, Australia
| |
Collapse
|
10
|
Sanderink D, Cassisa V, Chenouard R, Mahieu R, Kempf M, Dubée V, Eveillard M. Colistin-glycopeptide combinations against multidrug-resistant Acinetobacter baumannii in a mouse model of pneumonia. Future Microbiol 2019; 14:581-586. [PMID: 31172805 DOI: 10.2217/fmb-2019-0022] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aim: To assess the effect of colistin-glycopeptide combination against a multidrug-resistant strain of Acinetobacter baumannii. Materials & methods: We used in vitro procedures (Etest method, checkerboard test and kill-time assays) and a mouse model of a carbapenem-resistant A. baumannii pneumonia. Results: The colistin-teicoplanin combination allowed a 74% increase of the survival in the mouse model within the 4 days following bacterial inoculation as compared with saline or colistin alone (p = 0.06). Concurrently, the colistin-vancomycin combination presented a similar efficacy as compared with saline or colistin alone in the mouse model. Conclusion: According to those preliminary results, using the colistin-teicoplanin combination in therapeutic deadlocks encountered in certain multiresistant A. baumannii pneumonia could be envisaged if the results are confirmed.
Collapse
Affiliation(s)
- Diane Sanderink
- CRCINA, Inserm, Université de Nantes, Université d'Angers, Angers, 44200 Nantes, France.,Service des Maladies Infectieuses et Tropicales, Centre Hospitalier Universitaire, 4 Rue Larrey, 49100 Angers, France
| | - Viviane Cassisa
- Laboratoire de Bactériologie, Centre Hospitalier Universitaire, 4 Rue Larrey, 49100 Angers, France
| | - Rachel Chenouard
- CRCINA, Inserm, Université de Nantes, Université d'Angers, Angers, 44200 Nantes, France.,Laboratoire de Bactériologie, Centre Hospitalier Universitaire, 4 Rue Larrey, 49100 Angers, France
| | - Rafael Mahieu
- Service des Maladies Infectieuses et Tropicales, Centre Hospitalier Universitaire, 4 Rue Larrey, 49100 Angers, France
| | - Marie Kempf
- CRCINA, Inserm, Université de Nantes, Université d'Angers, Angers, 44200 Nantes, France.,Laboratoire de Bactériologie, Centre Hospitalier Universitaire, 4 Rue Larrey, 49100 Angers, France
| | - Vincent Dubée
- CRCINA, Inserm, Université de Nantes, Université d'Angers, Angers, 44200 Nantes, France.,Service des Maladies Infectieuses et Tropicales, Centre Hospitalier Universitaire, 4 Rue Larrey, 49100 Angers, France
| | - Matthieu Eveillard
- CRCINA, Inserm, Université de Nantes, Université d'Angers, Angers, 44200 Nantes, France.,Laboratoire de Bactériologie, Centre Hospitalier Universitaire, 4 Rue Larrey, 49100 Angers, France
| |
Collapse
|
11
|
Aydemir H, Tuz HI, Piskin N, Celebi G, Kulah C, Kokturk F. Risk factors and clinical responses of pneumonia patients with colistin-resistant Acinetobacter baumannii-calcoaceticus. World J Clin Cases 2019. [DOI: 10.12998/wjge.v7.i10.1111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
|
12
|
Aydemir H, Tuz HI, Piskin N, Celebi G, Kulah C, Kokturk F. Risk factors and clinical responses of pneumonia patients with colistin-resistant Acinetobacter baumannii-calcoaceticus. World J Clin Cases 2019; 7:1111-1121. [PMID: 31183342 PMCID: PMC6547332 DOI: 10.12998/wjcc.v7.i10.1111] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 04/24/2019] [Accepted: 05/01/2019] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Nosocomial infections with carbapenem-resistant Acinetobacter baumannii-calcoaceticus complex (ABC) strains are great problem for intensive care units. ABC strains can develop resistance to all the antibiotics available. Carbapenem resistance is common and colistin resistance is rare in our country. Knowing the risk factors for colistin resistance is important since colistin seems to be the only remaining therapeutic option for the patients with pneumonia due to extensively drug resistant ABC for our country.
AIM To investigate the comparison of clinical responses and outcomes between pneumonia patients with colistin-susceptible and -resistant Acinetobacter sp. Strains.
METHODS During the study period, 108 patients with pneumonia due to colistin-susceptible strains and 16 patients with colistin-resistant strains were included retrospectively. Continuous variables were compared with the Mann-Whitney U test, and categorical variables were compared using Pearson’s chi-square test or Fisher’s Exact chi-square test for two groups. A binary logistic regression model was developed to identify the potential independent factors associated with colistin resistance in patients with colistin-resistant strains.
RESULTS High Acute Physiology and Chronic Health Evaluation II scores (OR = 1.9, 95%CI: 1.4-2.7; P < 0.001) and prior receipt of teicoplanin (OR = 8.1, 95%CI: 1.0-63.3; P = 0.045) were found to be independent risk factors for infection with colistin-resistant Acinetobacter sp. Different combinations of antibiotics including colistin, meropenem, ampicillin/sulbactam, amikacin and trimethoprim/sulfamethoxazole were used for the treatment of patients with colistin-resistant strains. Although the median duration of microbiological cure (P < 0.001) was longer in the colistin-resistant group, clinical (P = 0.703), laboratory (P = 0.277), radiological (P = 0.551), microbiological response (P = 1.000) and infection related mortality rates (P = 0.603) did not differ between the two groups. Among the patients with infections due to colistin-resistant strains, seven were treated with antibiotic combinations that included sulbactam. Clinical (6/7) and microbiological (5/7) response rates were quite high in these patients.
CONCLUSION The optimal therapy regimen is unclear for colistin-resistant Acinetobacter sp. infections. Although combinations with sulbactam seems to be more effective in our study patients, data supporting the usefulness of combinations with sulbactam is very limited.
Collapse
Affiliation(s)
- Hande Aydemir
- Department of Infectious Diseases and Clinical Microbiology, Zonguldak Bulent Ecevit University, Faculty of Medicine, Zonguldak 67100, Turkey
| | - Hande Idil Tuz
- Department of Infectious Diseases and Clinical Microbiology, Zonguldak Bulent Ecevit University, Faculty of Medicine, Zonguldak 67100, Turkey
| | - Nihal Piskin
- Department of Infectious Diseases and Clinical Microbiology, Zonguldak Bulent Ecevit University, Faculty of Medicine, Zonguldak 67100, Turkey
| | - Guven Celebi
- Department of Infectious Diseases and Clinical Microbiology, Zonguldak Bulent Ecevit University, Faculty of Medicine, Zonguldak 67100, Turkey
| | - Canan Kulah
- Department of Microbiology, Zonguldak Bulent Ecevit University, Faculty of Medicine, Zonguldak 67100, Turkey
| | - Furuzan Kokturk
- Department of Biostatistics, Zonguldak Bulent Ecevit University, Faculty of Medicine, Zonguldak 67100, Turkey
| |
Collapse
|
13
|
Harris G, KuoLee R, Xu HH, Chen W. Acute intraperitoneal infection with a hypervirulent Acinetobacter baumannii isolate in mice. Sci Rep 2019; 9:6538. [PMID: 31024025 PMCID: PMC6484084 DOI: 10.1038/s41598-019-43000-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 04/09/2019] [Indexed: 12/05/2022] Open
Abstract
Acinetobacter baumannii infection has become a major cause of healthcare-associated infection and a critical pathogen in the WHO antimicrobial resistance research and development priority list. Catheter-related septicemia is one of the major clinical manifestations of A. baumannii infection associated with high morbidity and mortality. In this study, we used a clinical A. baumannii strain (LAC-4) that is hypervirulent to immunocompetent C57BL/6 and BALB/c mice and established a mouse model of intraperitoneal (i.p.) A. baumannii infection. Our study showed that i.p. LAC-4 infection of C57BL/6 and BALB/c mice induces a lethal or sublethal infection with high bacterial burdens in peritoneal cavity, blood and tissues and the infected mice either succumbed to the infection within 24 hours or completely recovered from the infection. The infection induces acute peritoneal recruitment of neutrophils and other innate immune cells, and the local and systemic production of proinflammatory cytokines and chemokines (IL-1β, IL-5, IL-6, TNF-α, RANTES, MIP-1β, MCP-1, KC and IL-10). Mechanistic studies suggest an important role of macrophages in the host innate defense in this model in that in vitro stimulation of peritoneal macrophages with killed LAC-4 induced a similar pattern of cytokine/chemokine responses to those in the infected mice, and depletion of peritoneal macrophages rendered the mice significantly more susceptible to the infection. Thus, this mouse infection model will provide an alternative and useful tool for future pathogenesis studies of A. baumannii-associated septicemia and identification and characterization of important virulence factors, as well as serve as a surrogate model for rapid evaluation of novel therapeutics and vaccines for this emerging infectious agent.
Collapse
Affiliation(s)
- Greg Harris
- Human Health Therapeutics Research Center, National Research Council Canada, 100 Sussex Drive, Ottawa, Ontario, K1A 0R6, Canada
| | - Rhonda KuoLee
- Human Health Therapeutics Research Center, National Research Council Canada, 100 Sussex Drive, Ottawa, Ontario, K1A 0R6, Canada
| | - H Howard Xu
- Department of Biological Sciences, California State University, Los Angeles, Los Angeles, CA, 90032, USA
| | - Wangxue Chen
- Human Health Therapeutics Research Center, National Research Council Canada, 100 Sussex Drive, Ottawa, Ontario, K1A 0R6, Canada. .,Department of Biology, Brock University, St. Catharines, Ontario, L2S 3A1, Canada.
| |
Collapse
|
14
|
Daptomycin as adjunctive treatment for experimental infection by Acinetobacter baumannii with resistance to colistin. Int J Antimicrob Agents 2019; 53:190-194. [DOI: 10.1016/j.ijantimicag.2018.10.024] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2018] [Revised: 10/10/2018] [Accepted: 10/30/2018] [Indexed: 11/18/2022]
|
15
|
Bergen PJ, Smith NM, Bedard TB, Bulman ZP, Cha R, Tsuji BT. Rational Combinations of Polymyxins with Other Antibiotics. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1145:251-288. [PMID: 31364082 DOI: 10.1007/978-3-030-16373-0_16] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Combinations of antimicrobial agents are often used in the management of infectious diseases. Antimicrobial agents used as part of combination therapy are often selected empirically. As regrowth and the emergence of polymyxin (either colistin or polymyxin B) resistance has been observed with polymyxin monotherapy, polymyxin combination therapy has been suggested as a possible means by which to increase antimicrobial activity and reduce the development of resistance. This chapter provides an overview of preclinical and clinical investigations of CMS/colistin and polymyxin B combination therapy. In vitro data and animal model data suggests a potential clinical benefit with many drug combinations containing clinically achievable concentrations of polymyxins, even when resistance to one or more of the drugs in combination is present and including antibiotics normally inactive against Gram-negative organisms. The growing body of data on the emergence of polymyxin resistance with monotherapy lends theoretical support to a benefit with combination therapy. Benefits include enhanced bacterial killing and a suppression of polymyxin resistant subpopulations. However, the complexity of the critically ill patient population, and high rates of treatment failure and death irrespective of infection-related outcome make demonstrating a potential benefit for polymyxin combinations extremely challenging. Polymyxin combination therapy in the clinic remains a heavily debated and controversial topic. When combinations are selected, optimizing the dosage regimens for the polymyxin and the combinatorial agent is critical to ensure that the benefits outweigh the risk of the development of toxicity. Importantly, patient characteristics, pharmacokinetics, the site of infection, pathogen and resistance mechanism must be taken into account to define optimal and rational polymyxin combination regimens in the clinic.
Collapse
Affiliation(s)
- Phillip J Bergen
- Centre for Medicine Use and Safety, Monash University, Parkville Campus, Melbourne, VIC, Australia.
| | - Nicholas M Smith
- Laboratory for Antimicrobial Pharmacodynamics, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, SUNY, Buffalo, NY, USA
| | - Tyler B Bedard
- Laboratory for Antimicrobial Pharmacodynamics, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, SUNY, Buffalo, NY, USA
| | - Zackery P Bulman
- University of Illinois Chicago, College of Pharmacy, Chicago, IL, USA
| | - Raymond Cha
- Laboratory for Antimicrobial Pharmacodynamics, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, SUNY, Buffalo, NY, USA
| | - Brian T Tsuji
- Laboratory for Antimicrobial Pharmacodynamics, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, SUNY, Buffalo, NY, USA
| |
Collapse
|
16
|
Elhosseiny NM, Attia AS. Acinetobacter: an emerging pathogen with a versatile secretome. Emerg Microbes Infect 2018; 7:33. [PMID: 29559620 PMCID: PMC5861075 DOI: 10.1038/s41426-018-0030-4] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 12/08/2017] [Accepted: 01/09/2018] [Indexed: 02/06/2023]
Abstract
Acinetobacter baumannii is a notorious pathogen that has emerged as a healthcare nightmare in recent years because it causes serious infections that are associated with high morbidity and mortality rates. Due to its exceptional ability to acquire resistance to almost all available antibiotics, A. baumannii is currently ranked as the first pathogen on the World Health Organization’s priority list for the development of new antibiotics. The versatile range of effectors secreted by A. baumannii represents a large proportion of the virulence arsenal identified in this bacterium to date. Thus, these factors, together with the secretory machinery responsible for their extrusion into the extracellular milieu, are key targets for novel therapeutics that are greatly needed to combat this deadly pathogen. In this review, we provide a comprehensive, up-to-date overview of the organization and regulatory aspects of the Acinetobacter secretion systems, with a special emphasis on their versatile substrates that could be targeted to fight the deadly infections caused by this elusive pathogen.
Collapse
Affiliation(s)
- Noha M Elhosseiny
- Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt
| | - Ahmed S Attia
- Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt.
| |
Collapse
|
17
|
Karaiskos I, Antoniadou A, Giamarellou H. Combination therapy for extensively-drug resistant gram-negative bacteria. Expert Rev Anti Infect Ther 2017; 15:1123-1140. [DOI: 10.1080/14787210.2017.1410434] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Ilias Karaiskos
- 6th Department of Internal Medicine, Hygeia General hospital, Athens, Greece
| | - Anastasia Antoniadou
- 4th Department of Internal Medicine, National and Kapodistrian University of Athens School of Medicine, University General Hospital ATTIKON, Athens, Greece
| | - Helen Giamarellou
- 6th Department of Internal Medicine, Hygeia General hospital, Athens, Greece
| |
Collapse
|
18
|
Lee CR, Lee JH, Park M, Park KS, Bae IK, Kim YB, Cha CJ, Jeong BC, Lee SH. Biology of Acinetobacter baumannii: Pathogenesis, Antibiotic Resistance Mechanisms, and Prospective Treatment Options. Front Cell Infect Microbiol 2017; 7:55. [PMID: 28348979 PMCID: PMC5346588 DOI: 10.3389/fcimb.2017.00055] [Citation(s) in RCA: 517] [Impact Index Per Article: 73.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 02/13/2017] [Indexed: 12/27/2022] Open
Abstract
Acinetobacter baumannii is undoubtedly one of the most successful pathogens responsible for hospital-acquired nosocomial infections in the modern healthcare system. Due to the prevalence of infections and outbreaks caused by multi-drug resistant A. baumannii, few antibiotics are effective for treating infections caused by this pathogen. To overcome this problem, knowledge of the pathogenesis and antibiotic resistance mechanisms of A. baumannii is important. In this review, we summarize current studies on the virulence factors that contribute to A. baumannii pathogenesis, including porins, capsular polysaccharides, lipopolysaccharides, phospholipases, outer membrane vesicles, metal acquisition systems, and protein secretion systems. Mechanisms of antibiotic resistance of this organism, including acquirement of β-lactamases, up-regulation of multidrug efflux pumps, modification of aminoglycosides, permeability defects, and alteration of target sites, are also discussed. Lastly, novel prospective treatment options for infections caused by multi-drug resistant A. baumannii are summarized.
Collapse
Affiliation(s)
- Chang-Ro Lee
- National Leading Research Laboratory of Drug Resistance Proteomics, Department of Biological Sciences, Myongji University Yongin, South Korea
| | - Jung Hun Lee
- National Leading Research Laboratory of Drug Resistance Proteomics, Department of Biological Sciences, Myongji University Yongin, South Korea
| | - Moonhee Park
- National Leading Research Laboratory of Drug Resistance Proteomics, Department of Biological Sciences, Myongji UniversityYongin, South Korea; DNA Analysis Division, Seoul Institute, National Forensic ServiceSeoul, South Korea
| | - Kwang Seung Park
- National Leading Research Laboratory of Drug Resistance Proteomics, Department of Biological Sciences, Myongji University Yongin, South Korea
| | - Il Kwon Bae
- Department of Dental Hygiene, College of Health and Welfare, Silla University Busan, South Korea
| | - Young Bae Kim
- Biotechnology Program, North Shore Community College Danvers, MA, USA
| | - Chang-Jun Cha
- Department of Systems Biotechnology, College of Biotechnology and Natural Resources, Chung-Ang University Anseong, South Korea
| | - Byeong Chul Jeong
- National Leading Research Laboratory of Drug Resistance Proteomics, Department of Biological Sciences, Myongji University Yongin, South Korea
| | - Sang Hee Lee
- National Leading Research Laboratory of Drug Resistance Proteomics, Department of Biological Sciences, Myongji University Yongin, South Korea
| |
Collapse
|