1
|
Fakhim H, Badali H, Dannaoui E, Nasirian M, Jahangiri F, Raei M, Vaseghi N, Ahmadikia K, Vaezi A. Trends in the Prevalence of Amphotericin B-Resistance (AmBR) among Clinical Isolates of Aspergillus Species. J Mycol Med 2022; 32:101310. [PMID: 35907396 DOI: 10.1016/j.mycmed.2022.101310] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 07/11/2022] [Accepted: 07/12/2022] [Indexed: 11/29/2022]
Abstract
The challenges of the invasive infections caused by the resistant Aspergillus species include the limited access to antifungals for treatment and high mortality. This study aimed to provide a global perspective of the prevalence of amphotericin B resistance (AmBR), geographic distribution, and the trend of AmBR from 2010 to 2020. To analyze the prevalence of in vitro AmBR in clinical Aspergillus species, we reviewed the literature and identified a total of 72 articles. AmBR was observed in 1128 out of 3061 Aspergillus terreus (36.8%), 538 out of 3663 Aspergillus flavus (14.9%), 141 out of 2691 Aspergillus niger (5.2%), and 353 out of 17,494 Aspergillus fumigatus isolates (2.01%). An increasing trend in AmB-resistant isolates of A. fumigatus and a decreasing trend in AmB-resistant A. terreus and A. flavus isolates were observed between 2016 and 2020. AmB-resistant A. terreus and A. niger isolates, accounting for 40.4% and 20.9%, respectively, were the common AmB-resistant Aspergillus species in Asian studies. However, common AmB-resistant Aspergillus species reported by European and American studies were A. terreus and A. flavus isolates, accounting for 40.1% and 14.3% in 31 studies from Europe and 25.1% and 11.7% in 14 studies from America, respectively. The prevalence of AmB-resistant A. niger in Asian isolates was higher than in American and European. We found a low prevalence of A. terreus in American isolates (25.1%) compared to Asian (40.4%) and European (40.1%). Future studies should focus on analyzing the trend of AmBR on a regional basis and using the same methodologies.
Collapse
Affiliation(s)
- Hamed Fakhim
- Infectious Diseases and Tropical Medicine Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Hamid Badali
- Department of Molecular Microbiology & Immunology/South Texas Center for Emerging Infectious Diseases, The University of Texas at San Antonio, San Antonio, Texas, USA
| | - Eric Dannaoui
- Université de Paris, Faculté de Médecine, APHP, Hôpital Européen Georges Pompidou, Unité de Parasitologie-Mycologie, Service de Microbiologie, Paris, France
| | - Maryam Nasirian
- Infectious Diseases and Tropical Medicine Research Center; and Epidemiology and Biostatistics Department, Health School, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Fateme Jahangiri
- Department of Medical Laboratory Science, School of Allied Medical Sciences, Iran University of Medical Sciences, Tehran, Iran
| | - Maedeh Raei
- Faculty of medicine, Sari branch, Islamic Azad University, Sari, Iran
| | - Narges Vaseghi
- Department of Pathobiology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Kazem Ahmadikia
- Department of Medical Parasitology and Mycology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Afsane Vaezi
- Department of Medical Laboratory Science, School of Allied Medical Sciences, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
2
|
Kane A, Carter DA. Augmenting Azoles with Drug Synergy to Expand the Antifungal Toolbox. Pharmaceuticals (Basel) 2022; 15:482. [PMID: 35455479 PMCID: PMC9027798 DOI: 10.3390/ph15040482] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 03/25/2022] [Accepted: 03/26/2022] [Indexed: 12/23/2022] Open
Abstract
Fungal infections impact the lives of at least 12 million people every year, killing over 1.5 million. Wide-spread use of fungicides and prophylactic antifungal therapy have driven resistance in many serious fungal pathogens, and there is an urgent need to expand the current antifungal arsenal. Recent research has focused on improving azoles, our most successful class of antifungals, by looking for synergistic interactions with secondary compounds. Synergists can co-operate with azoles by targeting steps in related pathways, or they may act on mechanisms related to resistance such as active efflux or on totally disparate pathways or processes. A variety of sources of potential synergists have been explored, including pre-existing antimicrobials, pharmaceuticals approved for other uses, bioactive natural compounds and phytochemicals, and novel synthetic compounds. Synergy can successfully widen the antifungal spectrum, decrease inhibitory dosages, reduce toxicity, and prevent the development of resistance. This review highlights the diversity of mechanisms that have been exploited for the purposes of azole synergy and demonstrates that synergy remains a promising approach for meeting the urgent need for novel antifungal strategies.
Collapse
Affiliation(s)
| | - Dee A. Carter
- School of Life and Environmental Sciences and Sydney ID, University of Sydney, Camperdown, NSW 2006, Australia;
| |
Collapse
|
3
|
The role of Glabridin in antifungal and anti-inflammation effects in Aspergillus fumigatus keratitis. Exp Eye Res 2021; 214:108883. [PMID: 34896107 DOI: 10.1016/j.exer.2021.108883] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 11/13/2021] [Accepted: 12/01/2021] [Indexed: 12/25/2022]
Abstract
PURPOSE To investigate the effect of Glabridin (GLD) in Aspergillus fumigatus keratitis and its associated mechanisms. METHODS Aspergillus fumigatus (A. fumigatus) conidia was inoculated in 96-well plate, and minimal inhibitory concentration (MIC) and biofilm formation ability were evaluated after GLD treatment. Spore adhesion ability was evaluated in conidia infected human corneal epithelial cells (HCECs). Keratitis mouse model was created by corneal intrastromal injection with A. fumigatus conidia, and GLD treatment started at the day after infection. The number of fungal colonies was calculated by plate count, and degree of corneal inflammation was assessed by clinical score. Flow cytometry, myeloperoxidase (MPO), and immunofluorescence staining (IFS) experiments were used to assess neutrophil infiltrations. PCR, ELISA and Western blot were conducted to determine levels of TLR4, Dectin-1 as well as downstream inflammatory factors. RESULTS GLD treatment suppressed the proliferation, biofilm formation abilities and adhesive capability of A. fumigatus. In mice upon A. fumigatus infection, treatment of GLD showed significantly decreased severity of corneal inflammation, reduced number of A. fumigatus in cornea, and suppressed neutrophil infiltration in cornea. GLD treatment obviously inhibited mRNA and protein levels of Dectin-1, TLR4 and proinflammatory mediators such as IL-1β, HMGB1, and TNF-α in mice corneas compared to the control group. CONCLUSION GLD has antifungal and anti-inflammatory effects in fungal keratitis through suppressing A. fumigatus proliferation and alleviating neutrophil infiltration, and repressing the expression of TLR4, Dectin-1 and proinflammatory mediators.
Collapse
|
4
|
Buil JB, Brüggemann RJM, Bedin Denardi L, Melchers WJG, Verweij PE. In vitro interaction of isavuconazole and anidulafungin against azole-susceptible and azole-resistant Aspergillus fumigatus isolates. J Antimicrob Chemother 2021; 75:2582-2586. [PMID: 32516368 PMCID: PMC7443724 DOI: 10.1093/jac/dkaa185] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 02/24/2020] [Accepted: 04/15/2020] [Indexed: 01/01/2023] Open
Abstract
Background The voriconazole and echinocandin combination has been found to be synergistic in vitro and in vivo against most Aspergillus fumigatus isolates, both with a WT azole phenotype and an azole-resistant phenotype. The interaction between isavuconazole and echinocandins is less well studied. This is especially true for azole-resistant isolates. Objectives We investigated the in vitro interaction between isavuconazole and anidulafungin for 30 A. fumigatus isolates including 18 azole-resistant isolates with various isavuconazole resistance phenotypes. Methods The isavuconazole/anidulafungin interaction was studied by using an adapted EUCAST-based 2D (12 × 8) chequerboard broth microdilution colorimetric assay using XTT. The interaction was analysed by FIC index (FICi) analysis and Bliss independence (BI) interaction analysis. Results Both the FICi analysis and the BI analysis showed synergistic interaction between isavuconazole and anidulafungin for the majority of WT and azole-resistant isolates. As we did not see significant beneficial effects of combination therapy in TR46/Y121F/T289A isolates at clinically achievable drug concentrations, it is unlikely that TR46/Y121F/T289A infections would benefit from isavuconazole and anidulafungin combination therapy. Conclusions In regions with high azole resistance rates this combination may benefit patients with WT disease, azole-resistant invasive aspergillosis and those with mixed azole-susceptible and azole-resistant infection, but may not be beneficial for aspergillosis due to isolates with high isavuconazole resistance, such as TR46/Y121F/T289A isolates.
Collapse
Affiliation(s)
- J B Buil
- Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, The Netherlands.,Center of Expertise in Mycology Radboudumc/CWZ, Nijmegen, The Netherlands
| | - R J M Brüggemann
- Center of Expertise in Mycology Radboudumc/CWZ, Nijmegen, The Netherlands.,Department of Pharmacy, Radboud University Medical Center, Nijmegen, The Netherlands
| | - L Bedin Denardi
- Programa de Pós-Graduação em Ciências Farmacêuticas, Centro de Ciências da Saúde, Universidade Federal de Santa Maria, Santa Maria, RS, Brasil
| | - W J G Melchers
- Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, The Netherlands.,Center of Expertise in Mycology Radboudumc/CWZ, Nijmegen, The Netherlands
| | - P E Verweij
- Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, The Netherlands.,Center of Expertise in Mycology Radboudumc/CWZ, Nijmegen, The Netherlands
| |
Collapse
|
5
|
Simões D, Aranha Caetano L, Veríssimo C, Viegas C, Sabino R. Aspergillus collected in specific indoor settings: their molecular identification and susceptibility pattern. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2021; 31:248-257. [PMID: 31405297 DOI: 10.1080/09603123.2019.1650903] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 07/29/2019] [Indexed: 06/10/2023]
Abstract
Exposure to Aspergillus conidia is an increased risk factor for the development of respiratory symptoms. The emergence of azole resistance in Aspergillus fumigatus is a major concern for the scientific community. The aim of this study was to perform the molecular identification of Aspergillus species collected from different occupational and non-occupational indoor settings and to study the azole susceptibility profile of the collected Fumigati isolates. The selected Aspergillus isolates were identified as belonging to the sections Fumigati, Nigri Versicolores, Terrei, Clavati and Nidulantes. All the Aspergillus fumigatus were screened for azole resistance using an agar media supplemented with itraconazole, voriconazole and posaconazole. None of the tested isolates showed resistance to those azoles. Knowledge of Aspergillus epidemiology in specific indoor environments allows a better risk characterization regarding Aspergillus burden. This study allowed the analysis of the molecular epidemiology and the determination of the susceptibility pattern of Aspergillus section Fumigati found in the studied indoor settings.
Collapse
Affiliation(s)
- Daniela Simões
- Infectious Diseases Department, National Institute of Health Dr. Ricardo Jorge , Lisbon, Portugal
- Animal Biology Department, Faculty of Sciences of the University of Lisbon , Campo Grande, Lisbon, Portugal
| | - Liliana Aranha Caetano
- H&TRC- Health & Technology Research Center, ESTeSL - Escola Superior de Tecnologia da Saúde, Instituto Politécnico de Lisboa , Lisbon, Portugal
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, University of Lisbon. Avenida Professor Gama Pinto , Lisbon, Portugal
| | - Cristina Veríssimo
- Infectious Diseases Department, National Institute of Health Dr. Ricardo Jorge , Lisbon, Portugal
| | - Carla Viegas
- H&TRC- Health & Technology Research Center, ESTeSL - Escola Superior de Tecnologia da Saúde, Instituto Politécnico de Lisboa , Lisbon, Portugal
- Centro de Investigação em Saúde Pública, Escola Nacional de Saúde Pública, Universidade NOVA de Lisboa , Lisbon, Portugal
| | - Raquel Sabino
- Infectious Diseases Department, National Institute of Health Dr. Ricardo Jorge , Lisbon, Portugal
- Instituto de Saúde Ambiental, Faculdade de Medicina da Universidade de Lisboa , Lisbon, Portugal
| |
Collapse
|
6
|
Schauwvlieghe AFAD, Bredius RGM, Verdijk RM, Smiers FJW, van der Beek MT, Goemans BF, Zwaan CM, Brüggemann RJ, Rijnders BJA. Management of cerebral azole-resistant Aspergillus fumigatus infection: A role for intraventricular liposomal-amphotericin B. J Glob Antimicrob Resist 2020; 22:354-357. [PMID: 32251868 DOI: 10.1016/j.jgar.2020.03.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 02/17/2020] [Accepted: 03/20/2020] [Indexed: 11/19/2022] Open
Abstract
OBJECTIVES In the pre-azole era, central nervous system (CNS) infections with Aspergillus had a dismal outcome. Survival improved with voriconazole but CNS infections caused by azole-resistant Aspergillus fumigatus preclude its use. Intravenous liposomal-amphotericin B (L-AmB) is the preferred treatment option for azole-resistant CNS infections but has suboptimal brain concentrations. METHODS We describe three patients with biopsy-proven CNS aspergillosis where intraventricular L-AmB was added to systemic therapy. Two patients with azole-resistant aspergillosis and one patient with azole-susceptible CNS aspergillosis were treated with intraventricular L-AmB at a dose of 1mg weekly. RESULTS We describe three patients successfully treated with a combination of intravenous and intraventricular L-AmB. All three patients survived but one patient developed serious headaches, most likely not related to this treatment. CONCLUSIONS Intraventricular L-AmB may have a role in the treatment of therapy-refractory CNS aspergillosis when added to systemic therapy.
Collapse
Affiliation(s)
- A F A D Schauwvlieghe
- Department of Internal Medicine, Section of Infectious Diseases, Erasmus University Medical Center, Rotterdam, Netherlands.
| | - R G M Bredius
- Department of Paediatric Immunology, Section of Infections, Haematology, and Stem Cell Transplantation, Willem-Alexander Children's Hospital, Leiden University Medical Center, Leiden, Netherlands
| | - R M Verdijk
- Department of Pathology, Erasmus Medical Center, Rotterdam, Netherlands
| | - F J W Smiers
- Department of Paediatric Immunology, Section of Infections, Haematology, and Stem Cell Transplantation, Willem-Alexander Children's Hospital, Leiden University Medical Center, Leiden, Netherlands
| | - M T van der Beek
- Department of Medical Microbiology, Leiden University Medical Center, Leiden, Netherlands
| | - B F Goemans
- Department of Haemato-oncology, Princess Máxima Centre for Paediatric Oncology, Utrecht, Netherlands
| | - C M Zwaan
- Department of Haemato-oncology, Princess Máxima Centre for Paediatric Oncology, Utrecht, Netherlands; Department of Paediatric Oncology/Haematology, Erasmus MC-Sophia Children's Hospital, Rotterdam, Netherlands
| | - R J Brüggemann
- Department of Pharmacy, Radboud Institute of Health Science, Radboud University Medical Center, Nijmegen, Netherlands; Center of Expertise in Mycology, Radboudumc, Nijmegen, Netherlands
| | - B J A Rijnders
- Department of Internal Medicine, Section of Infectious Diseases, Erasmus University Medical Center, Rotterdam, Netherlands
| |
Collapse
|
7
|
Tu B, Yin G, Li H. Synergistic effects of vorinostat (SAHA) and azoles against Aspergillus species and their biofilms. BMC Microbiol 2020; 20:28. [PMID: 32028887 PMCID: PMC7006160 DOI: 10.1186/s12866-020-1718-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 01/30/2020] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Invasive aspergillosis is a fungal infection that occurs mainly in immunocompromised patients. It is responsible for a high degree of mortality and is invariably unresponsive to conventional antifungal treatments. Histone deacetylase inhibitors can affect the cell cycle, apoptosis and differentiation. The histone deacetylase inhibitor vorinostat (SAHA) has recently received approval for the treatment of cutaneous T cell lymphoma. Here, we investigated the interactions of SAHA and itraconazole, voriconazole, and posaconazole against Aspergillus spp. in vitro using both planktonic cells and biofilms. RESULTS We investigated 20 clinical strains using broth microdilution checkerboard methods. The results showed synergy between SAHA and itraconazole, voriconazole, and posaconazole against 60, 40, and 25% of tested isolates of planktonic Aspergillus spp., respectively. Similar synergy was also observed against Aspergillus biofilms. The expression of the azole-associated multidrug efflux pumps MDR1, MDR2, MDR3 and MDR4, as well as that of HSP90, was measured by RT-PCR. The results indicated that the molecular mechanism of the observed synergistic effects in Aspergillus fumigatus may be partly associated with dampened expression of the efflux pump genes and, furthermore, that HSP90 suppression may be a major contributor to the observed synergistic effects of the drugs. CONCLUSIONS SAHA has potential as a secondary treatment to enhance the effects of azoles against both biofilm and planktonic cells of Aspergillus spp. in vitro. This effect occurs mostly by inhibition of HSP90 expression.
Collapse
Affiliation(s)
- Bo Tu
- Department of Otorhinolaryngology and Head Neck Surgery, the First Affiliated Hospital of Jinan University, Guangzhou, 510630 Guangdong People’s Republic of China
| | - Gendi Yin
- Department of Otolaryngology Head Neck Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630 Guangdong People’s Republic of China
| | - Hui Li
- Department of Otorhinolaryngology and Head Neck Surgery, the First Affiliated Hospital of Jinan University, Guangzhou, 510630 Guangdong People’s Republic of China
| |
Collapse
|
8
|
Low In Vitro Antifungal Activity of Tavaborole against Yeasts and Molds from Onychomycosis. Antimicrob Agents Chemother 2018; 62:AAC.01632-18. [PMID: 30224524 DOI: 10.1128/aac.01632-18] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 09/05/2018] [Indexed: 11/20/2022] Open
Abstract
The in vitro activity of tavaborole, an FDA-approved antifungal drug, was compared to that of four antifungal agents against 170 clinical fungal isolates originating from patients with onychomycosis. Tavaborole had low activity against all isolates compared to itraconazole, terbinafine, and fluconazole, the principal choices for treatment of onychomycosis. Thus, it appears that tavaborole is not a candidate for the treatment of onychomycosis due to Candida species, Aspergillus species, and dermatophytes.
Collapse
|