1
|
Zamudio-Chávez L, Suesca E, López GD, Carazzone C, Manrique-Moreno M, Leidy C. Staphylococcus aureus Modulates Carotenoid and Phospholipid Content in Response to Oxygen-Restricted Growth Conditions, Triggering Changes in Membrane Biophysical Properties. Int J Mol Sci 2023; 24:14906. [PMID: 37834354 PMCID: PMC10573160 DOI: 10.3390/ijms241914906] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 09/11/2023] [Accepted: 09/12/2023] [Indexed: 10/15/2023] Open
Abstract
Staphylococcus aureus membranes contain carotenoids formed during the biosynthesis of staphyloxanthin. These carotenoids are considered virulence factors due to their activity as scavengers of reactive oxygen species and as inhibitors of antimicrobial peptides. Here, we show that the growth of S. aureus under oxygen-restricting conditions downregulates carotenoid biosynthesis and modifies phospholipid content in biofilms and planktonic cells analyzed using LC-MS. At oxygen-restrictive levels, the staphyloxanthin precursor 4,4-diapophytofluene accumulates, indicating that the dehydrogenation reaction catalyzed by 4,4'-diapophytoene desaturases (CrtN) is inhibited. An increase in lysyl-phosphatidylglycerol is observed under oxygen-restrictive conditions in planktonic cells, and high levels of cardiolipin are detected in biofilms compared to planktonic cells. Under oxygen-restriction conditions, the biophysical parameters of S. aureus membranes show an increase in lipid headgroup spacing, as measured with Laurdan GP, and decreased bilayer core order, as measured with DPH anisotropy. An increase in the liquid-crystalline to gel phase melting temperature, as measured with FTIR, is also observed. S. aureus membranes are therefore less condensed under oxygen-restriction conditions at 37 °C. However, the lack of carotenoids leads to a highly ordered gel phase at low temperatures, around 15 °C. Carotenoids are therefore likely to be low in S. aureus found in tissues with low oxygen levels, such as abscesses, leading to altered membrane biophysical properties.
Collapse
Affiliation(s)
- Laura Zamudio-Chávez
- Biophysics Group, Physics Department, Universidad de los Andes, Bogotá 111211, Colombia; (L.Z.-C.); (E.S.)
| | - Elizabeth Suesca
- Biophysics Group, Physics Department, Universidad de los Andes, Bogotá 111211, Colombia; (L.Z.-C.); (E.S.)
| | - Gerson-Dirceu López
- PhysCheMath Research Group, Chemistry Department, Universidad de América, Bogotá 111211, Colombia;
| | - Chiara Carazzone
- Laboratory of Advanced Analytical Techniques in Natural Products (LATNAP), Chemistry Department, Universidad de los Andes, Bogotá 111211, Colombia;
| | - Marcela Manrique-Moreno
- Chemistry Institute, Faculty of Exact and Natural Sciences, University of Antioquia, Medellin 050010, Colombia;
| | - Chad Leidy
- Biophysics Group, Physics Department, Universidad de los Andes, Bogotá 111211, Colombia; (L.Z.-C.); (E.S.)
| |
Collapse
|
2
|
Cairns KA, Udy AA, Peel TN, Abbott IJ, Dooley MJ, Peleg AY. Therapeutics for Vancomycin-Resistant Enterococcal Bloodstream Infections. Clin Microbiol Rev 2023; 36:e0005922. [PMID: 37067406 PMCID: PMC10283489 DOI: 10.1128/cmr.00059-22] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/18/2023] Open
Abstract
Vancomycin-resistant enterococci (VRE) are common causes of bloodstream infections (BSIs) with high morbidity and mortality rates. They are pathogens of global concern with a limited treatment pipeline. Significant challenges exist in the management of VRE BSI, including drug dosing, the emergence of resistance, and the optimal treatment for persistent bacteremia and infective endocarditis. Therapeutic drug monitoring (TDM) for antimicrobial therapy is evolving for VRE-active agents; however, there are significant gaps in the literature for predicting antimicrobial efficacy for VRE BSIs. To date, TDM has the greatest evidence for predicting drug toxicity for the three main VRE-active antimicrobial agents daptomycin, linezolid, and teicoplanin. This article presents an overview of the treatment options for VRE BSIs, the role of antimicrobial dose optimization through TDM in supporting clinical infection management, and challenges and perspectives for the future.
Collapse
Affiliation(s)
- Kelly A. Cairns
- Department of Infectious Diseases, The Alfred Hospital and Central Clinical School, Monash University, Melbourne, Victoria, Australia
- Pharmacy Department, Alfred Health, Melbourne, Victoria, Australia
| | - Andrew A. Udy
- Australian and New Zealand Intensive Care Research Centre, School of Public Health and Preventive Medicine, Monash University, Melbourne, Victoria, Australia
- Department of Intensive Care and Hyperbaric Medicine, The Alfred, Melbourne, Victoria, Australia
| | - Trisha N. Peel
- Department of Infectious Diseases, The Alfred Hospital and Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Iain J. Abbott
- Department of Infectious Diseases, The Alfred Hospital and Central Clinical School, Monash University, Melbourne, Victoria, Australia
- Microbiology Unit, Alfred Health, Melbourne, Victoria, Australia
| | - Michael J. Dooley
- Pharmacy Department, Alfred Health, Melbourne, Victoria, Australia
- Centre for Medicines Use and Safety, Faculty of Pharmacy and Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - Anton Y. Peleg
- Department of Infectious Diseases, The Alfred Hospital and Central Clinical School, Monash University, Melbourne, Victoria, Australia
- Infection Program, Monash Biomedicine Discovery Institute, Department of Microbiology, Monash University, Clayton, Victoria, Australia
- Centre to Impact AMR, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
3
|
Manrique-Moreno M, Jemioła-Rzemińska M, Múnera-Jaramillo J, López GD, Suesca E, Leidy C, Strzałka K. Staphylococcus aureus Carotenoids Modulate the Thermotropic Phase Behavior of Model Systems That Mimic Its Membrane Composition. MEMBRANES 2022; 12:945. [PMID: 36295704 PMCID: PMC9612337 DOI: 10.3390/membranes12100945] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 09/23/2022] [Accepted: 09/25/2022] [Indexed: 06/16/2023]
Abstract
Staphylococcus aureus (S. aureus) is a pathogenic gram-positive bacterium that normally resides in the skin and nose of the human body. It is subject to fluctuations in environmental conditions that may affect the integrity of the membrane. S. aureus produces carotenoids, which act as antioxidants. However, these carotenoids have also been implicated in modulating the biophysical properties of the membrane. Here, we investigate how carotenoids modulate the thermotropic phase behavior of model systems that mimic the phospholipid composition of S. aureus. We found that carotenoids depress the main phase transition of DMPG and CL, indicating that they strongly affect cooperativity of membrane lipids in their gel phase. In addition, carotenoids modulate the phase behavior of mixtures of DMPG and CL, indicating that they may play a role in modulation of lipid domain formation in S. aureus membranes.
Collapse
Affiliation(s)
- Marcela Manrique-Moreno
- Chemistry Institute, Faculty of Exact and Natural Sciences, University of Antioquia, Medellin 050010, Colombia
| | - Małgorzata Jemioła-Rzemińska
- Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-392 Krakow, Poland
- Malopolska Centre of Biotechnology, Jagiellonian University, 30-392 Krakow, Poland
| | - Jessica Múnera-Jaramillo
- Chemistry Institute, Faculty of Exact and Natural Sciences, University of Antioquia, Medellin 050010, Colombia
| | - Gerson-Dirceu López
- Laboratory of Advanced Analytical Techniques in Natural Products (LATNAP), Chemistry Department, Universidad de los Andes, Bogotá 111711, Colombia
- Biophysics Group, Department of Physics, Universidad de los Andes, Bogotá 111711, Colombia
| | - Elizabeth Suesca
- Biophysics Group, Department of Physics, Universidad de los Andes, Bogotá 111711, Colombia
| | - Chad Leidy
- Biophysics Group, Department of Physics, Universidad de los Andes, Bogotá 111711, Colombia
| | - Kazimierz Strzałka
- Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-392 Krakow, Poland
- Malopolska Centre of Biotechnology, Jagiellonian University, 30-392 Krakow, Poland
| |
Collapse
|
4
|
Beta Lactams Plus Daptomycin Combination Therapy for Infective Endocarditis: An Italian National Survey (BADAS). Antibiotics (Basel) 2022; 11:antibiotics11010056. [PMID: 35052933 PMCID: PMC8773184 DOI: 10.3390/antibiotics11010056] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 12/26/2021] [Accepted: 12/28/2021] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND infective endocarditis (IE) remains a severe disease frequently encountered in clinical practice and often requiring interdisciplinary medical and surgical management. This national survey aims to describe the clinical prescribing habits of the use of daptomycin in the setting of IE and the possible role for combination therapy with beta-lactams. METHODS The study was a cross-sectional internet-based questionnaire survey on therapy with daptomycin. The questionnaire was designed with closed-ended questions and distributed using the SurveyMonkey® platform between October 2019 to December 2020. RESULTS 55 clinicians from twelve Italians regions joined the questionnaire. The survey reported use of daptomycin as first-line choice in 31.48% of cases and as the first-line anti-MRSA agent in 44.44%. The empiric use of daptomycin was stated in the high suspicion of MRSA rather than MSSA, enterococcal or streptococcal IE. The rationale of daptomycin for the empirical treatment of native and prosthetic valve IE was mostly the possibility of administering an aminoglycoside-sparing combination regimen, high bacterial killing rate and high clinical efficacy. CONCLUSIONS In conclusion, in selected patients, daptomycin could be a feasible option for the treatment of infective endocarditis in line with data from the European registry of daptomycin.
Collapse
|
5
|
Clinical Outcomes for Telavancin for Salvage Therapy in Methicillin-resistant Staphylococcus Aureus Bacteremia. INFECTIOUS DISEASES IN CLINICAL PRACTICE 2021. [DOI: 10.1097/ipc.0000000000001021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
6
|
López GD, Suesca E, Álvarez-Rivera G, Rosato AE, Ibáñez E, Cifuentes A, Leidy C, Carazzone C. Carotenogenesis of Staphylococcus aureus: New insights and impact on membrane biophysical properties. Biochim Biophys Acta Mol Cell Biol Lipids 2021; 1866:158941. [PMID: 33862238 DOI: 10.1016/j.bbalip.2021.158941] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 03/18/2021] [Accepted: 03/31/2021] [Indexed: 11/30/2022]
Abstract
Staphyloxanthin (STX) is a saccharolipid derived from a carotenoid in Staphylococcus aureus involved in oxidative-stress tolerance and antimicrobial peptide resistance. STX influences the biophysical properties of the bacterial membrane and has been associated to the formation of lipid domains in the regulation of methicillin-resistance. In this work, a targeted metabolomics and biophysical characterization study was carried out to investigate the biosynthetic pathways of carotenoids, and their impact on the membrane biophysical properties. Five different S. aureus strains were investigated, including three wild-type strains containing the crtM gene related to STX biosynthesis, a crtM-deletion mutant, and a crtMN plasmid-complemented variant. LC-DAD-MS/MS analysis of extracts allowed the identification of 34 metabolites related to carotenogenesis in S. aureus at different growth phases (8, 24 and 48 h), showing the progression of these metabolites as the bacteria advances into the stationary phase. For the first time, 22 members of a large family of carotenoids were identified, including STX and STX-homologues, as well as Dehydro-STX and Dehydro-STX-homologues. Moreover, thermotropic behavior of the CH2 stretch of lipid acyl chains in live cells by FTIR, show that the presence of STX increases acyl chain order at the bacterial growth temperature. Indeed, the cooperative melting event of the bacterial membrane, which occurs around 15 °C in the native strains, shifts with increased carotenoid content. These results show the diversity biosynthetic of carotenoids in S. aureus, and their influence on membrane biophysical properties.
Collapse
Affiliation(s)
- Gerson-Dirceu López
- Laboratory of Advanced Analytical Techniques in Natural Products (LATNAP), Chemistry Department, Universidad de los Andes, Bogotá D.C., Colombia; Laboratory of Biophysics, Physics Department, Universidad de los Andes, Bogotá D.C., Colombia; Laboratory of Foodomics, Institute of Food Science Research, CIAL, CSIC, Madrid, Spain
| | - Elizabeth Suesca
- Laboratory of Biophysics, Physics Department, Universidad de los Andes, Bogotá D.C., Colombia
| | | | - Adriana E Rosato
- Molecular Microbiology Diagnostics-Research, Riverside University Health System, Professor Loma Linda University, Moreno Valley, CA, USA
| | - Elena Ibáñez
- Laboratory of Foodomics, Institute of Food Science Research, CIAL, CSIC, Madrid, Spain
| | - Alejandro Cifuentes
- Laboratory of Foodomics, Institute of Food Science Research, CIAL, CSIC, Madrid, Spain
| | - Chad Leidy
- Laboratory of Biophysics, Physics Department, Universidad de los Andes, Bogotá D.C., Colombia.
| | - Chiara Carazzone
- Laboratory of Advanced Analytical Techniques in Natural Products (LATNAP), Chemistry Department, Universidad de los Andes, Bogotá D.C., Colombia.
| |
Collapse
|
7
|
Liu WT, Chen EZ, Yang L, Peng C, Wang Q, Xu Z, Chen DQ. Emerging resistance mechanisms for 4 types of common anti-MRSA antibiotics in Staphylococcus aureus: A comprehensive review. Microb Pathog 2021; 156:104915. [PMID: 33930416 DOI: 10.1016/j.micpath.2021.104915] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 04/02/2021] [Accepted: 04/06/2021] [Indexed: 01/10/2023]
Abstract
Staphylococcus aureus is one of the leading hospital-associated and community-associated pathogens, which has caused a global public health concern. The emergence of methicillin-resistant S. aureus (MRSA) along with the widespread use of different classes of antibiotics has become a significant therapeutic challenge. Antibiotic resistance is a disturbing problem that poses a threat to humans. Treatment options for S. aureus resistant to β-lactam antibiotics include glycopeptide antibiotic, cyclic lipopeptide antibiotic, cephalosporins and oxazolidinone antibiotic. The most representative types of these antibiotics are vancomycin, daptomycin, ceftaroline and linezolid. The frequent use of the first-line drug vancomycin for MRSA treatment has increased the number of resistant strains, namely vancomycin intermediate resistant S. aureus (VISA) and vancomycin resistant S. aureus (VRSA). A systematic literature review of relevant published studies in PubMed before 2020 was conducted. In recent years, there have been some reports on the relevant resistant mechanisms of vancomycin, daptomycin, ceftaroline and linezolid. In this review, we have summarized the antibiotic molecular modes of action and different gene mutants at the whole-genome level, which will aid in further development on new drugs for effective MRSA treatment based on describing different resistance mechanisms of classic antibiotics.
Collapse
Affiliation(s)
- Wan-Ting Liu
- Microbiome Medicine Center, Division of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, 510282, China
| | - En-Zhong Chen
- Microbiome Medicine Center, Division of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, 510282, China
| | - Ling Yang
- Department of Laboratory Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510120, China
| | - Chen Peng
- Department of Laboratory Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510120, China
| | - Qun Wang
- Department of Laboratory Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510120, China
| | - Zhenbo Xu
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, China; College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN38163, USA; Research Institute for Food Nutrition and Human Health, Guangzhou, 510640, China; Home Economics Technology, Rajamangala University of Technology Phra Nakhon, Bangkok, Thailand.
| | - Ding-Qiang Chen
- Microbiome Medicine Center, Division of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, 510282, China.
| |
Collapse
|
8
|
Morrisette T, Lagnf AM, Alosaimy S, Rybak MJ. A comparison of daptomycin alone and in combination with ceftaroline fosamil for methicillin-resistant Staphylococcus aureus bacteremia complicated by septic pulmonary emboli. Eur J Clin Microbiol Infect Dis 2020; 39:2199-2203. [PMID: 32535805 DOI: 10.1007/s10096-020-03941-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 06/02/2020] [Indexed: 10/23/2022]
Abstract
The use of daptomycin (DAP) in septic pulmonary emboli (SPE) remains controversial. We analyzed 29 cases of MRSA bacteremia complicated by SPE treated with DAP (n = 14) or DAP-ceftaroline fosamil (CPT; n = 15). Initial treatment with DAP monotherapy was found to have a success rate comparable with DAP-CPT (71% vs. 80%; p = 0.68).
Collapse
Affiliation(s)
- Taylor Morrisette
- Anti-Infective Research Laboratory, Department of Pharmacy Practice, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, 259 Mack Avenue, Detroit, MI, 48201, USA
| | - Abdalhamid M Lagnf
- Anti-Infective Research Laboratory, Department of Pharmacy Practice, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, 259 Mack Avenue, Detroit, MI, 48201, USA
| | - Sara Alosaimy
- Anti-Infective Research Laboratory, Department of Pharmacy Practice, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, 259 Mack Avenue, Detroit, MI, 48201, USA
| | - Michael J Rybak
- Anti-Infective Research Laboratory, Department of Pharmacy Practice, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, 259 Mack Avenue, Detroit, MI, 48201, USA.
- Division of Infectious Diseases, Department of Medicine, Wayne State University, Detroit, MI, USA.
- Department of Pharmacy, Detroit Medical Center, Detroit, MI, USA.
| |
Collapse
|