1
|
Schwab TC, Perrig L, Göller PC, Guebely De la Hoz FF, Lahousse AP, Minder B, Günther G, Efthimiou O, Omar SV, Egger M, Fenner L. Targeted next-generation sequencing to diagnose drug-resistant tuberculosis: a systematic review and meta-analysis. THE LANCET. INFECTIOUS DISEASES 2024; 24:1162-1176. [PMID: 38795712 DOI: 10.1016/s1473-3099(24)00263-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 04/05/2024] [Accepted: 04/12/2024] [Indexed: 05/28/2024]
Abstract
BACKGROUND Targeted next-generation sequencing (NGS) can rapidly and simultaneously detect mutations associated with resistance to tuberculosis drugs across multiple gene targets. The use of targeted NGS to diagnose drug-resistant tuberculosis, as described in publicly available data, has not been comprehensively reviewed. We aimed to identify targeted NGS assays that diagnose drug-resistant tuberculosis, determine how widely this technology has been used, and assess the diagnostic accuracy of these assays. METHODS In this systematic review and meta-analysis, we searched MEDLINE, Embase, Cochrane Library, Web of Science Core Collection, Global Index Medicus, Google Scholar, ClinicalTrials.gov, and the WHO International Clinical Trials Registry Platform for published and unpublished reports on targeted NGS for drug-resistant tuberculosis from Jan 1, 2005, to Oct 14, 2022, with updates to our search in Embase and Google Scholar until Feb 13, 2024. Studies eligible for the systematic review described targeted NGS approaches to predict drug resistance in Mycobacterium tuberculosis infections using primary samples, reference strain collections, or cultured isolates from individuals with presumed or confirmed tuberculosis. Our search had no limitations on study type or language, although only reports in English, German, and French were screened for eligibility. For the meta-analysis, we included test accuracy studies that used any reference standard, and we assessed risk of bias using the Quality Assessment of Diagnostic Accuracy Studies-2 tool. The primary outcomes for the meta-analysis were sensitivity and specificity of targeted NGS to diagnose drug-resistant tuberculosis compared to phenotypic and genotypic drug susceptibility testing. We used a Bayesian bivariate model to generate summary receiver operating characteristic plots and diagnostic accuracy measures, overall and stratified by drug and sample type. This study is registered with PROSPERO, CRD42022368707. FINDINGS We identified and screened 2920 reports, of which 124 were eligible for our systematic review, including 37 review articles and 87 reports of studies collecting samples for targeted NGS. Sequencing was mainly done in the USA (14 [16%] of 87), western Europe (ten [11%]), India (ten [11%]), and China (nine [10%]). We included 24 test accuracy studies in the meta-analysis, in which 23 different tuberculosis drugs or drug groups were assessed, covering first-line drugs, injectable drugs, and fluoroquinolones and predominantly comparing targeted NGS with phenotypic drug susceptibility testing. The combined sensitivity of targeted NGS across all drugs was 94·1% (95% credible interval [CrI] 90·9-96·3) and specificity was 98·1% (97·0-98·9). Sensitivity for individual drugs ranged from 76·5% (52·5-92·3) for capreomycin to 99·1% (98·3-99·7) for rifampicin; specificity ranged from 93·1% (88·0-96·3) for ethambutol to 99·4% (98·3-99·8) for amikacin. Diagnostic accuracy was similar for primary clinical samples and culture isolates overall and for rifampicin, isoniazid, ethambutol, streptomycin, and fluoroquinolones, and similar after excluding studies at high risk of bias (overall sensitivity 95·2% [95% CrI 91·7-97·1] and specificity 98·6% [97·4-99·3]). INTERPRETATION Targeted NGS is highly sensitive and specific for detecting drug resistance across panels of tuberculosis drugs and can be performed directly on clinical samples. There is a paucity of data on performance for some currently recommended drugs. The barriers preventing the use of targeted NGS to diagnose drug-resistant tuberculosis in high-burden countries need to be addressed. FUNDING National Institutes of Allergy and Infectious Diseases and Swiss National Science Foundation.
Collapse
Affiliation(s)
- Tiana Carina Schwab
- Institute of Social and Preventive Medicine, University of Bern, Bern, Switzerland
| | - Lisa Perrig
- Institute of Social and Preventive Medicine, University of Bern, Bern, Switzerland
| | | | | | | | - Beatrice Minder
- Public Health and Primary Care Library, University Library of Bern, University of Bern, Bern, Switzerland
| | - Gunar Günther
- Department of Pulmonology and Allergology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland; Department of Medical Science, Faculty of Health Sciences, University of Namibia, Windhoek, Namibia
| | - Orestis Efthimiou
- Institute of Social and Preventive Medicine, University of Bern, Bern, Switzerland; Institute of Primary Health Care (BIHAM), University of Bern, Bern, Switzerland
| | - Shaheed Vally Omar
- Centre for Tuberculosis, National & WHO Supranational TB Reference Laboratory, National Institute for Communicable Diseases, a division of the National Health Laboratory Services, Johannesburg, South Africa
| | - Matthias Egger
- Institute of Social and Preventive Medicine, University of Bern, Bern, Switzerland; Centre for Infectious Disease Epidemiology & Research, School of Public Health & Family Medicine, University of Cape Town, Cape Town, South Africa; Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Lukas Fenner
- Institute of Social and Preventive Medicine, University of Bern, Bern, Switzerland.
| |
Collapse
|
2
|
Liu B, Su P, Hu P, Yan M, Li W, Yi S, Chen Z, Zhang X, Guo J, Wan X, Wang J, Gong D, Bai H, Wan K, Liu H, Li G, Tan Y. Prevalence, Transmission and Genetic Diversity of Pyrazinamide Resistance Among Multidrug-Resistant Mycobacterium tuberculosis Isolates in Hunan, China. Infect Drug Resist 2024; 17:403-416. [PMID: 38328339 PMCID: PMC10849141 DOI: 10.2147/idr.s436161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 01/15/2024] [Indexed: 02/09/2024] Open
Abstract
Background China is a country with a burden of high rates of both TB and multidrug-resistant TB (MDR-TB). However, published data on pyrazinamide (PZA) resistance are still limited in Hunan province, China. This study investigated the prevalence, transmission, and genetic diversity of PZA resistance among multidrug-resistant Mycobacterium tuberculosis isolates in Hunan province. Methods Drug susceptibility testing (DST) with the Bactec MGIT 960 PZA kit and pyrazinamidase (PZase) testing were conducted on all 298 MDR clinical isolates. Moreover, 24-locus MIRU-VNTR and DNA sequencing of pncA, rpsA, and panD genes were conducted on 180 PZA-resistant (PZA-R) isolates. Results The prevalence of PZA resistance among MDR-TB strains reached 60.4%. Newly diagnosed PZA-R TB patients and clustered isolates with identical pncA, rpsA, and panD mutations showed that transmission of PZA-R isolates played a significant role in the formation of PZA-R TB. Ninety-eight mutation patterns were observed in the pncA among 180 PZA-R isolates, and seventy-one (72.4%) were point mutations. Twenty-four of these mutations are new, including 2 base substitutions (V93G and T153S) and 22 nucleotide deletions or insertions. The W119C was found in PZA-S isolates, on the other hand, F94L and V155A mutations were found in both PZA resistant and susceptible isolates with positive PZase activity, indicating that they were not associated with PZA resistance. This is not entirely in line with the WHO catalogue. Ten novel rpsA mutations were found in 10 PZA-R isolates, which all combined with mutations in pncA. Thus, it is unpredictable whether these mutations in rpsA can impact PZA resistance. No panD mutation was found in all PZA-R isolates. Conclusion DNA sequencing of pncA and PZase activity testing have great potential in predicting PZA resistance.
Collapse
Affiliation(s)
- Binbin Liu
- Clinical Laboratory, Hunan Chest Hospital, Changsha, People’s Republic of China
| | - Pan Su
- Clinical Laboratory, Hunan Chest Hospital, Changsha, People’s Republic of China
| | - Peilei Hu
- Clinical Laboratory, Hunan Chest Hospital, Changsha, People’s Republic of China
| | - Mi Yan
- Clinical Laboratory, Hunan Chest Hospital, Changsha, People’s Republic of China
| | - Wenbin Li
- Clinical Laboratory, Hunan Chest Hospital, Changsha, People’s Republic of China
| | - Songlin Yi
- Clinical Laboratory, Hunan Chest Hospital, Changsha, People’s Republic of China
| | - Zhenhua Chen
- Clinical Laboratory, Hunan Chest Hospital, Changsha, People’s Republic of China
| | - Xiaoping Zhang
- Clinical Laboratory, Hunan Chest Hospital, Changsha, People’s Republic of China
| | - Jingwei Guo
- Clinical Laboratory, Hunan Chest Hospital, Changsha, People’s Republic of China
| | - Xiaojie Wan
- Clinical Laboratory, Hunan Chest Hospital, Changsha, People’s Republic of China
| | - Jue Wang
- Clinical Laboratory, Hunan Chest Hospital, Changsha, People’s Republic of China
| | - Daofang Gong
- Clinical Laboratory, Hunan Chest Hospital, Changsha, People’s Republic of China
| | - Hua Bai
- Clinical Laboratory, Hunan Chest Hospital, Changsha, People’s Republic of China
| | - Kanglin Wan
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People’s Republic of China
| | - Haican Liu
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People’s Republic of China
| | - Guilian Li
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People’s Republic of China
| | - Yunhong Tan
- Clinical Laboratory, Hunan Chest Hospital, Changsha, People’s Republic of China
| |
Collapse
|
3
|
Wang Z, Tang Z, Heidari H, Molaeipour L, Ghanavati R, Kazemian H, Koohsar F, Kouhsari E. Global status of phenotypic pyrazinamide resistance in Mycobacterium tuberculosis clinical isolates: an updated systematic review and meta-analysis. J Chemother 2023; 35:583-595. [PMID: 37211822 DOI: 10.1080/1120009x.2023.2214473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 05/01/2023] [Accepted: 05/11/2023] [Indexed: 05/23/2023]
Abstract
Pyrazinamide (PZA) is an essential first-line tuberculosis drug for its unique mechanism of action active against multidrug-resistant-TB (MDR-TB). Thus, the aim of updated meta-analysis was to estimate the PZA weighted pooled resistance (WPR) rate in M. tuberculosis isolates based on publication date and WHO regions. We systematically searched the related reports in PubMed, Scopus, and Embase (from January 2015 to July 2022). Statistical analyses were performed using STATA software. The 115 final reports in the analysis investigated phenotypic PZA resistance data. The WPR of PZA was 57% (95% CI 48-65%) in MDR-TB cases. According to the WHO regions, the higher WPRs of PZA were reported in the Western Pacific (32%; 95% CI 18-46%), South East Asian region (37%; 95% CI 31-43%), and the Eastern Mediterranean (78%; 95% CI 54-95%) among any-TB patients, high risk of MDR-TB patients, and MDR-TB patients, respectively. A negligible increase in the rate of PZA resistance were showed in MDR-TB cases (55% to 58%). The rate of PZA resistance has been rising in recent years among MDR-TB cases, underlines the essential for both standard and novel drug regimens development.
Collapse
Affiliation(s)
- Zheming Wang
- Department of Pharmacy, Shaoxing People's Hospital, Shaoxing, China
| | - Zhihua Tang
- Department of Pharmacy, Shaoxing People's Hospital, Shaoxing, China
| | - Hamid Heidari
- Department of Microbiology, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Leila Molaeipour
- Department of Epidemiology, School of Public Health, University of Medical Sciences, Tehran, Iran
| | | | - Hossein Kazemian
- Clinical Microbiology Research Center, Ilam University of Medical Sciences, Ilam, Iran
| | - Faramarz Koohsar
- Laboratory Sciences Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Ebrahim Kouhsari
- Laboratory Sciences Research Center, Golestan University of Medical Sciences, Gorgan, Iran
- Department of Laboratory Sciences, Faculty of Paramedicine, Golestan University of Medical Sciences, Gorgan, Iran
| |
Collapse
|
4
|
Rossini NDO, Dias MVB. Mutations and insights into the molecular mechanisms of resistance of Mycobacterium tuberculosis to first-line. Genet Mol Biol 2023; 46:e20220261. [PMID: 36718771 PMCID: PMC9887390 DOI: 10.1590/1678-4685-gmb-2022-0261] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 12/18/2022] [Indexed: 01/28/2023] Open
Abstract
Genetically antimicrobial resistance in Mycobacterium tuberculosis is currently one of the most important aspects of tuberculosis, considering that there are emerging resistant strains for almost every known drug used for its treatment. There are multiple antimicrobials used for tuberculosis treatment, and the most effective ones are the first-line drugs, which include isoniazid, pyrazinamide, rifampicin, and ethambutol. In this context, understanding the mechanisms of action and resistance of these molecules is essential for proposing new therapies and strategies of treatment. Additionally, understanding how and where mutations arise conferring a resistance profile to the bacteria and their effect on bacterial metabolism is an important requisite to be taken in producing safer and less susceptible drugs to the emergence of resistance. In this review, we summarize the most recent literature regarding novel mutations reported between 2017 and 2022 and the advances in the molecular mechanisms of action and resistance against first-line drugs used in tuberculosis treatment, highlighting recent findings in pyrazinamide resistance involving PanD and, additionally, resistance-conferring mutations for novel drugs such as bedaquiline, pretomanid, delamanid and linezolid.
Collapse
Affiliation(s)
- Nicolas de Oliveira Rossini
- Universidade de São Paulo, Instituto de Ciências Biomédicas, Departamento de Microbiologia, São Paulo, SP, Brazil. Universidade de São PauloInstituto de Ciências BiomédicasDepartamento de MicrobiologiaSão PauloSPBrazil
| | - Marcio Vinicius Bertacine Dias
- Universidade de São Paulo, Instituto de Ciências Biomédicas, Departamento de Microbiologia, São Paulo, SP, Brazil. Universidade de São PauloInstituto de Ciências BiomédicasDepartamento de MicrobiologiaSão PauloSPBrazil
- University of Warwick, Department of Chemistry, Coventry, United Kingdom. University of WarwickDepartment of ChemistryCoventryUnited Kingdom
| |
Collapse
|
5
|
Rajendran A, Palaniyandi K. Mutations Associated with Pyrazinamide Resistance in Mycobacterium tuberculosis: A Review and Update. Curr Microbiol 2022; 79:348. [PMID: 36209317 DOI: 10.1007/s00284-022-03032-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 09/06/2022] [Indexed: 11/03/2022]
Abstract
Pyrazinamide (PZA) has remained a keystone of tuberculosis (TB) therapy, and it possesses high imperative sterilizing action that can facilitate reduction in the present chemotherapy regimen. The combination of PZA works both with first- and second-line TB drugs, notably fluoroquinolones, clofazimine, bedaquiline, delamanid and pretomanid. Pyrazinamide inhibits various targets that are involved in different cellular processes like energy production (pncA), trans-translation (rpsA) and pantothenate/coenzyme A (panD) which are required for persistence of the pathogen. It is well known that pncA gene encoding pyrazinamidase is involved in the transition of PZA into the active form of pyrazinoic acid, which implies that mutation in the pncA gene can develop PZA resistance in Mycobacterium tuberculosis (M. tuberculosis) strain leading to a major clinical and public health concern. Therefore, it is very crucial to understand its resistance mechanism and to detect it precisely to help in the management of the disease. Scope of this review is to have a deep understanding of molecular mechanism of PZA resistance with its multiple targets which would help study the association of mutations and its resistance in M. tuberculosis. This will in turn help learn about the resistance of PZA and develop more accurate molecular diagnostic tool for drug-resistant TB in future TB therapy.
Collapse
Affiliation(s)
- Ananthi Rajendran
- Department of Immunology, ICMR-National Institute for Research in Tuberculosis, #1, Mayor Sathyamoorthy Road, Chetpet, Chennai, 600031, India
| | - Kannan Palaniyandi
- Department of Immunology, ICMR-National Institute for Research in Tuberculosis, #1, Mayor Sathyamoorthy Road, Chetpet, Chennai, 600031, India.
| |
Collapse
|
6
|
Anthwal D, Gupta RK, Singhal R, Bhalla M, Verma AK, Khayyam KU, Myneedu VP, Sarin R, Gupta A, Gupta NK, Singh M, Sivaswami Tyagi J, Haldar S. Compatibility of a novel filter paper-based bio-safe sputum transport kit with line probe assay for diagnosing drug-resistant tuberculosis: a single-site evaluation study. ERJ Open Res 2021; 7:00137-2021. [PMID: 34350282 PMCID: PMC8326685 DOI: 10.1183/23120541.00137-2021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 04/08/2021] [Indexed: 01/29/2023] Open
Abstract
Background Near-patient access to appropriate tests is a major obstacle for the efficient diagnosis of tuberculosis (TB) and associated drug resistance. Methods We recently developed the “TB Concentration & Transport” kit for bio-safe, ambient-temperature transportation of dried sputum on Trans-Filter, and the “TB DNA Extraction” kit for DNA extraction from Trans-Filter for determining drug resistance by DNA sequencing. In the present study, we evaluated the compatibility of Kit-extracted DNA with Hain's line probe assays (LPAs), which are endorsed by National TB programmes for the detection of drug resistance in sputum collected from presumptive multidrug-resistant TB patients (n=207). Results Trans-Filter-extracted DNA was seamlessly integrated with the LPA protocol (Kit-LPA). The sensitivity of Kit-LPA for determining drug resistance was 83.3% for rifampicin (95% CI 52–98%), 77.7% for isoniazid (95% CI 52–94%), 85.7% for fluoroquinolones (95% CI 42–100%) and 66.6% for aminoglycosides (95% CI 9–99%), with a specificity range of 93.7% (95% CI 87–97) to 99.1% (95% CI 95–100) using phenotypic drug susceptibility testing (DST) as a reference standard. A high degree of concordance was noted between results obtained from Kit-LPA and LPA (99% to 100% (κ value: 0.83–1.0)). Conclusions This study demonstrates successful integration of our developed kits with LPA. The adoption of these kits across Designated Microscopy Centres in India can potentially overcome the existing challenge of transporting infectious sputum at controlled temperature to centralised testing laboratories and can provide rapid near-patient cost-effective “Universal DST” services to TB subjects residing in remote areas. The adoption of bio-safe “TB Concentration & Transport” kit by Microscopy Centres can potentially overcome the challenge of transporting infectious sputum to central laboratories and provide universal DST services to TB subjects residing in remote areas.https://bit.ly/2QrQ5qL
Collapse
Affiliation(s)
- Divya Anthwal
- Dept of Experimental Medicine and Biotechnology, Postgraduate Institute of Medical Education and Research, Chandigarh, India.,Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad, India
| | - Rakesh Kumar Gupta
- Dept of Experimental Medicine and Biotechnology, Postgraduate Institute of Medical Education and Research, Chandigarh, India.,Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad, India
| | - Ritu Singhal
- Dept of Microbiology, National Institute of Tuberculosis and Respiratory Diseases, New Delhi, India
| | - Manpreet Bhalla
- Dept of Microbiology, National Institute of Tuberculosis and Respiratory Diseases, New Delhi, India
| | - Ajoy Kumar Verma
- Dept of Microbiology, National Institute of Tuberculosis and Respiratory Diseases, New Delhi, India
| | - Khalid Umar Khayyam
- Dept of Microbiology, National Institute of Tuberculosis and Respiratory Diseases, New Delhi, India
| | - Vithal Prasad Myneedu
- Dept of Microbiology, National Institute of Tuberculosis and Respiratory Diseases, New Delhi, India
| | - Rohit Sarin
- Dept of Microbiology, National Institute of Tuberculosis and Respiratory Diseases, New Delhi, India
| | | | | | - Manjula Singh
- India TB Research Consortium, Indian Council of Medical Research, New Delhi, India
| | - Jaya Sivaswami Tyagi
- Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad, India.,Dept of Biotechnology, All India Institute of Medical Sciences, New Delhi, India
| | - Sagarika Haldar
- Dept of Experimental Medicine and Biotechnology, Postgraduate Institute of Medical Education and Research, Chandigarh, India.,Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad, India
| |
Collapse
|
7
|
Daum LT, Fischer GW. Rapid and Safe Detection of SARS-CoV-2 and Influenza Virus RNA using Onsite qPCR Diagnostic Testing from Clinical Specimens Collected in Molecular Transport Medium. J Appl Lab Med 2021; 6:1409-1416. [PMID: 34156459 PMCID: PMC8344669 DOI: 10.1093/jalm/jfab073] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 06/14/2021] [Indexed: 02/01/2023]
Abstract
BACKGROUND The ability to rapidly detect SARS-CoV-2 and influenza virus infection is vital for patient care due to overlap in clinical symptoms. Roche's cobas® Liat® SARS-CoV-2 & Influenza A/B Nucleic Acid Test used on the cobas® Liat® was granted approval under FDA's Emergency Use Authorization (EUA) for nasopharyngeal (NP) and nasal swabs collected in viral/universal transport medium (VTM/UTM). However, there is a critical need for media that inactivates the virus, especially when specimens are collected in decentralized settings. This study aimed to investigate the use of PrimeStore Molecular Transport Medium® (PS-MTM®), designed to inactivate/kill and stabilize RNA/DNA for ambient transport and pre-processing of collected samples. METHODS A limit of detection (LOD) using serially diluted SARS-CoV-2 RNA in PS-MTM® and routine UTM was established using standard qPCR. Additionally, a clinical panel of NP and oral swabs collected in PS-MTM® collected during the 2020 coronavirus disease 2019 (COVID-19) pandemic were evaluated on the cobas® Liat® and compared to 'gold standard' qPCR on an ABI-7500 instrument. RESULTS SARS-CoV-2 RNA LOD using standard qPCR was equivalent on the cobas® Liat® instrument. cobas® Liat® detection from oral/NP swabs in PS-MTM® media exhibited equivalent positive percent agreement (100%) and negative percent agreement (96.4%). CONCLUSION PS-MTM® and the Roche cobas® Liat® are compatible and complimentary devices for respiratory specimen collection and rapid disease detection, respectively. PS-MTM® is equivalent to standard VTM/UTM with the added benefit of safe, non-infectious sample processing for near-patient testing.
Collapse
Affiliation(s)
- Luke T Daum
- Longhorn Vaccines and Diagnostics, San Antonio, Texas, USA
| | | |
Collapse
|
8
|
Li K, Yang Z, Gu J, Luo M, Deng J, Chen Y. Characterization of pncA Mutations and Prediction of PZA Resistance in Mycobacterium tuberculosis Clinical Isolates From Chongqing, China. Front Microbiol 2021; 11:594171. [PMID: 33505367 PMCID: PMC7832174 DOI: 10.3389/fmicb.2020.594171] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 11/26/2020] [Indexed: 01/17/2023] Open
Abstract
Pyrazinamide (PZA) is widely used to treat drug-sensitive or multidrug resistance tuberculosis. However, conventional PZA susceptibility tests of clinical isolates are rather difficult because of the requirement of acid pH. Since resistance to pyrazinamide is primary mediated by mutation of pncA, an alternative way of PZA susceptibility test is to analyze the pyrazinamidase activities of Mycobacterium tuberculosis clinical isolates. Therefore, a database containing the full spectrum of pncA mutations along with pyrazinamidase activities will be beneficial. To characterize mutations of pncA in M. tuberculosis from Chongqing, China, the pncA gene was sequenced and analyzed in 465 clinical isolates. A total of 124 types of mutations were identified in 424 drug-resistant isolates, while no mutation was identified in the 31 pan-susceptible isolates. Ninety-four of the 124 mutations had previously been reported, and 30 new mutations were identified. Based on reported literatures, 294 isolates could be predicted resistant to pyrazinamide. Furthermore, pyrazinamidase activities of the 30 new mutations were tested using the Escherichia coli pncA gene knockout strain. The results showed that 24 of these new mutations (28 isolates) led to loss of pyrazinamidase activity and six (8 isolates) of them did not. Taken together, 322 isolates with pncA mutations could be predicted to be PZA resistant among the 424 drug-resistant isolates tested. Analysis of pncA mutations and their effects on pyrazinamidase activity will not only enrich our knowledge of comprehensive pncA mutations related with PZA resistance but also facilitate rapid molecular diagnosis of pyrazinamide resistance in M. tuberculosis.
Collapse
Affiliation(s)
- Kun Li
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China.,Central Laboratory, Chongqing Public Health Medical Center, Chongqing, China
| | - Zhongping Yang
- Central Laboratory, Chongqing Public Health Medical Center, Chongqing, China
| | - Jing Gu
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Ming Luo
- Central Laboratory, Chongqing Public Health Medical Center, Chongqing, China
| | - Jiaoyu Deng
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Yaokai Chen
- Central Laboratory, Chongqing Public Health Medical Center, Chongqing, China
| |
Collapse
|
9
|
Nieto Ramirez LM, Quintero Vargas K, Diaz G. Whole Genome Sequencing for the Analysis of Drug Resistant Strains of Mycobacterium tuberculosis: A Systematic Review for Bedaquiline and Delamanid. Antibiotics (Basel) 2020; 9:antibiotics9030133. [PMID: 32209979 PMCID: PMC7148535 DOI: 10.3390/antibiotics9030133] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 02/23/2020] [Accepted: 02/27/2020] [Indexed: 11/24/2022] Open
Abstract
Tuberculosis (TB) remains the deadliest Infectious disease worldwide, partially due to the increasing dissemination of multidrug and extensively drug-resistant (MDR/XDR) strains. Drug regimens containing the new anti-TB drugs bedaquiline (BDQ) and delamanid (DLM) appear as a last resort for the treatment of MDR or XDR-TB. Unfortunately, resistant cases to these drugs emerged just one year after their introduction in clinical practice. Early detection of resistant strains to BDQ and DLM is crucial to preserving the effectiveness of these drugs. Here, we present a systematic review aiming to define all available genotypic variants linked to different levels of resistance to BDQ and DLM that have been described through whole genomic sequencing (WGS) and the available drug susceptibility testing methods. During the review, we performed a thorough analysis of 18 articles. BDQ resistance was associated with genetic variants in Rv0678 and atpE, while mutations in pepQ were linked to a low-level of resistance for BDQ. For DLM, mutations in the genes ddn, fgd1, fbiA, and fbiC were found in phenotypically resistant cases, while all the mutations in fbiB were reported only in DLM-susceptible strains. Additionally, WGS analysis allowed the detection of heteroresistance to both drugs. In conclusion, we present a comprehensive panel of gene mutations linked to different levels of drug resistance to BDQ and DLM.
Collapse
Affiliation(s)
| | - Karina Quintero Vargas
- Facultad de Ciencias para la Salud, Departamento de Ciencias Básicas, Universidad de Caldas, Manizales 170002, Colombia;
| | - Gustavo Diaz
- Centro Internacional de Entrenamiento e Investigaciones Médicas (CIDEIM), Cali 760031, Colombia;
- Facultad de Ciencias Naturales, Universidad Icesi, Calle 18 No. 122-135, Cali 760031, Colombia
| |
Collapse
|
10
|
Cao Z, Lan Y, Chen L, Xiang M, Peng Z, Zhang J, Zhang H. Resistance To First-Line Antituberculosis Drugs And Prevalence Of pncA Mutations In Clinical Isolates Of Mycobacterium tuberculosis From Zunyi, Guizhou Province Of China. Infect Drug Resist 2019; 12:3093-3102. [PMID: 31686870 PMCID: PMC6777635 DOI: 10.2147/idr.s222943] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 08/29/2019] [Indexed: 11/23/2022] Open
Abstract
Background China is one of the high-burden countries for multidrug-resistant tuberculosis (MDR-TB), and pyrazinamide is one of the anti-TB drugs used for the shorter MDR-TB treatment regimen. The aim of this study was to determine the correlation between pncA gene mutations and resistance to four first-line anti-TB drugs as well as treatment history in clinical isolates of Mycobacterium tuberculosis. Patients and methods M. tuberculosis clinical isolates were collected from 318 in-patients with smear-positive TB between October 2008 and September 2016 at a major hospital in Zunyi, Guizhou Province of China, and used for drug susceptibility testing against four first-line anti-TB drugs. Genomic DNA extracted from clinical isolates was used for PCR amplification and DNA sequencing of the pncA gene. Results Among 318 clinical isolates, 129 (40.6%), 170 (53.5%), 66 (20.8%) and 109 (34.3%) were resistant to rifampicin, isoniazid, ethambutol and streptomycin respectively. In addition, 124 clinical isolates were MDR-TB and 71.8% of them were previously treated cases. Sequencing results showed that 46.8% of MDR-TB and 2.2% of drug susceptible isolates harbored a pncA mutation, and 52 types of pncA mutations were detected from 64 isolates. The prevalence of pncA mutations in isolates resistant to first-line anti-TB drugs and previously treated TB cases was significantly higher than that in drug-susceptible isolates and new cases of TB. Conclusion High prevalence of pncA mutations in clinical isolates of M. tuberculosis from Zunyi, Guizhou Province of China, is correlated with resistance to four first-line anti-TB drugs, MDR-TB and previously treated TB cases.
Collapse
Affiliation(s)
- Zhimin Cao
- Tuberculosis Division, Department of Respiratory and Critical Care Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563003, People's Republic of China
| | - Yuanbo Lan
- Tuberculosis Division, Department of Respiratory and Critical Care Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563003, People's Republic of China
| | - Ling Chen
- Tuberculosis Division, Department of Respiratory and Critical Care Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563003, People's Republic of China
| | - Min Xiang
- Tuberculosis Division, Department of Respiratory and Critical Care Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563003, People's Republic of China
| | - Zhiyuan Peng
- Tuberculosis Division, Department of Respiratory and Critical Care Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563003, People's Republic of China
| | - Jianyong Zhang
- Tuberculosis Division, Department of Respiratory and Critical Care Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563003, People's Republic of China
| | - Hong Zhang
- Tuberculosis Division, Department of Respiratory and Critical Care Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563003, People's Republic of China.,Department of R & D, Z-BioMed, Inc, Rockville, MD, 20855, USA
| |
Collapse
|