1
|
Zagui GS, de Almeida OGG, Moreira NC, Silva NGA, Meschede MSC, Darini ALC, Andrade LN, Segura-Muñoz SI. Hospital wastewater as source of human pathogenic bacteria: A phenotypic and genomic analysis of international high-risk clone VIM-2-producing Pseudomonas aeruginosa ST235/O11. ENVIRONMENTAL RESEARCH 2024; 255:119166. [PMID: 38759772 DOI: 10.1016/j.envres.2024.119166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 05/12/2024] [Accepted: 05/15/2024] [Indexed: 05/19/2024]
Abstract
Pseudomonas aeruginosa belong to the special pathogen group capable of causing serious infections, with high mortality rates. The aim of this study was to describe the antibiotic resistance and genomic characteristics of Pseudomonas aeruginosa belonging to international high-risk clone ST235 (GPAE0131 isolate), obtained from hospital wastewater. P. aeruginosa GPAE0131 was isolated from ward tertiary hospital in Brazil and the antibiotic resistance profile was determined by the disc-diffusion method. Genomic characteristics related to antibiotic resistance and virulence factors were evaluated by genomic DNA sequencing on the Illumina MiSeq platform and bioinformatic analysis. GPAE0131 isolate showed resistance to piperacillin-tazobactam, cefepime, ceftazidime, imipenem, meropenem, ciprofloxacin, levofloxacin and tobramycin. Resistome comprehend of resistance genes to β-lactams (blaVIM-2, blaOXA-4, blaOXA-488, blaPDC-35), aminoglycosides (aph(3')-IIb, aac(6')-IIc, aac(6')-Ib9, aadA1), fosfomycin (fosA), chloramphenicol (catB7) and sulfonamides (sul1). Genome comparisons evidence insertion of blaVIM-2 and blaOXA-4 genes. GPAE0131 isolate was predicted to be pathogenic to humans and several virulence factors were found, including encoding gene for ExoU and exotoxin A. All of these features into a pathogenic international high-risk clone (ST235), classified as critical priority, stands out as public health concern due to the widespread dispersal of human pathogens through wastewater. It is suggested that mitigating measures be implemented, such as the treatment of hospital sewage and the addition of tertiary treatment, to prevent the escape of pathogens at this level into the environment.
Collapse
Affiliation(s)
- Guilherme Sgobbi Zagui
- Water Resources Research Group, Postgraduate Program in Environmental Technology, University of Ribeirão Preto, Brazil; School of Medicine, Department of Medicine, University of Ribeirão Preto, Brazil; Laboratory of Ecotoxicology and Environmental Parasitology, Ribeirão Preto College of Nursing, University of São Paulo, Brazil.
| | | | | | | | - Marina Smidt Celere Meschede
- Laboratory of Ecotoxicology and Environmental Parasitology, Ribeirão Preto College of Nursing, University of São Paulo, Brazil; Institute of Collective Health (ISCO), Federal University of Western Pará, Brazil
| | | | | | - Susana Inés Segura-Muñoz
- Laboratory of Ecotoxicology and Environmental Parasitology, Ribeirão Preto College of Nursing, University of São Paulo, Brazil
| |
Collapse
|
2
|
Montelongo-Martínez LF, Díaz-Guerrero M, Flores-Vega VR, Soto-Aceves MP, Rosales-Reyes R, Quiroz-Morales SE, González-Pedrajo B, Soberón-Chávez G, Cocotl-Yañez M. The quorum sensing regulator RhlR positively controls the expression of the type III secretion system in Pseudomonas aeruginosa PAO1. PLoS One 2024; 19:e0307174. [PMID: 39146292 PMCID: PMC11326643 DOI: 10.1371/journal.pone.0307174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 07/01/2024] [Indexed: 08/17/2024] Open
Abstract
Pseudomonas aeruginosa is an opportunist bacterium that causes acute and chronic infections. During acute infections, the type III secretion system (T3SS) plays a pivotal role in allowing the bacteria to translocate effectors such as ExoS, ExoT, and ExoY into host cells for colonization. Previous research on the involvement of quorum sensing systems Las and Rhl in controlling the T3SS gene expression produced ambiguous results. In this study, we determined the role of the Las and Rhl systems and the PqsE protein on T3SS expression. Our results show that in the wild-type PAO1 strain, the deletion of lasR or pqsE do not affect the secretion of ExoS. However, rhlI inactivation increases the expression of T3SS genes. In contrast to the rhlI deletion, rhlR inactivation decreases both T3SS genes expression and ExoS secreted protein levels, and this phenotype is restored when this mutant is complemented with the exsA gene, which codes for the master regulator of the T3SS. Additionally, cytotoxicity is affected in the rhlR mutant strain compared with its PAO1 parental strain. Overall, our results indicate that neither the Las system nor PqsE are involved in regulating the T3SS. Moreover, the Rhl system components have opposite effects, RhlI participates in negatively controlling the T3SS expression, while RhlR does it in a positive way, and this regulation is independent of C4 or PqsE. Finally, we show that rhlR, rhlI, or pqsE inactivation abolished pyocyanin production in T3SS-induction conditions. The ability of RhlR to act as a positive T3SS regulator in the absence of its cognate autoinducer and PqsE shows that it is a versatile regulator that controls different virulence traits allowing P. aeruginosa to compete for a niche.
Collapse
Affiliation(s)
- Luis Fernando Montelongo-Martínez
- Facultad de Medicina, Departamento de Microbiología y Parasitología, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Miguel Díaz-Guerrero
- Facultad de Medicina, Departamento de Microbiología y Parasitología, Universidad Nacional Autónoma de México, Ciudad de México, México
- Departamento de Genética Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad Universitaria, Ciudad de México, México
| | - Verónica Roxana Flores-Vega
- Departamento de Biomedicina Molecular, Centro de Investigación y de Estudios Avanzados del IPN, Ciudad de México, México
| | - Martín Paolo Soto-Aceves
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Roberto Rosales-Reyes
- Facultad de Medicina, Unidad de Medicina Experimental, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Sara Elizabeth Quiroz-Morales
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Bertha González-Pedrajo
- Departamento de Genética Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad Universitaria, Ciudad de México, México
| | - Gloria Soberón-Chávez
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Miguel Cocotl-Yañez
- Facultad de Medicina, Departamento de Microbiología y Parasitología, Universidad Nacional Autónoma de México, Ciudad de México, México
| |
Collapse
|
3
|
Bocharova Y, Chebotar I, Savinova T, Lyamin A, Kondratenko O, Polikarpova S, Fedorova N, Semykin S, Korostin D, Chaplin A, Shagin D, Mayanskiy N. Clonal diversity, antimicrobial resistance, and genome features among nonfermenting gram-negative bacteria isolated from patients with cystic fibrosis in Russia. Diagn Microbiol Infect Dis 2024; 108:116102. [PMID: 37984108 DOI: 10.1016/j.diagmicrobio.2023.116102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 09/29/2023] [Accepted: 10/06/2023] [Indexed: 11/22/2023]
Abstract
Nonfermenting gram-negative (NFGN) bacteria were isolated from cystic fibrosis (CF) patients and subjected to susceptibility testing and whole-genome sequencing. Among 170 enrolled CF patients, 112 (65.9%) were colonized with at least 1 key NFGN species. The species-specific infection rate was highest for Pseudomonas aeruginosa (40.6%) followed by Stenotrophomonas maltophilia (14.1%), Achromobacter spp. (9.4%), and Burkholderia cepacia complex (Bcc, 8.2%) demonstrating a significant age-dependent increase for P. aeruginosa and Achromobacter spp., but not for S. maltophilia or Bcc. P. aeruginosa sequence types (STs) related to high-risk epidemic and global CF clones were carried by 12 (7.1%) and 13 (7.6%) patients, respectively. In total, 47% NFGN isolates, predominantly P. aeruginosa, harbored at least 1 plasmid-borne resistance gene; 5 ST235 isolates carried blaVIM2. Pathogenicity island-borne virulence genes were harbored by 9% NFGN isolates. These findings in conjunction with frequent early colonization by Bcc raised serious concerns regarding infection control in Russian CF centers.
Collapse
Affiliation(s)
- Yuliya Bocharova
- Pirogov Russian National Research Medical University, Moscow, Russia.
| | - Igor Chebotar
- Pirogov Russian National Research Medical University, Moscow, Russia
| | - Tatiana Savinova
- Pirogov Russian National Research Medical University, Moscow, Russia
| | | | | | | | - Natalia Fedorova
- Pirogov Russian National Research Medical University, Moscow, Russia
| | - Sergey Semykin
- Pirogov Russian National Research Medical University, Moscow, Russia
| | - Dmitriy Korostin
- Pirogov Russian National Research Medical University, Moscow, Russia
| | - Andrey Chaplin
- Pirogov Russian National Research Medical University, Moscow, Russia
| | - Dmitriy Shagin
- Pirogov Russian National Research Medical University, Moscow, Russia
| | - Nikolay Mayanskiy
- Pirogov Russian National Research Medical University, Moscow, Russia
| |
Collapse
|
4
|
Lee JH, Kim NH, Jang KM, Jin H, Shin K, Jeong BC, Kim DW, Lee SH. Prioritization of Critical Factors for Surveillance of the Dissemination of Antibiotic Resistance in Pseudomonas aeruginosa: A Systematic Review. Int J Mol Sci 2023; 24:15209. [PMID: 37894890 PMCID: PMC10607276 DOI: 10.3390/ijms242015209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 10/13/2023] [Accepted: 10/13/2023] [Indexed: 10/29/2023] Open
Abstract
Pseudomonas aeruginosa is the primary opportunistic human pathogen responsible for a range of acute and chronic infections; it poses a significant threat to immunocompromised patients and is the leading cause of morbidity and mortality for nosocomial infections. Its high resistance to a diverse array of antimicrobial agents presents an urgent health concern. Among the mechanisms contributing to resistance in P. aeruginosa, the horizontal acquisition of antibiotic resistance genes (ARGs) via mobile genetic elements (MGEs) has gained recognition as a substantial concern in clinical settings, thus indicating that a comprehensive understanding of ARG dissemination within the species is strongly required for surveillance. Here, two approaches, including a systematic literature analysis and a genome database survey, were employed to gain insights into ARG dissemination. The genome database enabled scrutinizing of all the available sequence information and various attributes of P. aeruginosa isolates, thus providing an extensive understanding of ARG dissemination within the species. By integrating both approaches, with a primary focus on the genome database survey, mobile ARGs that were linked or correlated with MGEs, important sequence types (STs) carrying diverse ARGs, and MGEs responsible for ARG dissemination were identified as critical factors requiring strict surveillance. Although human isolates play a primary role in dissemination, the importance of animal and environmental isolates has also been suggested. In this study, 25 critical mobile ARGs, 45 critical STs, and associated MGEs involved in ARG dissemination within the species, are suggested as critical factors. Surveillance and management of these prioritized factors across the One Health sectors are essential to mitigate the emergence of multidrug-resistant (MDR) and extensively resistant (XDR) P. aeruginosa in clinical settings.
Collapse
Affiliation(s)
- Jung Hun Lee
- National Leading Research Laboratory of Drug Resistance Proteomics, Department of Biological Sciences, Myongji University, Yongin 17058, Republic of Korea; (J.H.L.); (K.-M.J.); (H.J.); (K.S.); (B.C.J.)
| | - Nam-Hoon Kim
- Division of Life Sciences, Jeonbuk National University, Jeonju 54896, Republic of Korea;
| | - Kyung-Min Jang
- National Leading Research Laboratory of Drug Resistance Proteomics, Department of Biological Sciences, Myongji University, Yongin 17058, Republic of Korea; (J.H.L.); (K.-M.J.); (H.J.); (K.S.); (B.C.J.)
| | - Hyeonku Jin
- National Leading Research Laboratory of Drug Resistance Proteomics, Department of Biological Sciences, Myongji University, Yongin 17058, Republic of Korea; (J.H.L.); (K.-M.J.); (H.J.); (K.S.); (B.C.J.)
| | - Kyoungmin Shin
- National Leading Research Laboratory of Drug Resistance Proteomics, Department of Biological Sciences, Myongji University, Yongin 17058, Republic of Korea; (J.H.L.); (K.-M.J.); (H.J.); (K.S.); (B.C.J.)
| | - Byeong Chul Jeong
- National Leading Research Laboratory of Drug Resistance Proteomics, Department of Biological Sciences, Myongji University, Yongin 17058, Republic of Korea; (J.H.L.); (K.-M.J.); (H.J.); (K.S.); (B.C.J.)
| | - Dae-Wi Kim
- Division of Life Sciences, Jeonbuk National University, Jeonju 54896, Republic of Korea;
| | - Sang Hee Lee
- National Leading Research Laboratory of Drug Resistance Proteomics, Department of Biological Sciences, Myongji University, Yongin 17058, Republic of Korea; (J.H.L.); (K.-M.J.); (H.J.); (K.S.); (B.C.J.)
| |
Collapse
|
5
|
Rosales-Reyes R, Flores-Vega VR, Lezana-Fernández JL, Santos-Preciado JI. Significance of Molecular Identification of Genomic Variants of Pseudomonas aeruginosa in Children with Cystic Fibrosis in Mexico. Arch Med Res 2022; 53:641-642. [PMID: 36123225 DOI: 10.1016/j.arcmed.2022.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 09/07/2022] [Indexed: 11/29/2022]
Abstract
Pseudomonas aeruginosa is a significant cause of lung infections in patients with cystic fibrosis (CF). Pseudomonas produces a chronic infection that increases the morbidity and mortality in affected individuals. The rapid identification of Pseudomonas in these individuals enables conventional antimicrobial treatment to be started. However, over the years, treatment of P. aeruginosa has become problematic and very challenging due to their intrinsic and acquired antibiotic resistance. Microbiology plays an essential role in determining the antimicrobial susceptibility/resistance profiles of isolated strains, helping to optimize antimicrobial treatment for affected patients. In addition to the conventional susceptibility analysis, whole genome sequencing has emerged as a powerful tool for determining specific genomic variants, both in specific geographic areas and globally. Thus, molecular epidemiologic surveillance could help to establish a better treatment strategy and counter the spread of high-risk, P. aeruginosa variants among CF individuals.
Collapse
Affiliation(s)
- Roberto Rosales-Reyes
- Unidad de Investigación en Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico.
| | - Verónica Roxana Flores-Vega
- Unidad de Investigación en Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - José Luis Lezana-Fernández
- Laboratorio de Fisiología Pulmonar, Clínica de Fibrosis Quística, Hospital Infantil de Mexico Federico Gómez, Mexico City, Mexico
| | - José Ignacio Santos-Preciado
- Unidad de Investigación en Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| |
Collapse
|
6
|
Unravelling complex transposable elements surrounding bla GES-16 in a Pseudomonas aeruginosa ExoU strain. J Glob Antimicrob Resist 2022; 30:143-147. [PMID: 35447384 DOI: 10.1016/j.jgar.2022.04.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 03/16/2022] [Accepted: 04/11/2022] [Indexed: 11/22/2022] Open
Abstract
OBJECTIVES We characterised the complex surrounding regions of blaGES-16 in a Pseudomonas aeruginosa exoU+ strain (P-10.226) in Brazil. METHODS Species identification was performed by MALDI-TOF MS, and the antimicrobial susceptibility profile was determined by broth microdilution based on European Committee on Antimicrobial Susceptibility Testing (EUCAST) breakpoints. The whole genome sequencing (WGS) of P-10.226 strain was performed using both short-read paired-end sequencing on the Illumina MiSeq platform as well as the long-read Oxford Nanopore MinION. RESULTS WGS analysis showed that P-10.226 carried blaGES-16, which was found as a gene cassette inserted into a novel class I integron, In1992 (aadB-blaOXA-56-blaGES-16-aadB-aadA6c), whose 3'-CS was truncated by a nested transposable element, IS5564::ISPa157. The structure was even more complex since IS6100-ΔIS6100 structure and a TnAs2-like harbouring the operon merRTPADE was found downstream In1992. Fragments of TnAs3 harbouring 25-bp imperfect inverted repeats were identified bordering the intl1 of In1992 and also flanking IS6100-ΔIS6100, which might be genetic marks of its previous presence in the genome. Interestingly, In1992 also shows a distinct cassette array from In581 (blaGES-16-dfrA22-aacA27-aadA1), which was previously reported in Serratia marcescens strains recovered in Brazil. Finally, exoU gene, which encodes a potent cytotoxin of type III secretion systems (T3SS) effector proteins from P. aeruginosa and is associated to severe infections, was also detected. CONCLUSION We described the novel In1992 carrying blaGES-16 surrounded by complex transposition events in a XDR P. aeruginosa strain. The identification of many sets of direct repeats adjacent to TnAs3 fragments indicates a major past of transposition events that shaped the current genetic environment of In1992.
Collapse
|
7
|
Savinova T, Bocharova Y, Mayanskiy N, Chebotar I. Genetic determinants of virulence and antibiotic resistance are common for Pseudomonas aeruginosa ST235 isolates from cystic fibrosis patients from various geographical regions. Diagn Microbiol Infect Dis 2021; 102:115596. [PMID: 34902620 DOI: 10.1016/j.diagmicrobio.2021.115596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 11/11/2021] [Indexed: 11/16/2022]
Abstract
The dissemination of multiple-drug resistant high virulent strains of P. aeruginosa in patients with cystic fibrosis is of concern worldwide. Herein, we describe genomic characteristics of ST235 isolates recovered from cystic fibrosis patients in Russia. Successful core-genome background and acquired resistance determinants provide spreading of high-risk clones in cystic fibrosis populations.
Collapse
Affiliation(s)
- Tatiana Savinova
- Pirogov Russian National Research Medical University, Moscow, Russia.
| | - Yuliya Bocharova
- Pirogov Russian National Research Medical University, Moscow, Russia
| | - Nikolay Mayanskiy
- Pirogov Russian National Research Medical University, Moscow, Russia
| | - Igor Chebotar
- Pirogov Russian National Research Medical University, Moscow, Russia
| |
Collapse
|