1
|
Arevalo-Rodriguez I, Mateos-Haro M, Dinnes J, Ciapponi A, Davenport C, Buitrago-Garcia D, Bennouna-Dalero T, Roqué-Figuls M, Van den Bruel A, von Eije KJ, Emperador D, Hooft L, Spijker R, Leeflang MM, Takwoingi Y, Deeks JJ. Laboratory-based molecular test alternatives to RT-PCR for the diagnosis of SARS-CoV-2 infection. Cochrane Database Syst Rev 2024; 10:CD015618. [PMID: 39400904 PMCID: PMC11472845 DOI: 10.1002/14651858.cd015618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
BACKGROUND Diagnosing people with a SARS-CoV-2 infection played a critical role in managing the COVID-19 pandemic and remains a priority for the transition to long-term management of COVID-19. Initial shortages of extraction and reverse transcription polymerase chain reaction (RT-PCR) reagents impaired the desired upscaling of testing in many countries, which led to the search for alternatives to RNA extraction/purification and RT-PCR testing. Reference standard methods for diagnosing the presence of SARS-CoV-2 infection rely primarily on real-time reverse transcription-polymerase chain reaction (RT-PCR). Alternatives to RT-PCR could, if sufficiently accurate, have a positive impact by expanding the range of diagnostic tools available for the timely identification of people infected by SARS-CoV-2, access to testing and the use of resources. OBJECTIVES To assess the diagnostic accuracy of alternative (to RT-PCR assays) laboratory-based molecular tests for diagnosing SARS-CoV-2 infection. SEARCH METHODS We searched the COVID-19 Open Access Project living evidence database from the University of Bern until 30 September 2020 and the WHO COVID-19 Research Database until 31 October 2022. We did not apply language restrictions. SELECTION CRITERIA We included studies of people with suspected or known SARS-CoV-2 infection, or where tests were used to screen for infection, and studies evaluating commercially developed laboratory-based molecular tests for the diagnosis of SARS-CoV-2 infection considered as alternatives to RT-PCR testing. We also included all reference standards to define the presence or absence of SARS-CoV-2, including RT-PCR tests and established clinical diagnostic criteria. DATA COLLECTION AND ANALYSIS Two authors independently screened studies and resolved disagreements by discussing them with a third author. Two authors independently extracted data and assessed the risk of bias and applicability of the studies using the QUADAS-2 tool. We presented sensitivity and specificity, with 95% confidence intervals (CIs), for each test using paired forest plots and summarised results using average sensitivity and specificity using a bivariate random-effects meta-analysis. We illustrated the findings per index test category and assay brand compared to the WHO's acceptable sensitivity and specificity threshold for diagnosing SARS-CoV-2 infection using nucleic acid tests. MAIN RESULTS We included data from 64 studies reporting 94 cohorts of participants and 105 index test evaluations, with 74,753 samples and 7517 confirmed SARS-CoV-2 cases. We did not identify any published or preprint reports of accuracy for a considerable number of commercially produced NAAT assays. Most cohorts were judged at unclear or high risk of bias in more than three QUADAS-2 domains. Around half of the cohorts were considered at high risk of selection bias because of recruitment based on COVID status. Three quarters of 94 cohorts were at high risk of bias in the reference standard domain because of reliance on a single RT-PCR result to determine the absence of SARS-CoV-2 infection or were at unclear risk of bias due to a lack of clarity about the time interval between the index test assessment and the reference standard, the number of missing results, or the absence of a participant flow diagram. For index tests categories with four or more evaluations and when summary estimations were possible, we found that: a) For RT-PCR assays designed to omit/adapt RNA extraction/purification, the average sensitivity was 95.1% (95% CI 91.1% to 97.3%), and the average specificity was 99.7% (95% CI 98.5% to 99.9%; based on 27 evaluations, 2834 samples and 1178 SARS-CoV-2 cases); b) For RT-LAMP assays, the average sensitivity was 88.4% (95% CI 83.1% to 92.2%), and the average specificity was 99.7% (95% CI 98.7% to 99.9%; 24 evaluations, 29,496 samples and 2255 SARS-CoV-2 cases); c) for TMA assays, the average sensitivity was 97.6% (95% CI 95.2% to 98.8%), and the average specificity was 99.4% (95% CI 94.9% to 99.9%; 14 evaluations, 2196 samples and 942 SARS-CoV-2 cases); d) for digital PCR assays, the average sensitivity was 98.5% (95% CI 95.2% to 99.5%), and the average specificity was 91.4% (95% CI 60.4% to 98.7%; five evaluations, 703 samples and 354 SARS-CoV-2 cases); e) for RT-LAMP assays omitting/adapting RNA extraction, the average sensitivity was 73.1% (95% CI 58.4% to 84%), and the average specificity was 100% (95% CI 98% to 100%; 24 evaluations, 14,342 samples and 1502 SARS-CoV-2 cases). Only two index test categories fulfil the WHO-acceptable sensitivity and specificity requirements for SARS-CoV-2 nucleic acid tests: RT-PCR assays designed to omit/adapt RNA extraction/purification and TMA assays. In addition, WHO-acceptable performance criteria were met for two assays out of 35 when tests were used according to manufacturer instructions. At 5% prevalence using a cohort of 1000 people suspected of SARS-CoV-2 infection, the positive predictive value of RT-PCR assays omitting/adapting RNA extraction/purification will be 94%, with three in 51 positive results being false positives, and around two missed cases. For TMA assays, the positive predictive value of RT-PCR assays will be 89%, with 6 in 55 positive results being false positives, and around one missed case. AUTHORS' CONCLUSIONS Alternative laboratory-based molecular tests aim to enhance testing capacity in different ways, such as reducing the time, steps and resources needed to obtain valid results. Several index test technologies with these potential advantages have not been evaluated or have been assessed by only a few studies of limited methodological quality, so the performance of these kits was undetermined. Only two index test categories with enough evaluations for meta-analysis fulfil the WHO set of acceptable accuracy standards for SARS-CoV-2 nucleic acid tests: RT-PCR assays designed to omit/adapt RNA extraction/purification and TMA assays. These assays might prove to be suitable alternatives to RT-PCR for identifying people infected by SARS-CoV-2, especially when the alternative would be not having access to testing. However, these findings need to be interpreted and used with caution because of several limitations in the evidence, including reliance on retrospective samples without information about the symptom status of participants and the timing of assessment. No extrapolation of found accuracy data for these two alternatives to any test brands using the same techniques can be made as, for both groups, one test brand with high accuracy was overrepresented with 21/26 and 12/14 included studies, respectively. Although we used a comprehensive search and had broad eligibility criteria to include a wide range of tests that could be alternatives to RT-PCR methods, further research is needed to assess the performance of alternative COVID-19 tests and their role in pandemic management.
Collapse
Affiliation(s)
- Ingrid Arevalo-Rodriguez
- Clinical Biostatistics Unit, Hospital Universitario Ramón y Cajal (IRYCIS). CIBER Epidemiology and Public Health (CIBERESP), Madrid, Spain
- Evidence Production & Methods Directorate, Cochrane, London, UK
| | - Miriam Mateos-Haro
- Clinical Biostatistics Unit, Hospital Universitario Ramón y Cajal (IRYCIS), Madrid, Spain
- Doctoral programme in Clinical Medicine and Public Health, Universidad de Granada, Granada, Spain
| | - Jacqueline Dinnes
- Department of Applied Health Sciences, School of Health Sciences, College of Medicine and Health, University of Birmingham, Birmingham, UK
- NIHR Birmingham Biomedical Research Centre, University Hospitals Birmingham NHS Foundation Trust and University of Birmingham, Birmingham, UK
| | - Agustín Ciapponi
- Argentine Cochrane Centre, Institute for Clinical Effectiveness and Health Policy (IECS-CONICET), Buenos Aires, Argentina
| | - Clare Davenport
- Department of Applied Health Sciences, School of Health Sciences, College of Medicine and Health, University of Birmingham, Birmingham, UK
- NIHR Birmingham Biomedical Research Centre, University Hospitals Birmingham NHS Foundation Trust and University of Birmingham, Birmingham, UK
| | - Diana Buitrago-Garcia
- Institute for Social and Preventive Medicine, University of Bern, Bern, Switzerland
- Hospital Universitario Mayor - Méderi. Universidad del Rosario, Bogotá, Colombia
| | - Tayeb Bennouna-Dalero
- Preventive Medicine and Public Health Department, Hospital Universitario Ramón y Cajal (IRYCIS), Madrid, Spain
| | - Marta Roqué-Figuls
- Iberoamerican Cochrane Centre, Institut de Recerca Sant Pau (IR SANT PAU), CIBER Epidemiología y Salud Pública (CIBERESP), Barcelona, Spain
| | | | - Karin J von Eije
- Department of Viroscience, ErasmusMC, University Medical Center, Rotterdam, Netherlands
| | | | - Lotty Hooft
- Cochrane Netherlands, Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - René Spijker
- Cochrane Netherlands, Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Mariska Mg Leeflang
- Department of Clinical Epidemiology, Biostatistics and Bioinformatics, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands
| | - Yemisi Takwoingi
- Department of Applied Health Sciences, School of Health Sciences, College of Medicine and Health, University of Birmingham, Birmingham, UK
- NIHR Birmingham Biomedical Research Centre, University Hospitals Birmingham NHS Foundation Trust and University of Birmingham, Birmingham, UK
| | - Jonathan J Deeks
- Department of Applied Health Sciences, School of Health Sciences, College of Medicine and Health, University of Birmingham, Birmingham, UK
- NIHR Birmingham Biomedical Research Centre, University Hospitals Birmingham NHS Foundation Trust and University of Birmingham, Birmingham, UK
| |
Collapse
|
2
|
Hayden MK, Hanson KE, Englund JA, Lee MJ, Loeb M, Lee F, Morgan DJ, Patel R, El Mikati IK, Iqneibi S, Alabed F, Amarin JZ, Mansour R, Patel P, Falck-Ytter Y, Morgan RL, Murad MH, Sultan S, Bhimraj A, Mustafa RA. The Infectious Diseases Society of America Guidelines on the Diagnosis of COVID-19: Molecular Diagnostic Testing (December 2023). Clin Infect Dis 2024; 78:e385-e415. [PMID: 38112284 DOI: 10.1093/cid/ciad646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Indexed: 12/21/2023] Open
Abstract
Accurate molecular diagnostic tests are necessary for confirming a diagnosis of coronavirus disease 2019 (COVID-19) and for identifying asymptomatic carriage of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The number of available SARS-CoV-2 nucleic acid detection tests continues to increase as does the COVID-19 diagnostic literature. Thus, the Infectious Diseases Society of America (IDSA) developed an evidence-based diagnostic guideline to assist clinicians, clinical laboratorians, patients, and policymakers in decisions related to the optimal use of SARS-CoV-2 nucleic acid amplification tests. In addition, we provide a conceptual framework for understanding molecular diagnostic test performance, discuss nuances of test result interpretation in a variety of practice settings, and highlight important unmet research needs related to COVID-19 diagnostic testing. IDSA convened a multidisciplinary panel of infectious diseases clinicians, clinical microbiologists, and experts in systematic literature review to identify and prioritize clinical questions and outcomes related to the use of SARS-CoV-2 molecular diagnostics. Grading of Recommendations Assessment, Development and Evaluation (GRADE) methodology was used to assess the certainty of evidence and make testing recommendations. The panel agreed on 12 diagnostic recommendations. Access to accurate SARS-CoV-2 nucleic acid testing is critical for patient care, hospital infection prevention, and the public health response to COVID-19 infection. Information on the clinical performance of available tests continues to grow, but the quality of evidence of the current literature to support this updated molecular diagnostic guideline remains moderate to very low. Recognizing these limitations, the IDSA panel weighed available diagnostic evidence and recommends nucleic acid testing for all symptomatic individuals suspected of having COVID-19. In addition, testing is suggested for asymptomatic individuals with known or suspected contact with a COVID-19 case when the results will impact isolation/quarantine/personal protective equipment (PPE) usage decisions. Evidence in support of rapid testing and testing of upper respiratory specimens other than nasopharyngeal swabs, which offer logistical advantages, is sufficient to warrant conditional recommendations in favor of these approaches.
Collapse
Affiliation(s)
- Mary K Hayden
- Division of Infectious Diseases, Department of Medicine, Rush University Medical Center, Chicago, Illinois, USA
- Department of Pathology, Rush University Medical Center, Chicago, Illinois, USA
| | - Kimberly E Hanson
- Divisions of Infectious Diseases and Clinical Microbiology, University of Utah, Salt Lake City, Utah, USA
| | - Janet A Englund
- Department of Pediatrics, University of Washington, Seattle Children's Research Institute, Seattle, Washington, USA
| | - Mark J Lee
- Department of Pathology and Clinical Microbiology Laboratory, Duke University School of Medicine, Durham, North Carolina, USA
| | - Mark Loeb
- Division of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Francesca Lee
- Departments of Pathology and Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Daniel J Morgan
- Department of Epidemiology and Public Health, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Robin Patel
- Division of Clinical Microbiology and Division of Public Health, Infectious Diseases, and Occupational Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Ibrahim K El Mikati
- Outcomes and Implementation Research Unit, Department of Internal Medicine, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Shahad Iqneibi
- Faculty of Medicine, University of Jordan, Amman, Jordan
| | - Farouk Alabed
- School of Medicine, The University of Kansas, Kansas City, Kansas, USA
| | - Justin Z Amarin
- Division of Pediatric Infectious Diseases, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Razan Mansour
- Department of Internal Medicine, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Payal Patel
- Department of Pulmonary, Allergy, Critical Care, and Sleep Medicine and Department of Medicine, Emory University, Atlanta, Georgia, USA
| | - Yngve Falck-Ytter
- Department of Medicine, Case Western Reserve University, School of Medicine, Cleveland, Ohio, USA
| | - Rebecca L Morgan
- Department of Health Research Methods, Evidence and Impact, McMaster University, Hamilton, Ontario, Canada
| | - M Hassan Murad
- Division of Public Health, Infectious Diseases and Occupational Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Shahnaz Sultan
- Division of Gastroenterology, Hepatology, and Nutrition, University of Minnesota, Minneapolis VA Healthcare System, Minneapolis, Minnesota, USA
| | - Adarsh Bhimraj
- Houston Methodist Hospital, Center of Excellence for Infectious Diseases, Houston Methodist Research Institute, Houston, Texas, USA
| | - Reem A Mustafa
- Division of Nephrology and Hypertension, Department of Internal Medicine, University of Kansas Medical Center, Kansas City, Kansas, USA
| |
Collapse
|