1
|
Nguyen MK, Lin C, Nguyen HL, Hung NTQ, La DD, Nguyen XH, Chang SW, Chung WJ, Nguyen DD. Occurrence, fate, and potential risk of pharmaceutical pollutants in agriculture: Challenges and environmentally friendly solutions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 899:165323. [PMID: 37422238 DOI: 10.1016/j.scitotenv.2023.165323] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 06/26/2023] [Accepted: 07/02/2023] [Indexed: 07/10/2023]
Abstract
In recent years, pharmaceutical active compounds (PhACs) have attained global prevalence. The behavior of PhACs in agricultural soils is complex and depends on several factors, such as the nature of the compounds and their physicochemical characteristics, which affect their fate and potential threats to human health, ecosystems, and the environment. The detection of residual pharmaceutical content is possible in both agricultural soils and environmental matrices. PhACs are commonly found in agricultural soil, with concentrations varying significantly, ranging from as low as 0.048 ng g-1 to as high as 1420.76 mg kg-1. The distribution and persistence of PhACs in agriculture can lead to the leaching of these toxic pollutants into surface water, groundwater, and vegetables/plants, resulting in human health risks and environmental pollution. Biological degradation or bioremediation plays a critical role in environmental protection and efficiently eliminates contamination by hydrolytic and/or photochemical reactions. Membrane bioreactors (MBRs) have been investigated as the most recent approach for the treatment of emerging persistent micropollutants, including PhACs, from wastewater sources. MBR- based technologies have proven to be effective in eliminating pharmaceutical compounds, achieving removal rates of up to 100%. This remarkable outcome is primarily facilitated by the processes of biodegradation and metabolization. In addition, phytoremediation (i.e., constructed wetlands), microalgae-based technologies, and composting can be highly efficient in remediating PhACs in the environment. The exploration of key mechanisms involved in pharmaceutical degradation has revealed a range of approaches, such as phytoextraction, phytostabilization, phytoaccumulation, enhanced rhizosphere biodegradation, and phytovolatilization. The well-known advanced/tertiary removal of sustainable sorption by biochar, activated carbon, chitosan, etc. has high potential and yields excellent quality effluents. Adsorbents developed from agricultural by-products have been recognized to eliminate pharmaceutical compounds and are cost-effective and eco-friendly. However, to reduce the potentially harmful impacts of PhACs, it is necessary to focus on advanced technologies combined with tertiary processes that have low cost, high efficiency, and are energy-saving to remove these emerging pollutants for sustainable development.
Collapse
Affiliation(s)
- Minh-Ky Nguyen
- Ph.D. Program in Maritime Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung 81157, Taiwan; Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung 81157, Taiwan; Faculty of Environment and Natural Resources, Nong Lam University, Hamlet 6, Linh Trung Ward, Thu Duc Dist., Ho Chi Minh City 700000, Viet Nam
| | - Chitsan Lin
- Ph.D. Program in Maritime Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung 81157, Taiwan; Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung 81157, Taiwan.
| | - Hoang-Lam Nguyen
- Department of Civil Engineering, McGill University, Montreal, Canada
| | - Nguyen Tri Quang Hung
- Faculty of Environment and Natural Resources, Nong Lam University, Hamlet 6, Linh Trung Ward, Thu Duc Dist., Ho Chi Minh City 700000, Viet Nam
| | - D Duong La
- Institute of Chemistry and Materials, Nghia Do, Cau Giay, Hanoi, Viet Nam
| | - X Hoan Nguyen
- Ho Chi Minh City University of Industry and Trade, Ho Chi Minh City, Viet Nam
| | - S Woong Chang
- Department of Civil & Energy System Engineering, Kyonggi University, Suwon 16227, South Korea
| | - W Jin Chung
- Department of Civil & Energy System Engineering, Kyonggi University, Suwon 16227, South Korea
| | - D Duc Nguyen
- Department of Civil & Energy System Engineering, Kyonggi University, Suwon 16227, South Korea; Faculty of Environmental and Food Engineering, Nguyen Tat Thanh University, 300A Nguyen Tat Thanh, District 4, HCM City 755414, Viet Nam.
| |
Collapse
|
2
|
Amobonye A, Aruwa CE, Aransiola S, Omame J, Alabi TD, Lalung J. The potential of fungi in the bioremediation of pharmaceutically active compounds: a comprehensive review. Front Microbiol 2023; 14:1207792. [PMID: 37502403 PMCID: PMC10369004 DOI: 10.3389/fmicb.2023.1207792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 06/12/2023] [Indexed: 07/29/2023] Open
Abstract
The ability of fungal species to produce a wide range of enzymes and metabolites, which act synergistically, makes them valuable tools in bioremediation, especially in the removal of pharmaceutically active compounds (PhACs) from contaminated environments. PhACs are compounds that have been specifically designed to treat or alter animal physiological conditions and they include antibiotics, analgesics, hormones, and steroids. Their detrimental effects on all life forms have become a source of public outcry due their persistent nature and their uncontrolled discharge into various wastewater effluents, hospital effluents, and surface waters. Studies have however shown that fungi have the necessary metabolic machinery to degrade PhACs in complex environments, such as soil and water, in addition they can be utilized in bioreactor systems to remove PhACs. In this regard, this review highlights fungal species with immense potential in the biodegradation of PhACs, their enzymatic arsenal as well as the probable mechanism of biodegradation. The challenges encumbering the real-time application of this promising bioremediative approach are also highlighted, as well as the areas of improvement and future perspective. In all, this paper points researchers to the fact that fungal bioremediation is a promising strategy for addressing the growing issue of pharmaceutical contamination in the environment and can help to mitigate the negative impacts on ecosystems and human health.
Collapse
Affiliation(s)
- Ayodeji Amobonye
- School of Industrial Technology, Universiti Sains Malaysia, Penang, Malaysia
| | - Christiana E. Aruwa
- Department of Biotechnology and Food Science, Faculty of Applied Sciences, Durban University of Technology, Durban, South Africa
| | - Sesan Aransiola
- Bioresources Development Centre, National Biotechnology Development Agency, P.M.B. Onipanu, Ogbomosho, Nigeria
| | - John Omame
- National Environmental Standards and Regulations Enforcement Agency, Lagos Field Office, Lagos, Nigeria
| | - Toyin D. Alabi
- Department of Life Sciences, Baze University, Abuja, Nigeria
| | - Japareng Lalung
- School of Industrial Technology, Universiti Sains Malaysia, Penang, Malaysia
- Centre for Global Sustainability Studies, Universiti Sains Malaysia, Penang, Malaysia
| |
Collapse
|
3
|
Kasonga TK, Kamika I, Ngole-Jeme VM. Ligninolytic enzyme activity and removal efficiency of pharmaceuticals in a water matrix by fungus Rhizopus sp. Isolated from cassava. ENVIRONMENTAL TECHNOLOGY 2023; 44:2157-2170. [PMID: 35018877 DOI: 10.1080/09593330.2021.2024885] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Accepted: 12/15/2021] [Indexed: 05/30/2023]
Abstract
Residual amounts of pharmaceutical compounds (PhCs) and by-products are continually released into surface water with effluents from conventional wastewater treatment plants (WWTPs). This study evaluated the ability of fungal isolate to remove selected PhCs [carbamazepine (CBZ), diclofenac (DCF) and ibuprofen (IBP)] from wastewater. The fungus used was Rhizopus sp. which was isolated from tuberous roots of cassava (Manihot esculenta). The isolate exhibited an important removal efficiency up to 100% and this was linked to ligninolytic enzymatic activity for lignin peroxidase (15.29 ± 2.69U/L) and manganese peroxidase (85.22 ± 4.26U/L), except laccase. This activity was optimum on day 9 of treatment. PhC metabolites were identified during the experiment revealing the existence of a biotransformation process catalysed by the isolated fungus. The disappearance of PhCs was attributed to their biosorption and biotransformation. However, it was not possible to establish a relationship between the ligninolytic enzymatic activity and the removal efficiency, which leads to the conclusion that there are other fungal metabolites which also play an important role in the biotransformation and biodegradation of the selected PhCs.
Collapse
Affiliation(s)
- Teddy Kabeya Kasonga
- Department of Environmental Sciences, School of Environmental Science, College of Agriculture and Environmental Sciences, Faculty of Sciences, University of South Africa, Roodepoort, South Africa
| | - Ilunga Kamika
- Institute for Nanotechnology and Water Sustainability; School of Science; College of Science, Engineering and Technology, University of South Africa, Roodepoort, South Africa
| | - Veronica M Ngole-Jeme
- Department of Environmental Sciences, School of Environmental Science, College of Agriculture and Environmental Sciences, Faculty of Sciences, University of South Africa, Roodepoort, South Africa
| |
Collapse
|
4
|
Kasonga TK, Coetzee MAA, Kamika I, Momba MNB. Assessing a co-culture fungal granule ability to remove pharmaceuticals in a sequencing batch reactor. ENVIRONMENTAL TECHNOLOGY 2022; 43:1684-1699. [PMID: 33151811 DOI: 10.1080/09593330.2020.1847204] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Accepted: 10/29/2020] [Indexed: 06/11/2023]
Abstract
Biodegradation of carbamazepine (CBZ), diclofenac sodium (DCF) and ibuprofen (IBP) was evaluated through fungal granules development in a sequencing batch reactor (SBR). Fungal granules were developed in co-culture of T. polyzona, A. niger, T. longibrachiatum, M. circinelloides and R. microsporus at a retention time (RT) of 2 days and 1 day. Ligninolytic enzymes [laccase (Lac), lignin peroxidase (LiP) and manganese peroxidase (MnP)] were determined. Removal of pharmaceuticals was assessed and metabolites identified using the SPE-UPLC-QToF/MS methods. A pH range of 3-4.6 was found to improve the granulation development from day 6 and the production of ligninolytic enzymes [MnP (253.00 ± 14.19 U/L), Lac (111.58 ± 10.00 U/L) and LiP (95.25 ± 8.22 U/L)]. At steady-state, a removal of 97.41±0.25%, 99.83±0.14%, and 99.91±0.08 were achieved at an RT of 2 days for CBZ, DCF, and IBP, respectively, and of 91.94±0.05%, 99.31±0.12% and 97.72±0.23% at an RT of 1 days for the same PhCs. A variety of chemical reactions have been proposed for degradation pathways catalysed by enzyme-producing fungi, generating fragment ions of intermediate compounds. This study is highly relevant for cost-effective and environmentally friendly wastewater treatment processes in water scare countries.
Collapse
Affiliation(s)
- Teddy Kabeya Kasonga
- Department of Environmental, Water and Earth Sciences, Faculty of Sciences, Tshwane University of Technology, Pretoria, South Africa
| | - Martie A A Coetzee
- Department of Environmental, Water and Earth Sciences, Faculty of Sciences, Tshwane University of Technology, Pretoria, South Africa
| | - Ilunga Kamika
- Nanotechnology and Water Sustainability Research Unit; School of Science; College of Science, Engineering and Technology, University of South Africa, Roodepoort, South Africa
| | - Maggy Ndombo Benteke Momba
- Department of Environmental, Water and Earth Sciences, Faculty of Sciences, Tshwane University of Technology, Pretoria, South Africa
| |
Collapse
|
5
|
Kasonga TK, Coetzee MAA, Kamika I, Ngole-Jeme VM, Benteke Momba MN. Endocrine-disruptive chemicals as contaminants of emerging concern in wastewater and surface water: A review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 277:111485. [PMID: 33049614 DOI: 10.1016/j.jenvman.2020.111485] [Citation(s) in RCA: 101] [Impact Index Per Article: 33.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 09/07/2020] [Accepted: 10/02/2020] [Indexed: 06/11/2023]
Abstract
Population growth followed by rapid development of industrialisation has caused serious environmental pollution with contaminants of emerging concern found in wastewater and surface water. As one of the most important resources for human survival, water is daily polluted by endocrine-disruptive chemicals (EDCs) including pharmaceuticals and personal care products, organic pollutants and heavy metals. Even at low concentrations in water bodies, chronic exposure to EDCs can cause adverse effects on human and environment health. The main concern with EDCs is the diseases they can generate in humans or wildlife by affecting the function of hormones in the body. Problems in the reproductive system, thyroid problems, Alzheimer's, cancer and obesity are some of the major effects of EDCs in humans. In wildlife, the reproductive system may be affected, including its levels of hatchability and vitellogenin. The efforts of the present review are on emphasising on the environmental concern on the occurrence and risk assessment of EDCs, their harmful effects in the ecosystem, human life, and wildlife, as a result of their incomplete removal from wastewater treatment plants. The review focuses on studies conducted in South Africa highlights the use of fungal bioreactors as a low-cost and eco-effective environmentally friendly wastewater treatment processes.
Collapse
Affiliation(s)
- Teddy Kabeya Kasonga
- Department of Environmental Sciences, School of Environmental Science, College of Agriculture and Environmental Sciences, Faculty of Sciences, Florida Campus, University of South Africa, Florida, Roodepoort, 1710, South Africa.
| | - Martie A A Coetzee
- Department of Environmental, Water and Earth Sciences, Faculty of Sciences, Tshwane University of Technology, P/B X 680, Pretoria, 0001, South Africa
| | - Ilunga Kamika
- Nanotechnology and Water Sustainability Research Unit; School of Science; College of Science, Engineering and Technology, Florida Campus, University of South Africa, P.O Box 392, Florida, Roodepoort, 1710, South Africa
| | - Veronica M Ngole-Jeme
- Department of Environmental Sciences, School of Environmental Science, College of Agriculture and Environmental Sciences, Faculty of Sciences, Florida Campus, University of South Africa, Florida, Roodepoort, 1710, South Africa
| | - Maggy Ndombo Benteke Momba
- Department of Environmental, Water and Earth Sciences, Faculty of Sciences, Tshwane University of Technology, P/B X 680, Pretoria, 0001, South Africa
| |
Collapse
|