1
|
Fan Y, Jin L, He Z, Wei T, Luo T, Zhang J, Liu C, Dai C, A C, Liang Y, Tao X, Lv X, Gu Y, Li M. A cell transcriptomic profile provides insights into adipocytes of porcine mammary gland across development. J Anim Sci Biotechnol 2023; 14:126. [PMID: 37805503 PMCID: PMC10560433 DOI: 10.1186/s40104-023-00926-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 08/03/2023] [Indexed: 10/09/2023] Open
Abstract
BACKGROUND Studying the composition and developmental mechanisms in mammary gland is crucial for healthy growth of newborns. The mammary gland is inherently heterogeneous, and its physiological function dependents on the gene expression of multiple cell types. Most studies focused on epithelial cells, disregarding the role of neighboring adipocytes. RESULTS Here, we constructed the largest transcriptomic dataset of porcine mammary gland cells thus far. The dataset captured 126,829 high-quality nuclei from physiological mammary glands across five developmental stages (d 90 of gestation, G90; d 0 after lactation, L0; d 20 after lactation, L20; 2 d post natural involution, PI2; 7 d post natural involution, PI7). Seven cell types were identified, including epithelial cells, adipocytes, endothelial cells, fibroblasts cells, immune cells, myoepithelial cells and precursor cells. Our data indicate that mammary glands at different developmental stages have distinct phenotypic and transcriptional signatures. During late gestation (G90), the differentiation and proliferation of adipocytes were inhibited. Meanwhile, partly epithelial cells were completely differentiated. Pseudo-time analysis showed that epithelial cells undergo three stages to achieve lactation, including cellular differentiation, hormone sensing, and metabolic activation. During lactation (L0 and L20), adipocytes area accounts for less than 0.5% of mammary glands. To maintain their own survival, the adipocyte exhibited a poorly differentiated state and a proliferative capacity. Epithelial cells initiate lactation upon hormonal stimulation. After fulfilling lactation mission, their undergo physiological death under high intensity lactation. Interestingly, the physiological dead cells seem to be actively cleared by immune cells via CCL21-ACKR4 pathway. This biological process may be an important mechanism for maintaining homeostasis of the mammary gland. During natural involution (PI2 and PI7), epithelial cell populations dedifferentiate into mesenchymal stem cells to maintain the lactation potential of mammary glands for the next lactation cycle. CONCLUSION The molecular mechanisms of dedifferentiation, proliferation and redifferentiation of adipocytes and epithelial cells were revealed from late pregnancy to natural involution. This cell transcriptomic profile constitutes an essential reference for future studies in the development and remodeling of the mammary gland at different stages.
Collapse
Affiliation(s)
- Yongliang Fan
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130 China
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Southwest Minzu University, Chengdu, 610041 China
| | - Long Jin
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130 China
| | - Zhiping He
- Animal Breeding and Genetics Key Laboratory of Sichuan Province, Sichuan Animal Science Academy, Chengdu, 610000 China
| | - Tiantian Wei
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130 China
| | - Tingting Luo
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130 China
| | - Jiaman Zhang
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130 China
| | - Can Liu
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130 China
| | - Changjiu Dai
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130 China
| | - Chao A
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130 China
| | - Yan Liang
- Animal Breeding and Genetics Key Laboratory of Sichuan Province, Sichuan Animal Science Academy, Chengdu, 610000 China
| | - Xuan Tao
- Animal Breeding and Genetics Key Laboratory of Sichuan Province, Sichuan Animal Science Academy, Chengdu, 610000 China
| | - Xuebin Lv
- Animal Breeding and Genetics Key Laboratory of Sichuan Province, Sichuan Animal Science Academy, Chengdu, 610000 China
| | - Yiren Gu
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Southwest Minzu University, Chengdu, 610041 China
- Animal Breeding and Genetics Key Laboratory of Sichuan Province, Sichuan Animal Science Academy, Chengdu, 610000 China
| | - Mingzhou Li
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130 China
| |
Collapse
|
2
|
Qiu-Yue X, Tian-Yuan Y, Xiao-Long W, Dong-Mei Q, Xiao-Rui C. Effects of Metformin on Modulating the Expression of Brain-related Genes of APP/PS1 Transgenic Mice based on Single Cell Sequencing. Curr Alzheimer Res 2022; 19:754-771. [PMID: 36464874 DOI: 10.2174/1567205020666221201143323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 10/26/2022] [Accepted: 11/12/2022] [Indexed: 12/07/2022]
Abstract
BACKGROUND Alzheimer's disease is the most common form of dementia, affecting millions of people worldwide. METHODS Here, we analyzed the effects of metformin on APP/PS1 transgenic mice by behavioral test and single-cell sequencing. RESULTS It showed that metformin can improve the spatial learning, memory function, and anxiety mood of APP/PS1 transgenic mice. We identified transcriptionally distinct subpopulations of nine major brain cell types. Metformin increased the differentiation of stem cells, decreased the proportion of cells in the G2 phase, enhanced the generation of neural stem cells and oligodendrocyte progenitor cells, and the tendency of neural stem cells to differentiate into astrocytes. Notably, 253 genes expressed abnormally in APP/PS1 transgenic mice and were reversed by metformin. Ttr, Uba52, and Rps21 are the top 3 genes in the cell-gene network with the highest node degree. Moreover, histochemistry showed the expressions of RPS15, Uba52, and RPL23a were consistent with the data from single-cell sequencing. Pathway and biological process enrichment analysis indicated metformin was involved in nervous system development and negative regulation of the apoptotic process. CONCLUSION Overall, metformin might play an important role in the differentiation and development and apoptotic process of the central nervous system by regulating the expression of Ttr, Uba52, Rps21, and other genes to improve cognition of APP/PS1 transgenic mice. These results provided a clue for elaborating on the molecular and cellular basis of metformin on AD.
Collapse
Affiliation(s)
- Xiao Qiu-Yue
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Ye Tian-Yuan
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Wang Xiao-Long
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Qi Dong-Mei
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Cheng Xiao-Rui
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| |
Collapse
|
3
|
Dinh TTH, Iseki H, Mizuno S, Iijima-Mizuno S, Tanimoto Y, Daitoku Y, Kato K, Hamada Y, Hasan ASH, Suzuki H, Murata K, Muratani M, Ema M, Kim JD, Ishida J, Fukamizu A, Kato M, Takahashi S, Yagami KI, Wilson V, Arkell RM, Sugiyama F. Disruption of entire Cables2 locus leads to embryonic lethality by diminished Rps21 gene expression and enhanced p53 pathway. eLife 2021; 10:50346. [PMID: 33949947 PMCID: PMC8099427 DOI: 10.7554/elife.50346] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 04/19/2021] [Indexed: 11/25/2022] Open
Abstract
In vivo function of CDK5 and Abl enzyme substrate 2 (Cables2), belonging to the Cables protein family, is unknown. Here, we found that targeted disruption of the entire Cables2 locus (Cables2d) caused growth retardation and enhanced apoptosis at the gastrulation stage and then induced embryonic lethality in mice. Comparative transcriptome analysis revealed disruption of Cables2, 50% down-regulation of Rps21 abutting on the Cables2 locus, and up-regulation of p53-target genes in Cables2d gastrulas. We further revealed the lethality phenotype in Rps21-deleted mice and unexpectedly, the exon 1-deleted Cables2 mice survived. Interestingly, chimeric mice derived from Cables2d ESCs carrying exogenous Cables2 and tetraploid wild-type embryo overcame gastrulation. These results suggest that the diminished expression of Rps21 and the completed lack of Cables2 expression are intricately involved in the embryonic lethality via the p53 pathway. This study sheds light on the importance of Cables2 locus in mouse embryonic development.
Collapse
Affiliation(s)
- Tra Thi Huong Dinh
- Laboratory Animal Resource Center, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan.,Ph.D. Program in Human Biology, School of Integrative and Global Majors (SIGMA), University of Tsukuba, Tsukuba, Japan.,Department of Traditional Medicine, University of Medicine and Pharmacy, Ho Chi Minh City, Viet Nam.,Transborder Medical Research Center, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Hiroyoshi Iseki
- Laboratory Animal Resource Center, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan.,International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Japan
| | - Seiya Mizuno
- Laboratory Animal Resource Center, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan.,Transborder Medical Research Center, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Saori Iijima-Mizuno
- Laboratory Animal Resource Center, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan.,Experimental Animal Division, RIKEN BioResource Research Center, Tsukuba, Japan
| | - Yoko Tanimoto
- Laboratory Animal Resource Center, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Yoko Daitoku
- Laboratory Animal Resource Center, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Kanako Kato
- Laboratory Animal Resource Center, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Yuko Hamada
- Laboratory Animal Resource Center, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Ammar Shaker Hamed Hasan
- Laboratory Animal Resource Center, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan.,Doctor's Program in Biomedical Sciences, Graduate School of Comprehensive Human Science, University of Tsukuba, Tsukuba, Japan
| | - Hayate Suzuki
- Laboratory Animal Resource Center, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan.,Doctor's Program in Biomedical Sciences, Graduate School of Comprehensive Human Science, University of Tsukuba, Tsukuba, Japan
| | - Kazuya Murata
- Laboratory Animal Resource Center, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan.,Transborder Medical Research Center, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Masafumi Muratani
- Transborder Medical Research Center, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan.,Department of Genome Biology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Masatsugu Ema
- Department of Stem Cells and Human Disease Models, Research Center for Animal Life Science, Shiga University of Medical Science, Otsu, Japan.,Institute for the Advanced Study of Human Biology (WPI-ASHBi), Kyoto University, Kyoto, Japan
| | - Jun-Dal Kim
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, Tsukuba, Japan.,Division of Complex Bioscience Research, Department of Research and Development, Institute of National Medicine, University of Toyama, Toyama, Japan
| | - Junji Ishida
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, Tsukuba, Japan
| | - Akiyoshi Fukamizu
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, Tsukuba, Japan
| | - Mitsuyasu Kato
- Transborder Medical Research Center, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan.,Department of Experimental Pathology, Faculty of. Medicine, University of Tsukuba, Tsukuba, Japan
| | - Satoru Takahashi
- Laboratory Animal Resource Center, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan.,Transborder Medical Research Center, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Ken-Ichi Yagami
- Laboratory Animal Resource Center, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Valerie Wilson
- MRC Centre for Regenerative Medicine, School of Biological Sciences, SCRM Building, The University of Edinburgh, Edinburgh, United Kingdom
| | - Ruth M Arkell
- John Curtin School of Medical Research, The Australian National University, Canberra, Australia
| | - Fumihiro Sugiyama
- Laboratory Animal Resource Center, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan.,Transborder Medical Research Center, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| |
Collapse
|
4
|
Cathelicidins Mitigate Staphylococcus aureus Mastitis and Reduce Bacterial Invasion in Murine Mammary Epithelium. Infect Immun 2020; 88:IAI.00230-20. [PMID: 32341117 DOI: 10.1128/iai.00230-20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 04/17/2020] [Indexed: 01/27/2023] Open
Abstract
Staphylococcus aureus, an important cause of mastitis in mammals, is becoming increasingly problematic due to the development of resistance to conventional antibiotics. The ability of S. aureus to invade host cells is key to its propensity to evade immune defense and antibiotics. This study focuses on the functions of cathelicidins, small cationic peptides secreted by epithelial cells and leukocytes, in the pathogenesis of S. aureus mastitis in mice. We determined that endogenous murine cathelicidin (CRAMP; Camp) was important in controlling S. aureus infection, as cathelicidin knockout mice (Camp-/- ) intramammarily challenged with S. aureus had higher bacterial burdens and more severe mastitis than did wild-type mice. The exogenous administration of both a synthetic human cathelicidin (LL-37) and a synthetic murine cathelicidin (CRAMP) (8 μM) reduced the invasion of S. aureus into the murine mammary epithelium. Additionally, this exogenous LL-37 was internalized into cultured mammary epithelial cells and impaired S. aureus growth in vitro We conclude that cathelicidins may be potential therapeutic agents against mastitis; both endogenous and exogenous cathelicidins conferred protection against S. aureus infection by reducing bacterial internalization and potentially by directly killing this pathogen.
Collapse
|
5
|
Xu H, Zhao L, Feng X, Ma Y, Chen W, Zou L, Yang Q, Sun J, Yu H, Jiao B. Landscape of genomic imprinting and its functions in the mouse mammary gland. J Mol Cell Biol 2020; 12:857-869. [PMID: 32369566 PMCID: PMC7883822 DOI: 10.1093/jmcb/mjaa020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Revised: 04/12/2020] [Accepted: 04/20/2020] [Indexed: 11/17/2022] Open
Abstract
Genomic imprinting is an epigenetic modification of DNA, whereby gene expression is restricted to either maternally or paternally inherited alleles. Imprinted genes (IGs) in the placenta and embryo are essential for growth regulation and nutrient supply. However, despite being an important nutrition delivery organ, studies on mammary gland genomic imprinting remain limited. In this study, we found that both the number of IGs and their expression levels decreased during development of the mouse mammary gland. IG expression was lineage-specific and related to mammary gland development and lactation. Meta-analysis of single-cell RNA sequencing data revealed that mammary gland IGs were co-expressed in a network that regulated cell stemness and differentiation, which was confirmed by our functional studies. Accordingly, our data indicated that IGs were essential for the self-renewal of mammary gland stem cells and IG decline was correlated with mammary gland maturity. Taken together, our findings revealed the importance of IGs in a poorly studied nutrition-related organ, i.e. the mammary gland, thus providing a reference for further studies on genomic imprinting.
Collapse
Affiliation(s)
- Haibo Xu
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming 650223, China
| | - Lina Zhao
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming 650223, China
| | - Xu Feng
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
| | - Yujie Ma
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
| | - Wei Chen
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
| | - Li Zou
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
| | - Qin Yang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
| | - Jihong Sun
- Department of Radiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China
| | - Hong Yu
- Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China
| | - Baowei Jiao
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
- KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming 650223, China
| |
Collapse
|
6
|
Wu C, Selberg J, Nguyen B, Pansodtee P, Jia M, Dechiraju H, Teodorescu M, Rolandi M. A Microfluidic Ion Sensor Array. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e1906436. [PMID: 31965738 DOI: 10.1002/smll.201906436] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 12/16/2019] [Indexed: 06/10/2023]
Abstract
A balanced concentration of ions is essential for biological processes to occur. For example, [H+ ] gradients power adenosine triphosphate synthesis, dynamic changes in [K+ ] and [Na+ ] create action potentials in neuronal communication, and [Cl- ] contributes to maintaining appropriate cell membrane voltage. Sensing ionic concentration is thus important for monitoring and regulating many biological processes. This work demonstrates an ion-selective microelectrode array that simultaneously and independently senses [K+ ], [Na+ ], and [Cl- ] in electrolyte solutions. To obtain ion specificity, the required ion-selective membranes are patterned using microfluidics. As a proof of concept, the change in ionic concentration is monitored during cell proliferation in a cell culture medium. This microelectrode array can easily be integrated in lab-on-a-chip approaches to physiology and biological research and applications.
Collapse
Affiliation(s)
- Chunxiao Wu
- Department of Electrical and Computer Engineering, University of California, 1156 High St, Santa Cruz, CA, 95064, USA
| | - John Selberg
- Department of Electrical and Computer Engineering, University of California, 1156 High St, Santa Cruz, CA, 95064, USA
| | - Brian Nguyen
- Department of Electrical and Computer Engineering, University of California, 1156 High St, Santa Cruz, CA, 95064, USA
| | - Pattawong Pansodtee
- Department of Electrical and Computer Engineering, University of California, 1156 High St, Santa Cruz, CA, 95064, USA
| | - Manping Jia
- Department of Electrical and Computer Engineering, University of California, 1156 High St, Santa Cruz, CA, 95064, USA
| | - Harika Dechiraju
- Department of Electrical and Computer Engineering, University of California, 1156 High St, Santa Cruz, CA, 95064, USA
| | - Mircea Teodorescu
- Department of Electrical and Computer Engineering, University of California, 1156 High St, Santa Cruz, CA, 95064, USA
| | - Marco Rolandi
- Department of Electrical and Computer Engineering, University of California, 1156 High St, Santa Cruz, CA, 95064, USA
| |
Collapse
|
7
|
Comprehensive profiling of transcriptional networks specific for lactogenic differentiation of HC11 mammary epithelial stem-like cells. Sci Rep 2018; 8:11777. [PMID: 30082875 PMCID: PMC6079013 DOI: 10.1038/s41598-018-30122-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Accepted: 07/13/2018] [Indexed: 12/31/2022] Open
Abstract
The development of mammary gland as a lactogenic tissue is a highly coordinated multistep process. The epithelial cells of lactiferous tubules undergo profound changes during the developmental window of puberty, pregnancy, and lactation. Several hormones including estrogen, progesterone, glucocorticoids and prolactin act in concert, and orchestrate the development of mammary gland. Understanding the gene regulatory networks that coordinate proliferation and differentiation of HC11 Mammary Epithelial stem-like Cells (MEC) under the influence of lactogenic hormones is critical for elucidating the mechanism of lactogenesis in detail. In this study, we analyzed transcriptome profiles of undifferentiated MEC (normal) and compared them with Murine Embryonic Stem Cells (ESC) using next-generation mRNA sequencing. Further, we analyzed the transcriptome output during lactogenic differentiation of MEC following treatment with glucocorticoids (primed state) and both glucocorticoids and prolactin together (prolactin state). We established stage-specific gene regulatory networks in ESC and MEC (normal, priming and prolactin states). We validated the top up-and downregulated genes in each stage of differentiation of MEC by RT-PCR and found that they are comparable with that of RNA-seq data. HC11 MEC display decreased expression of Pou5f1 and Sox2, which is crucial for the differentiation of MEC, which otherwise ensure pluripotency to ESC. Cited4 is induced during priming and is involved in milk secretion. MEC upon exposure to both glucocorticoids and prolactin undergo terminal differentiation, which is associated with the expression of several genes, including Xbp1 and Cbp that are required for cell growth and differentiation. Our study also identified differential expression of transcription factors and epigenetic regulators in each stage of lactogenic differentiation. We also analyzed the transcriptome data for the pathways that are selectively activated during lactogenic differentiation. Further, we found that selective expression of chromatin modulators (Dnmt3l, Chd9) in response to glucocorticoids suggests a highly coordinated stage-specific lactogenic differentiation of MEC.
Collapse
|
8
|
Sornapudi TR, Nayak R, Guthikonda PK, Kethavath S, Yellaboina S, Kurukuti S. RNA sequencing of murine mammary epithelial stem-like cells (HC11) undergoing lactogenic differentiation and its comparison with embryonic stem cells. BMC Res Notes 2018; 11:241. [PMID: 29642945 PMCID: PMC5896049 DOI: 10.1186/s13104-018-3351-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 04/06/2018] [Indexed: 11/10/2022] Open
Abstract
OBJECTIVES Understanding of transcriptional networks specifying HC11 murine mammary epithelial stem cell-like cells (MEC) in comparison with embryonic stem cells (ESCs) and their rewiring, under the influence of glucocorticoids (GC) and prolactin (PRL) hormones, is critical for elucidating the mechanism of lactogenesis. In this data note, we provide RNA sequencing data from murine MECs and ESCs, MECs treated with steroid hormone alone and in combination with PRL. This data could help in understanding temporal dynamics of mRNA transcription that impact the process of lactogenesis associated with mammary gland development. Further integration of these data sets with existing datasets of cells derived from various stages of mammary gland development and different types of breast tumors, should pave the way for effective prognosis and to develop therapies for breast cancer. DATA DESCRIPTION We have generated RNA-sequencing data representing steady-state levels of mRNAs from murine ESCs, normal MECs (N), MECs primed (P) with hydrocortisone (HC) alone and in combination with PRL hormone by using Illumina sequencing platform. We have generated ~ 58 million reads for ESCs with an average length of ~ 100 nt and an average 115 million good quality mapped reads with an average length of ~ 150 nt for different stages of MECs differentiation.
Collapse
Affiliation(s)
- Trinadha Rao Sornapudi
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, Gachibowli, Hyderabad, 500046, India
| | - Rakhee Nayak
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, Gachibowli, Hyderabad, 500046, India
| | - Prashanth Kumar Guthikonda
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, Gachibowli, Hyderabad, 500046, India
| | - Srinivas Kethavath
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, Gachibowli, Hyderabad, 500046, India
| | - Sailu Yellaboina
- CR Rao Advanced Institute of Mathematics, Statistics and Computer Sciences, University of Hyderabad Campus, Hyderabad, 500046, India
| | - Sreenivasulu Kurukuti
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, Gachibowli, Hyderabad, 500046, India.
| |
Collapse
|
9
|
Karayazi Atici Ö, Urbanska A, Gopinathan SG, Boutillon F, Goffin V, Shemanko CS. ATM Is Required for the Prolactin-Induced HSP90-Mediated Increase in Cellular Viability and Clonogenic Growth After DNA Damage. Endocrinology 2018; 159:907-930. [PMID: 29186352 DOI: 10.1210/en.2017-00652] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 11/21/2017] [Indexed: 02/06/2023]
Abstract
Prolactin (PRL) acts as a survival factor for breast cancer cells, but the PRL signaling pathway and the mechanism are unknown. Previously, we identified the master chaperone, heat shock protein 90 (HSP90) α, as a prolactin-Janus kinase 2 (JAK2)-signal transducer and activator of transcription 5 (STAT5) target gene involved in survival, and here we investigated the role of HSP90 in the mechanism of PRL-induced viability in response to DNA damage. The ataxia-telangiectasia mutated kinase (ATM) protein plays a critical role in the cellular response to double-strand DNA damage. We observed that PRL increased viability of breast cancer cells treated with doxorubicin or etoposide. The increase in cellular resistance is specific to the PRL receptor, because the PRL receptor antagonist, Δ1-9-G129R-hPRL, prevented the increase in viability. Two different HSP90 inhibitors, 17-allylamino-17-demethoxygeldanamycin and BIIB021, reduced the PRL-mediated increase in cell viability of doxorubicin-treated cells and led to a decrease in JAK2, ATM, and phosphorylated ATM protein levels. Inhibitors of JAK2 (G6) and ATM (KU55933) abolished the PRL-mediated increase in cell viability of DNA-damaged cells, supporting the involvement of each, as well as the crosstalk of ATM with the PRL pathway in the context of DNA damage. Drug synergism was detected between the ATM inhibitor (KU55933) and doxorubicin and between the HSP90 inhibitor (BIIB021) and doxorubicin. Short interfering RNA directed against ATM prevented the PRL-mediated increase in cell survival in two-dimensional cell culture, three-dimensional collagen gel cultures, and clonogenic cell survival, after doxorubicin treatment. Our results indicate that ATM contributes to the PRL-JAK2-STAT5-HSP90 pathway in mediating cellular resistance to DNA-damaging agents.
Collapse
Affiliation(s)
- Ödül Karayazi Atici
- Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada
- Arnie Charbonneau Cancer Institute, University of Calgary, Calgary, Alberta, Canada
| | - Anna Urbanska
- Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada
- Arnie Charbonneau Cancer Institute, University of Calgary, Calgary, Alberta, Canada
| | - Sesha Gopal Gopinathan
- Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada
- Arnie Charbonneau Cancer Institute, University of Calgary, Calgary, Alberta, Canada
| | - Florence Boutillon
- Inserm U1151, Institut Necker Enfants Malades, Team "PRL/GH Pathophysiology," Faculty of Medicine Paris Descartes, Sorbonne Paris Cité, Paris cedex 14, France
| | - Vincent Goffin
- Inserm U1151, Institut Necker Enfants Malades, Team "PRL/GH Pathophysiology," Faculty of Medicine Paris Descartes, Sorbonne Paris Cité, Paris cedex 14, France
| | - Carrie S Shemanko
- Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada
- Arnie Charbonneau Cancer Institute, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
10
|
Conditional knockout of N-Myc and STAT interactor disrupts normal mammary development and enhances metastatic ability of mammary tumors. Oncogene 2018; 37:1610-1623. [PMID: 29326438 PMCID: PMC5921859 DOI: 10.1038/s41388-017-0037-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 09/26/2017] [Accepted: 10/23/2017] [Indexed: 02/07/2023]
Abstract
The process of organ development requires a delicate balance between cellular plasticity and differentiation. This balance is disrupted in cancer initiation and progression. N-Myc and STAT interactor (NMI: human or Nmi: murine) has emerged as a relevant player in the etiology of breast cancer. However, a fundamental understanding of its relevance to normal mammary biology is lacking. To gain insight into its normal function in mammary gland, we generated a mammary-specific Nmi knockout mouse model. We observed that Nmi protein expression is induced in mammary epithelium at the onset of pregnancy, in luminal cells and persists throughout lactation. Nmi knockout results in a precocious alveolar phenotype. These alveoli exhibit an extensive presence of nuclear β-catenin and enhanced Wnt/β-catenin signaling. The Nmi knockout pubertal ductal tree shows enhanced invasion of the mammary fatpad and increased terminal end bud numbers. Tumors from Nmi null mammary epithelium show a significant enrichment of poorly differentiated cells with elevated stem/progenitor markers, active Wnt/β-catenin signaling, highly invasive morphology as well as, increased number of distant metastases. Our study demonstrates that Nmi has a distinct role in the differentiation process of mammary luminal epithelial cell compartment and developmental aberrations resulting from Nmi absence contribute to metastasis and demonstrates that aberration in normal developmental program can lead to metastatic disease, highlighting the contribution and importance of luminal progenitor cells in driving metastatic disease.
Collapse
|
11
|
Mießler KS, Markov AG, Amasheh S. Hydrostatic pressure incubation affects barrier properties of mammary epithelial cell monolayers, in vitro. Biochem Biophys Res Commun 2017; 495:1089-1093. [PMID: 29162451 DOI: 10.1016/j.bbrc.2017.11.110] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Accepted: 11/17/2017] [Indexed: 12/22/2022]
Abstract
During lactation, accumulation of milk in mammary glands (MG) causes hydrostatic pressure (HP) and concentration of bioactive compounds. Previously, a changed expression of tight junction (TJ) proteins was observed in mice MGs by accumulation of milk, in vivo. The TJ primarily determines the integrity of the MG epithelium. The present study questioned whether HP alone can affect the TJ in a mammary epithelial cell model, in vitro. Therefore, monolayers of HC11, a mammary epithelial cell line, were mounted into modified Ussing chambers and incubated with 10 kPa bilateral HP for 4 h. Short circuit current and transepithelial resistance were recorded and compared to controls, and TJ proteins were analyzed by Western blotting and immunofluorescent staining. In our first approach HC11 cells could withstand the pressure incubation and a downregulation of occludin was observed. In a second approach, using prolactin- and dexamethasone-induced cells, a decrease of short circuit current was observed, beginning after 2 h of incubation. With the addition of 1 mM barium chloride to the bathing solution the decrease could be blocked temporarily. On molecular level an upregulation of ZO-1 could be observed in hormone-induced cells, which was downregulated after the incubation with barium chloride. In conclusion, bilateral HP incubation affects mammary epithelial monolayers, in vitro. Both, the reduction of short circuit current and the change in TJ proteins may be interpreted as physiological requirements for lactation.
Collapse
Affiliation(s)
- Katharina S Mießler
- Institute of Veterinary Physiology, Freie Universität Berlin, Oertzenweg 19b, 14163 Berlin, Germany
| | - Alexander G Markov
- Department of General Physiology, St. Petersburg State University, Universitetskaya nab. 7/9, 199034 St. Petersburg, Russia
| | - Salah Amasheh
- Institute of Veterinary Physiology, Freie Universität Berlin, Oertzenweg 19b, 14163 Berlin, Germany.
| |
Collapse
|
12
|
Perotti C, Karayazi Ö, Moffat S, Shemanko CS. The bone morphogenetic protein receptor-1A pathway is required for lactogenic differentiation of mammary epithelial cells in vitro. In Vitro Cell Dev Biol Anim 2012; 48:377-84. [PMID: 22729646 PMCID: PMC3404688 DOI: 10.1007/s11626-012-9522-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2012] [Accepted: 05/31/2012] [Indexed: 12/30/2022]
Abstract
Bone morphogenetic proteins (BMPs) have been implicated in the control of proliferation, tissue formation, and differentiation. BMPs regulate the biology of stem and progenitor cells and can promote cellular differentiation, depending on the cell type and context. Although the BMP pathway is known to be involved in early embryonic development of the mammary gland via mesenchymal cells, its role in later epithelial cellular differentiation has not been examined. The majority of the mammary gland development occurs post-natal, and its final functional differentiation is characterized by the emergence of alveolar cells that produce milk proteins. Here, we tested the hypothesis that bone morphogenetic protein receptor 1A (BMPR1A) function was required for mammary epithelial cell differentiation. We found that the BMPR1A-SMAD1/5/8 pathway was predominantly active in undifferentiated mammary epithelial cells, compared with differentiated cells. Reduction of BMPR1A mRNA and protein, using short hairpin RNA, resulted in a reduction of SMAD1/5/8 phosphorylation in undifferentiated cells, indicating an impact on this pathway. When the expression of the BMPR1A gene knocked down in undifferentiated cells, this also prevented beta-casein production during differentiation of the mammary epithelial cells by lactogenic hormone stimulation. Addition of Noggin, a BMP antagonist, also prevented beta-casein expression. Together, this demonstrated that BMP-BMPR1A-SMAD1/5/8 signal transduction is required for beta-casein production, a marker of alveolar cell differentiation. This evidence functionally identifies BMPR1A as a potential new regulator of mammary epithelial alveolar cell differentiation.
Collapse
Affiliation(s)
- C. Perotti
- Department of Biological Sciences, University of Calgary, Calgary, AB Canada T2N 1N4
| | - Ö. Karayazi
- Department of Biological Sciences, University of Calgary, Calgary, AB Canada T2N 1N4
| | - S. Moffat
- Department of Biological Sciences, University of Calgary, Calgary, AB Canada T2N 1N4
| | - C. S. Shemanko
- Department of Biological Sciences, University of Calgary, Calgary, AB Canada T2N 1N4
| |
Collapse
|
13
|
Abstract
Sensing and interpreting extracellular signals in response to changes in the environment has been a fundamental feature of all life forms from the very beginning of evolution. To fulfil this function, networks of proteins have evolved, forming the intracellular signal transduction machinery. Whereas the appropriate control of these signal transduction systems is essential to homoeostasis, dysregulation of signalling leads to disease and often the death of the organism. The tribbles family of pseudokinases have emerged in recent years as key controllers of signal transduction via their interactions with several key kinases, ubiquitin ligases and transcription factors. In line with their role in regulating fundamentally important signalling pathways, members of the tribbles family have been implicated in the development of a range of human diseases. Whereas our mechanistic understanding of how these proteins contribute to disease is far from complete, the present paper attempts to summarize some of the most important recent developments in this field of research.
Collapse
|
14
|
Gilby DC, Sung HY, Winship PR, Goodeve AC, Reilly JT, Kiss-Toth E. Tribbles-1 and -2 are tumour suppressors, down-regulated in human acute myeloid leukaemia. Immunol Lett 2009; 130:115-24. [PMID: 20005259 DOI: 10.1016/j.imlet.2009.12.007] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2009] [Revised: 11/26/2009] [Accepted: 12/02/2009] [Indexed: 12/17/2022]
Abstract
Constitutive MAPK signalling is observed in approximately 50% of acute myeloid leukaemia (AML) cases. JNK activation in particular is associated with treatment failure in AML. Tribbles proteins (trb-1, trb-2 and trb-3) are potent negative regulators of MAPK pathways influencing apoptosis, differentiation and cell-cycle progression. Here we aimed to examine tribbles gene expression in AML and to characterise their role in leukaemic cells. A microarray dataset was interrogated for tribbles expression levels in AML cases and healthy controls. Myeloid cell proliferation and apoptosis were assayed in response to trb-1/trb-2 gene knockdown and overexpression, as well as a physical and functional interaction between trb and C/EBPalpha. Trb-2 expression was reduced in AML compared to healthy controls (correlating with nucleophosmin (NPM1) mutations), while low trb-1 expression was associated with inactive C/EBPalpha. In vitro assays indicated that trb-1/trb-2 are growth restrictive and pro-apoptotic in Me-1 cells, each capable of inhibiting JNK activation. JNK inactivation was itself associated with reduced Bcl-2 Ser70 phosphorylation, a residue which, when phosphorylated, maintains the anti-apoptotic activity of Bcl-2. Consistent with this, tribbles-mediated dephosphorylation of Bcl-2 Ser70 was associated with subsequent apoptosis. Trb-1/trb-2 transcription appeared to be moderately C/EBPalpha-responsive, and physical interaction between C/EBPalpha and trb-1/trb-2 was observed, suggesting a potential for auto-regulation of trb-1 and trb-2 transcription. In conclusion, we propose that trb-1 and trb-2 tumour suppressor activity may be abrogated in a proportion of AML patients. This may lead to enhanced cell survival, and therefore contribute to pathogenesis of the disease. Trb-1/trb-2 may, therefore, represent useful therapeutic targets for the treatment of AML in patients with dys-regulated trb activity.
Collapse
Affiliation(s)
- Daniel C Gilby
- Department of Cardiovascular Science, University of Sheffield, Sheffield, United Kingdom
| | | | | | | | | | | |
Collapse
|