1
|
Wu Z, Yang Y, Wang M. Silencing p75NTR regulates osteogenic differentiation and angiogenesis of BMSCs to enhance bone healing in fractured rats. J Orthop Surg Res 2024; 19:192. [PMID: 38504358 PMCID: PMC10953090 DOI: 10.1186/s13018-024-04653-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 03/02/2024] [Indexed: 03/21/2024] Open
Abstract
BACKGROUND Fractures heal through a process that involves angiogenesis and osteogenesis but may also lead to non-union or delayed healing. Bone marrow mesenchymal stem cells (BMSCs) have been reported to play a pivotal role in bone formation and vascular regeneration and the p75 neurotrophin receptor (p75NTR) as being an important regulator of osteogenesis. Herein, we aim to determine the potential mediation of BMSCs by p75NTR in bone healing. METHODS Rat BMSCs were identified by flow cytometry (FCM) to detect cell cycle and surface markers. Then transfection of si/oe-p75NTR was performed in BMSCs, followed by Alizarin red staining to detect osteogenic differentiation of cells, immunofluorescence double staining was performed to detect the expression of p75NTR and sortilin, co-immunoprecipitation (CO-IP) was conducted to analyze the interaction between p75NTR and sortilin, and EdU staining and cell scratch assay to assess the proliferation and migration of human umbilical vein endothelial cells (HUVECs). The expression of HIF-1α, VEGF, and apoptosis-related proteins were also detected. In addition, a rat fracture healing model was constructed, and BMSCs-si-p75NTR were injected, following which the fracture condition was observed using micro-CT imaging, and the expression of platelet/endothelial cell adhesion molecule-1 (CD31) was assessed. RESULTS The results showed that BMSCs were successfully isolated, p75NTR inhibited apoptosis and the osteogenic differentiation of BMSCs, while si-p75NTR led to a decrease in sortilin expression in BMSCs, increased proliferation and migration in HUVECs, and upregulation of HIF-1α and VEGF expression. In addition, an interaction was observed between p75NTR and sortilin. The knockdown of p75NTR was found to reduce the severity of fracture in rats and increase the expression of CD31 and osteogenesis-related proteins. CONCLUSION Silencing p75NTR effectively modulates BMSCs to promote osteogenic differentiation and angiogenesis, offering a novel perspective for improving fracture healing.
Collapse
Affiliation(s)
- Zhifeng Wu
- Department of Trauma and Arthrology, First Affiliated Hospital of Shaoyang University, Shaoyang, Hunan, China
| | - Yongming Yang
- Department of Trauma and Arthrology, First Affiliated Hospital of Shaoyang University, Shaoyang, Hunan, China
| | - Ming Wang
- Department of Trauma and Arthrology, First Affiliated Hospital of Shaoyang University, Shaoyang, Hunan, China.
| |
Collapse
|
2
|
Omagari D, Toriumi T, Tsuda H, Hayatsu M, Watanabe K, Mizutami Y, Honda M, Mikami Y. Inductive effect of SORT1 on odontoblastic differentiation of human dental pulp-derived stem cells. Differentiation 2023; 133:88-97. [PMID: 37579565 DOI: 10.1016/j.diff.2023.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 08/03/2023] [Accepted: 08/07/2023] [Indexed: 08/16/2023]
Abstract
This study investigated the expression of sortilin 1 (SORT1) in cultured human dental pulp-derived stem cells (hDPSCs) and its role in their odontoblastic differentiation. Permanent teeth were extracted from five patients, and the dental pulp was harvested for explant culture. Fluorescence-activated cell sorting was used to analyze the outgrowth of adherent cells and cells that had migrated from the tissue margin. SORT1 expression was detected in hDPSCs simultaneously expressing the mesenchymal stem cell markers CD44 and CD90. The odontoblastic differentiation potential of SORT1-positive hDPSCs was examined via staining for alkaline phosphatase (ALP), an early odontoblastic differentiation marker. ALP staining was more intense in SORT1-positive than in SORT1-negative hDPSCs. Consistently, the expression of mRNA encoding SORT1 and p75NTR, a binding partner of SORT1, increased in SORT1-positive hDPSCs during odontoblastic differentiation. In addition, pro-nerve growth factor (NGF), a ligand for SORT1-p75NTR co-receptor, promoted ALP expression in SORT1-positive hDPSCs, and the interaction between SORT1 and p75NTR was detected using a coimmunoprecipitation assay. The function of SORT1 in odontoblastic differentiation was examined via RNA interference using shRNA targeting SORT1. ALP staining intensity in SORT1/shRNA-transfected cells was markedly lower than in control/shRNA-transfected cells. SORT1 knockdown decreased JUN phosphorylation and recruitment of phosphorylated JUN to the ALP promoter. Collectively, these results indicate that SORT1 is involved in the odontoblastic differentiation of hDPSCs through the JUN N-terminal kinases (JNK)/JUN signaling pathway and that the binding of SORT1 and p75NTR plays an important role in this process.
Collapse
Affiliation(s)
- Daisuke Omagari
- Department of Pathology, Tsurumi University School of Dental Medicine, Kanagawa, Japan
| | - Taku Toriumi
- Department of Physical Therapy, Faculty of Rehabilitation, Kyushu Nutrition Welfare University, Fukuoka, Japan; Department of Anatomy, The Nippon Dental University School of Life Dentistry at Niigata, Niigata, Japan
| | - Hiromasa Tsuda
- Department of Biochemistry, Nihon University School of Dentistry, Tokyo, Japan
| | - Manabu Hayatsu
- Division of Microscopic Anatomy, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Keisuke Watanabe
- Division of Gross Anatomy and Morphogenesis, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Yusuke Mizutami
- Office of Institutional Research, Hokkaido University, Hokkaido, Japan
| | - Masaki Honda
- Department of Oral Anatomy, Aichi Gakuin University School of Dentistry, Aichi, Japan
| | - Yoshikazu Mikami
- Division of Microscopic Anatomy, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan.
| |
Collapse
|
3
|
Zhang YY, Li F, Zeng XK, Zou YH, Zhu BB, Ye JJ, Zhang YX, Jin Q, Nie X. Single cell RNA sequencing reveals mesenchymal heterogeneity and critical functions of Cd271 in tooth development. World J Stem Cells 2023; 15:589-606. [PMID: 37424952 PMCID: PMC10324503 DOI: 10.4252/wjsc.v15.i6.589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 04/18/2023] [Accepted: 05/05/2023] [Indexed: 06/20/2023] Open
Abstract
BACKGROUND Accumulating evidence suggests that the maxillary process, to which cranial crest cells migrate, is essential to tooth development. Emerging studies indicate that Cd271 plays an essential role in odontogenesis. However, the underlying mechanisms have yet to be elucidated.
AIM To establish the functionally heterogeneous population in the maxillary process, elucidate the effects of Cd271 deficiency on gene expression differences.
METHODS p75NTR knockout (Cd271-/-) mice (from American Jackson laboratory) were used to collect the maxillofacial process tissue of p75NTR knockout mice, and the wild-type maxillofacial process of the same pregnant mouse wild was used as control. After single cell suspension, the cDNA was prepared by loading the single cell suspension into the 10x Genomics Chromium system to be sequenced by NovaSeq6000 sequencing system. Finally, the sequencing data in Fastq format were obtained. The FastQC software is used to evaluate the quality of data and CellRanger analyzed the data. The gene expression matrix is read by R software, and Seurat is used to control and standardize the data, reduce the dimension and cluster. We search for marker genes for subgroup annotation by consulting literature and database; explore the effect of p75NTR knockout on mesenchymal stem cells (MSCs) gene expression and cell proportion by cell subgrouping, differential gene analysis, enrichment analysis and protein-protein interaction network analysis; understand the interaction between MSCs cells and the differentiation trajectory and gene change characteristics of p75NTR knockout MSCs by cell communication analysis and pseudo-time analysis. Last we verified the findings single cell sequencing in vitro.
RESULTS We identified 21 cell clusters, and we re-clustered these into three subclusters. Importantly, we revealed the cell–cell communication networks between clusters. We clarified that Cd271 was significantly associated with the regulation of mineralization.
CONCLUSION This study provides comprehensive mechanistic insights into the maxillary- process-derived MSCs and demonstrates that Cd271 is significantly associated with the odontogenesis in mesenchymal populations.
Collapse
Affiliation(s)
- Yan-Yan Zhang
- School & Hospital of Stomatology, Wenzhou Medical University, Wenzhou 325027, Zhejiang Province, China
| | - Feng Li
- School & Hospital of Stomatology, Wenzhou Medical University, Wenzhou 325027, Zhejiang Province, China
| | - Xiao-Ke Zeng
- School & Hospital of Stomatology, Wenzhou Medical University, Wenzhou 325027, Zhejiang Province, China
| | - Yan-Hui Zou
- School & Hospital of Stomatology, Wenzhou Medical University, Wenzhou 325027, Zhejiang Province, China
| | - Bing-Bing Zhu
- School & Hospital of Stomatology, Wenzhou Medical University, Wenzhou 325027, Zhejiang Province, China
| | - Jia-Jia Ye
- School & Hospital of Stomatology, Wenzhou Medical University, Wenzhou 325027, Zhejiang Province, China
| | - Yun-Xiao Zhang
- School & Hospital of Stomatology, Wenzhou Medical University, Wenzhou 325027, Zhejiang Province, China
| | - Qiu Jin
- School & Hospital of Stomatology, Wenzhou Medical University, Wenzhou 325027, Zhejiang Province, China
| | - Xin Nie
- School & Hospital of Stomatology, Wenzhou Medical University, Wenzhou 325027, Zhejiang Province, China
| |
Collapse
|
4
|
Gu Y, Hou T, Qin Y, Dong W. Zoledronate promotes osteoblast differentiation in high-glucose conditions via the p38MAPK pathway. Cell Biol Int 2022; 47:216-227. [PMID: 36193698 DOI: 10.1002/cbin.11921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 08/31/2022] [Accepted: 09/20/2022] [Indexed: 11/11/2022]
Abstract
Zoledronate (ZOL) were found to inhibit bone resorption in an animal model of diabetes, high glucose concentrations have been shown to decreased the osteogenesis-related gene expression. But the molecular mechanism by which high glucose levels affect osteoblasts and the effects of ZOL on osteoblast differentiation in a high-glucose environment remain unclear. Therefore, we aimed to investigate the effect of ZOL on osteoblast differentiation in a high-glucose environment and determine the responsible mechanism. Cell proliferation was detected by MTT assay, and cell differentiation was evaluated by immunofluorescence staining for alkaline phosphatase expression, alizarin red staining, cytoskeletal arrangement, and actin fiber formation. Real-time PCR and western blot analyses were performed to detect the mRNA and protein expression of p38MAPK, phosphorylated (p)-p38MAPK, CREB, p-CREB, collagen (COL) I, osteoprotegerin (OPG), and RANKL. The results showed that cell proliferation activity did not differ among the groups. But high glucose inhibited osteoblast differentiation; actin fiber formation; and p38MAPK, p-p38MAPK, CREB, p-CREB, COL I, and OPG expression, while promoting RANKL expression. However, we found that treatment with ZOL reversed these effects of high glucose. And further addition of a p38MAPK inhibitor led to inhibition of osteoblast differentiation and actin fiber formation, and lower p38MAPK, p-p38MAPK, CREB, p-CREB, COL I, and OPG expression than in the high glucose +ZOL group with higher RANKL expression than in the high glucose +ZOL group. Collectively, this study demonstrates that high glucose inhibits the differentiation of osteoblasts, and ZOL could partly overcome these effects by regulating p38MAPK pathway activity.
Collapse
Affiliation(s)
- Yingying Gu
- School of Stomatology, North China University of Science and Technology, Tangshan, China
| | - Tian Hou
- School of Stomatology, North China University of Science and Technology, Tangshan, China
| | - Yazhi Qin
- School of Stomatology, North China University of Science and Technology, Tangshan, China
| | - Wei Dong
- School of Stomatology, North China University of Science and Technology, Tangshan, China
| |
Collapse
|
5
|
Masbuchin AN, Widodo, Rohman MS, Liu PY. The two facets of receptor tyrosine kinase in cardiovascular calcification-can tyrosine kinase inhibitors benefit cardiovascular system? Front Cardiovasc Med 2022; 9:986570. [PMID: 36237897 PMCID: PMC9552878 DOI: 10.3389/fcvm.2022.986570] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 08/29/2022] [Indexed: 01/09/2023] Open
Abstract
Tyrosine kinase inhibitors (TKIs) are widely used in cancer treatment due to their effectiveness in cancer cell killing. However, an off-target of this agent limits its success. Cardiotoxicity-associated TKIs have been widely reported. Tyrosine kinase is involved in many regulatory processes in a cell, and it is involved in cancer formation. Recent evidence suggests the role of tyrosine kinase in cardiovascular calcification, specifically, the calcification of heart vessels and valves. Herein, we summarized the accumulating evidence of the crucial role of receptor tyrosine kinase (RTK) in cardiovascular calcification and provided the potential clinical implication of TKIs-related ectopic calcification. We found that RTKs, depending on the ligand and tissue, can induce or suppress cardiovascular calcification. Therefore, RTKs may have varying effects on ectopic calcification. Additionally, in the context of cardiovascular calcification, TKIs do not always relate to an unfavored outcome-they might offer benefits in some cases.
Collapse
Affiliation(s)
- Ainun Nizar Masbuchin
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Department of Cardiology and Vascular Medicine, Faculty of Medicine, Universitas Brawijaya, Malang, Indonesia
| | - Widodo
- Department of Biology, Faculty of Mathematics and Natural Science, Universitas Brawijaya, Malang, Indonesia
| | - Mohammad Saifur Rohman
- Department of Cardiology and Vascular Medicine, Faculty of Medicine, Universitas Brawijaya, Malang, Indonesia
| | - Ping-Yen Liu
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Division of Cardiology, Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|
6
|
Shan P, Wang X, Zhang Y, Teng Z, Zhang Y, Jin Q, Liu J, Ma J, Nie X. P75 neurotrophin receptor positively regulates the odontogenic/osteogenic differentiation of ectomesenchymal stem cells via nuclear factor kappa-B signaling pathway. Bioengineered 2022; 13:11201-11213. [PMID: 35485233 PMCID: PMC9208484 DOI: 10.1080/21655979.2022.2063495] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 03/24/2022] [Accepted: 04/01/2022] [Indexed: 11/02/2022] Open
Abstract
p75NTR, a neural crest stem cell marker, is continuously expressed in mesenchymal cells during tooth development. Importantly, high expression of p75NTR in the late bell stage implicates its involvement in odontogenesis and mineralization. However, the regulatory mechanisms underlying p75NTR involvement in odonto/osteogenic differentiation remain unclear. Here, we investigate the effect and potential mechanisms underlying p75NTR involvement in odonto/osteogenic differentiation. We dissected EMSCs from the first branchial arches of mice embryo and compared the proliferation and migration of p75NTR+/+ and p75NTR-/-EMSCs by transwell, scratch and cell counting kit 8(CCK8)assays. The differentiation ability and the involvement of nuclear factor kappa-B (NF-κB) pathway were investigated through alkaline phosphatase and immunofluorescence assay, real-time PCR, and western blot. During induction of dental epithelium conditioned medium, p75NTR+/+ EMSCs exhibited deeper Alkaline phosphatase (ALP) staining and higher expression of odonto/osteogenic genes/proteins (e.g., dentin sialoprotein (DSPP) than p75NTR+/+ EMSCs. Moreover, p75NTR+/+ EMSCs exhibited higher nuclear P65 expression than p75NTR-/-EMSCs. Inhibition of NF-κB pathway with Bay11-7082 in p75NTR+/+EMSCs substantially decreased DSPP expression level. However, activation of NF-κB pathway with Bay11-7082 in p75NTR-/-EMSCs enhanced DSPP expression level. Thus, p75NTR possibly plays a paramount role in the proliferation and differentiation of EMSCs via NF-κB pathway.
Collapse
Affiliation(s)
- Peifen Shan
- Department of Prosthodontics, School & Hospital of Stomatology, Wenzhou Medical University, Wenzhou, China
| | - Xiaole Wang
- Department of Nursing, School & Hospital of Stomatology, Wenzhou Medical University, Wenzhou, China
| | - Yanyan Zhang
- Department of Oral and Maxillofacial Surgery, School & Hospital of Stomatology, Wenzhou Medical University, Wenzhou, China
| | - Zhisheng Teng
- Department of Oral and Maxillofacial Surgery, School & Hospital of Stomatology, Wenzhou Medical University, Wenzhou, China
| | - Yunxiao Zhang
- Department of Oral and Maxillofacial Surgery, School & Hospital of Stomatology, Wenzhou Medical University, Wenzhou, China
| | - Qiu Jin
- Department of Oral and Maxillofacial Surgery, School & Hospital of Stomatology, Wenzhou Medical University, Wenzhou, China
| | - Jiefan Liu
- Department of Oral and Maxillofacial Surgery, School & Hospital of Stomatology, Wenzhou Medical University, Wenzhou, China
| | - Jianfeng Ma
- Department of Prosthodontics, School & Hospital of Stomatology, Wenzhou Medical University, Wenzhou, China
| | - Xin Nie
- Department of Oral and Maxillofacial Surgery, School & Hospital of Stomatology, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
7
|
Choi SY, Han EC, Hong SH, Kwon TG, Lee Y, Lee HJ. Regulating Osteogenic Differentiation by Suppression of Exosomal MicroRNAs. Tissue Eng Part A 2020; 25:1146-1154. [PMID: 30520703 DOI: 10.1089/ten.tea.2018.0257] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
IMPACT STATEMENT We investigated the role of exosomes in osteogenesis and the use of miRNA inhibitor-transfected exosomes to control osteogenic differentiation. RNA-sequencing (RNA-seq) of exosomal miRNAs revealed that growth condition of milieu of preosteoblast exosomes harbors high levels of let-7, which plays a critical role in osteogenesis regulation. We modified exosomes by transfecting let-7 inhibitor into exosomes under growth condition in MC3T3-E1 cells and revealed that exosomes whose let-7 was inactivated by engineering lost the ability to recover osteogenic differentiation. Genetically modified exosomes may serve as powerful biomaterials for developmental control, including of osteogenesis regulation.
Collapse
Affiliation(s)
- Song-Yi Choi
- 1Department of Microbiology and Immunology, School of Dentistry, Kyungpook National University, Daegu, Korea
| | - Eun-Chong Han
- 1Department of Microbiology and Immunology, School of Dentistry, Kyungpook National University, Daegu, Korea
| | - Su-Hyung Hong
- 1Department of Microbiology and Immunology, School of Dentistry, Kyungpook National University, Daegu, Korea
| | - Tae-Geon Kwon
- 2Department of Oral and Maxillofacial Surgery, School of Dentistry, Kyungpook National University, Daegu, Korea
| | - Youngkyun Lee
- 3Department of Biochemistry, School of Dentistry, Kyungpook National University, Daegu, Korea
| | - Heon-Jin Lee
- 1Department of Microbiology and Immunology, School of Dentistry, Kyungpook National University, Daegu, Korea.,4Brain Science and Engineering Institute, Kyungpook National University, Daegu, Korea
| |
Collapse
|
8
|
Li J, Zhao M, Wang Y, Shen M, Wang S, Tang M, Li M, Luo Y, Yang K, Wen X. p75NTR optimizes the osteogenic potential of human periodontal ligament stem cells by up-regulating α1 integrin expression. J Cell Mol Med 2020; 24:7563-7575. [PMID: 32424966 PMCID: PMC7339167 DOI: 10.1111/jcmm.15390] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Revised: 04/18/2020] [Accepted: 04/27/2020] [Indexed: 12/14/2022] Open
Abstract
Human periodontal ligament stem cells (hPDLSCs) are a promising source in regenerative medicine. Due to the complexity and heterogeneity of hPDLSCs, it is critical to isolate homogeneous hPDLSCs with high regenerative potential. In this study, p75 neurotrophin receptor (p75NTR) was used to isolate p75NTR+ and p75NTR− hPDLSCs by fluorescence‐activated cell sorting. Differences in osteogenic differentiation among p75NTR+, p75NTR− and unsorted hPDLSCs were observed. Differential gene expression profiles between p75NTR+ and p75NTR− hPDLSCs were analysed by RNA sequencing. α1 Integrin (ITGA1) small interfering RNA and ITGA1‐overexpressing adenovirus were used to transfect p75NTR+ and p75NTR− hPDLSCs. The results showed that p75NTR+ hPDLSCs demonstrated superior osteogenic capacity than p75NTR− and unsorted hPDLSCs. Differentially expressed genes between p75NTR+ and p75NTR− hPDLSCs were highly involved in the extracellular matrix‐receptor interaction signalling pathway, and p75NTR+ hPDLSCs expressed higher ITGA1 levels than p75NTR− hPDLSCs. ITGA1 silencing inhibited the osteogenic differentiation of p75NTR+ hPDLSCs, while ITGA1 overexpression enhanced the osteogenic differentiation of p75NTR− hPDLSCs. These findings indicate that p75NTR optimizes the osteogenic potential of hPDLSCs by up‐regulating ITGA1 expression, suggesting that p75NTR can be used as a novel cell surface marker to identify and purify hPDLSCs to promote their applications in regenerative medicine.
Collapse
Affiliation(s)
- Jun Li
- Department of Stomatology, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, China.,Hospital of Stomatology, Zunyi Medical University, Zunyi, China
| | - Manzhu Zhao
- College of Stomatology, Chongqing Medical University, Chongqing, China
| | - Yingying Wang
- Department of Stomatology, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Mengjie Shen
- Hospital of Stomatology, Zunyi Medical University, Zunyi, China
| | - Shuai Wang
- Hospital of Stomatology, Zunyi Medical University, Zunyi, China
| | - Mengying Tang
- Hospital of Stomatology, Southwest Medical University, Luzhou, China
| | - Meng Li
- College of Stomatology, Chongqing Medical University, Chongqing, China
| | - Yuting Luo
- College of Stomatology, Chongqing Medical University, Chongqing, China
| | - Kun Yang
- Hospital of Stomatology, Zunyi Medical University, Zunyi, China
| | - Xiujie Wen
- Department of Stomatology, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, China.,Hospital of Stomatology, Southwest Medical University, Luzhou, China
| |
Collapse
|
9
|
Wang Y, Yang K, Li G, Liu R, Liu J, Li J, Tang M, Zhao M, Song J, Wen X. p75NTR -/- mice exhibit an alveolar bone loss phenotype and inhibited PI3K/Akt/β-catenin pathway. Cell Prolif 2020; 53:e12800. [PMID: 32215984 PMCID: PMC7162804 DOI: 10.1111/cpr.12800] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 02/18/2020] [Accepted: 03/06/2020] [Indexed: 12/13/2022] Open
Abstract
OBJECTIVES The aim of this study was to investigate the role of p75 neurotrophin receptor (p75NTR) in regulating the mouse alveolar bone development and the mineralization potential of murine ectomesenchymal stem cells (EMSCs). Moreover, we tried to explore the underlying mechanisms associated with the PI3K/Akt/β-catenin pathway. MATERIALS AND METHODS p75NTR knockout (p75NTR-/- ) mice and wild-type (WT) littermates were used. E12.5d p75NTR-/- and WT EMSCs were isolated in the same pregnant p75NTR-/+ mice from embryonic maxillofacial processes separately. Mouse alveolar bone mass was evaluated using micro-CT. Differential osteogenic differentiation pathways between p75NTR-/- and WT EMSCs were analysed by RNA-sequencing. The PI3K inhibitor LY294002 and PI3K agonist 740Y-P were used to regulate the PI3K/Akt pathway in EMSCs. p75NTR overexpression lentiviruses, p75NTR knock-down lentiviruses and recombined mouse NGF were used to transfect cells. RESULTS The alveolar bone mass was found reduced in the p75NTR knockout mouse comparing to the WT mouse. During mineralization induction, p75NTR-/- EMSCs displayed decreased osteogenic capacity and downregulated PI3K/Akt/β-catenin signalling. The PI3K/Akt/β-catenin pathway positively regulates the potential of differential mineralization in EMSCs. The promotive effect of p75NTR overexpression can be attenuated by LY294002, while the inhibitory effect of p75NTR knock-down on Runx2 and Col1 expression can be reversed by 740Y-P. CONCLUSION Deletion of p75NTR reduced alveolar bone mass in mice. P75NTR positively regulated the osteogenic differentiation of EMSCs via enhancing the PI3K/Akt/β-catenin pathway.
Collapse
Affiliation(s)
- Yingying Wang
- Department of StomatologyDaping HospitalArmy Medical University (Third Military Medical University)ChongqingChina
| | - Kun Yang
- Department of PeriodontologyStomatological HospitalZunyi Medical UniversityZunyiChina
| | - Gang Li
- Department of StomatologyDaping HospitalArmy Medical University (Third Military Medical University)ChongqingChina
| | - Rui Liu
- Department of StomatologyDaping HospitalArmy Medical University (Third Military Medical University)ChongqingChina
| | - Junyu Liu
- College of StomatologyChongqing Medical UniversityChongqingChina
| | - Jun Li
- Department of StomatologyDaping HospitalArmy Medical University (Third Military Medical University)ChongqingChina
| | - Mengying Tang
- Hospital of StomatologySouthwest Medical UniversityLuzhouChina
| | - Manzhu Zhao
- College of StomatologyChongqing Medical UniversityChongqingChina
| | - Jinlin Song
- College of StomatologyChongqing Medical UniversityChongqingChina
| | - Xiujie Wen
- Department of StomatologyDaping HospitalArmy Medical University (Third Military Medical University)ChongqingChina
- Hospital of StomatologySouthwest Medical UniversityLuzhouChina
| |
Collapse
|
10
|
Zhao M, Wen X, Li G, Ju Y, Wang Y, Zhou Z, Song J. The spatiotemporal expression and mineralization regulation of p75 neurotrophin receptor in the early tooth development. Cell Prolif 2018; 52:e12523. [PMID: 30357966 DOI: 10.1111/cpr.12523] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Revised: 05/07/2018] [Accepted: 05/29/2018] [Indexed: 12/12/2022] Open
Abstract
OBJECTIVE The aim of this study was to investigate the spatiotemporal expression and potential role of p75NTR in tooth morphogenesis and tissue mineralization. MATERIALS AND METHODS The dynamic morphology of the four stages (from the beginning of E12.5 d, then E13.5 d and E15.5 d, to the end of E18.5 d) was observed, and the expressions of p75NTR and Runx2 were traced. The ectomesenchymal stem cells (EMSCs) were harvested in vitro, and the biological characteristics were observed. Moreover, the mineralization capability of EMSCs was evaluated. The relations between p75NTR and ALP, Col-1 and Runx2 were investigated. RESULTS The morphologic results showed that the dental lamina appeared at E12.5 d, the bud stage at E13.5 d, the cap stage at E15.5 d and the bell stage at E18.5 d. p75NTR and Runx2 showed the similar expression pattern. EMSCs from the four stages showed no significant difference in proliferation. But the positive rate of p75NTR in the E12.5 d cells was significantly lower than that in the other three stages (P < 0.05). Moreover, the higher positive rate of p75NTR the cells were, the stronger mineralization capability they showed. p75NTR was well positively correlated with the mineralization-related markers ALP, Col-1 and Runx2, which increased gradually with the mature of dental germs. CONCLUSION p75NTR might play an important role in the regulation of tooth morphogenesis, especially dental hard tissue formation.
Collapse
Affiliation(s)
- Manzhu Zhao
- College of Stomatology, Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing Medical University, Chongqing, China
| | - Xiujie Wen
- Department of Stomatology, Daping Hospital & Research Institute of Surgery, Third Military Medical University, Chongqing, China
| | - Gang Li
- Department of Stomatology, Daping Hospital & Research Institute of Surgery, Third Military Medical University, Chongqing, China
| | - Yingxin Ju
- Department of Stomatology, Daping Hospital & Research Institute of Surgery, Third Military Medical University, Chongqing, China
| | - Yingying Wang
- Department of Stomatology, Daping Hospital & Research Institute of Surgery, Third Military Medical University, Chongqing, China
| | - Zhi Zhou
- College of Stomatology, Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing Medical University, Chongqing, China
| | - Jinlin Song
- College of Stomatology, Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing Medical University, Chongqing, China
| |
Collapse
|
11
|
Terauchi M, Tamura A, Yamaguchi S, Yui N. Enhanced cellular uptake and osteogenic differentiation efficiency of melatonin by inclusion complexation with 2-hydroxypropyl β-cyclodextrin. Int J Pharm 2018; 547:53-60. [PMID: 29803791 DOI: 10.1016/j.ijpharm.2018.05.063] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 05/02/2018] [Accepted: 05/24/2018] [Indexed: 01/13/2023]
Abstract
Melatonin (MLT), a hormone secreted from the pineal gland, is recognized as a potential candidate for stimulation of bone regeneration. However, because of its hydrophobicity, the administration of MLT to stimulate bone regeneration is difficult. In this study, an inclusion complex of MLT with 2-hydroxypropyl β-cyclodextrin (HP-β-CD) was prepared to improve the water solubility, and the osteogenic differentiation ability of the inclusion complex was investigated in MC3T3-E1 cells. The formation of HP-β-CD/MLT inclusion complex was confirmed by 1H and 13C nuclear magnetic resonance spectroscopy and wide-angle X-ray diffraction. The water solubility of MLT increased linearly upon addition of HP-β-CD because of the formation of the inclusion complex. Additionally, treatment of the cells with HP-β-CD/MLT inclusion complex showed higher uptake amount of MLT than that treated with free MLT. In addition, treatment of MC3T3-E1 cells with HP-β-CD/MLT inclusion complex increased alkaline phosphatase activity and mineralized matrix deposition, compared to that in free MLT-treated and untreated cells. Furthermore, cells treated with HP-β-CD/MLT inclusion complex exhibited higher expression levels of osteogenic differentiation genes than those in the untreated and free MLT-treated cells. Accordingly, these results suggested that inclusion complexation of MLT with HP-β-CD would be a potential formulation for bone regeneration because of its improved solubility and enhanced osteogenic differentiation efficiency.
Collapse
Affiliation(s)
- Masahiko Terauchi
- Department of Organic Biomaterials, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kanda-Surugadai, Chiyoda, Tokyo 101-0062, Japan; Department of Maxillofacial Surgery, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo, Tokyo 113-8549, Japan
| | - Atsushi Tamura
- Department of Organic Biomaterials, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kanda-Surugadai, Chiyoda, Tokyo 101-0062, Japan.
| | - Satoshi Yamaguchi
- Department of Maxillofacial Surgery, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo, Tokyo 113-8549, Japan
| | - Nobuhiko Yui
- Department of Organic Biomaterials, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kanda-Surugadai, Chiyoda, Tokyo 101-0062, Japan
| |
Collapse
|
12
|
Nguyen VT, Ko SC, Heo SJ, Kang DH, Oh C, Kim KN, Jeon YJ, Kim YM, Park WS, Choi IW, Park NG, Jung WK. Ciona intestinalis calcitonin-like peptide promotes osteoblast differentiation and mineralization through MAPK pathway in MC3T3-E1 cells. Process Biochem 2018. [DOI: 10.1016/j.procbio.2018.01.025] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
13
|
Li G, Liu J, Zhao M, Wang Y, Yang K, Liu C, Xiao Y, Wen X, Liu L. SOST, an LNGFR target, inhibits the osteogenic differentiation of rat ectomesenchymal stem cells. Cell Prolif 2017; 51:e12412. [PMID: 29226516 DOI: 10.1111/cpr.12412] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Accepted: 10/26/2017] [Indexed: 12/22/2022] Open
Abstract
OBJECTIVES The aim of this study was to investigate whether sclerostin (SOST) regulates the osteogenic differentiation of rat ectomesenchymal stem cells (EMSCs) and whether SOST and low-affinity nerve growth factor receptor (LNGFR) regulate the osteogenic differentiation of EMSCs. MATERIALS AND METHODS EMSCs were isolated from embryonic facial processes from an embryonic 12.5-day (E12.5d) pregnant Sprague-Dawley rat. LNGFR+ EMSCs and LNGFR- EMSCs were obtained by fluorescence-activated cell sorting and were subsequently induced to undergo osteogenic differentiation in vitro. SOST/LNGFR small-interfering RNAs and SOST/LNGFR overexpression plasmids were used to transfect EMSCs. RESULTS LNGFR+ EMSCs displayed a higher osteogenic capacity and lower SOST levels compared with LNGFR- EMSCs. SOST silencing enhanced the osteogenic differentiation of LNGFR- EMSCs, while SOST overexpression attenuated the osteogenic differentiation of LNGFR+ EMSCs. Moreover, LNGFR was present upstream of SOST and strengthened the osteogenic differentiation of EMSCs by decreasing SOST. CONCLUSIONS SOST alleviated the osteogenic differentiation of EMSCs, and LNGFR enhanced the osteogenic differentiation of EMSCs by decreasing SOST, suggesting that the LNGFR/SOST pathway may be a novel target for promoting dental tissue regeneration and engineering.
Collapse
Affiliation(s)
- Gang Li
- Department of Stomatology, Daping Hospital, Research Institute of Field Surgery, Third Military Medical University, Chongqing, China
| | - Junyu Liu
- Department of Stomatology, Daping Hospital, Research Institute of Field Surgery, Third Military Medical University, Chongqing, China
| | - Manzhu Zhao
- Stomatological Hospital of Chongqing Medical University, Chongqing, China
| | - Yingying Wang
- Department of Stomatology, Daping Hospital, Research Institute of Field Surgery, Third Military Medical University, Chongqing, China
| | - Kun Yang
- Department of Periodontology, Stomatological Hospital, Zunyi Medical College, Zunyi, Guizhou, China
| | - Chang Liu
- Department of Stomatology, Daping Hospital, Research Institute of Field Surgery, Third Military Medical University, Chongqing, China
| | - Yong Xiao
- Department of Stomatology, Daping Hospital, Research Institute of Field Surgery, Third Military Medical University, Chongqing, China
| | - Xiujie Wen
- Department of Stomatology, Daping Hospital, Research Institute of Field Surgery, Third Military Medical University, Chongqing, China
| | - Luchuan Liu
- Department of Stomatology, Daping Hospital, Research Institute of Field Surgery, Third Military Medical University, Chongqing, China
| |
Collapse
|
14
|
LNGFR targets the Wnt/β-catenin pathway and promotes the osteogenic differentiation in rat ectomesenchymal stem cells. Sci Rep 2017; 7:11021. [PMID: 28887537 PMCID: PMC5591262 DOI: 10.1038/s41598-017-11555-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Accepted: 07/26/2017] [Indexed: 12/28/2022] Open
Abstract
Considerable evidence has shown that the Wnt/β-catenin pathway is involved in osteogenic differentiation in various stem cells. However, the role of Wnt/β-catenin pathway in regulating the osteogenic differentiation of rat ectomesenchymal stem cells (EMSCs), which are considered to be the progenitors of dental mesenchymal stem cells, remains unknown. In this study, we demonstrated that nuclear β-catenin was upregulated during EMSC osteogenic differentiation. The Wnt signalling inhibitor IWR-1-endo inhibited EMSC osteogenic differentiation, while the Wnt signalling agonist SKL2001 promoted it. Moreover, nuclear β-catenin was further upregulated by the overexpression of low-affinity nerve growth factor receptor (LNGFR) during EMSC osteogenic differentiation. Further experiments demonstrated that LNGFR overexpression enhanced EMSC osteogenic differentiation, while LNGFR silencing decreased it. Additionally, IWR-1-endo attenuated LNGFR-enhanced EMSC osteogenic differentiation. Collectively, our data reveal that LNGFR targets the Wnt/β-catenin pathway and positively regulates EMSC osteogenic differentiation, suggesting that Wnt/β-catenin pathway may be involved in the development of teeth and that the targeting Wnt/β-catenin pathway may have great potential for applications in dental tissue engineering regeneration.
Collapse
|
15
|
Terauchi M, Inada T, Kanemaru T, Ikeda G, Tonegawa A, Nishida K, Arisaka Y, Tamura A, Yamaguchi S, Yui N. Potentiating bioactivity of BMP-2 by polyelectrolyte complexation with sulfonated polyrotaxanes to induce rapid bone regeneration in a mouse calvarial defect. J Biomed Mater Res A 2017; 105:1355-1363. [PMID: 28130833 DOI: 10.1002/jbm.a.36016] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Accepted: 01/23/2017] [Indexed: 12/15/2022]
Abstract
Bone reconstruction is a challenging issue in the regeneration of surgically removed bone and disease-related bone defects. Although bone morphogenetic protein-2 (BMP-2) has received considerable attention as a bone regeneration inducer, a high dose of BMP-2 is typically required due to its short life-time under in vivo conditions. We have proposed a method to enhance the osteogenetic differentiation ability of BMP-2 in vitro that is based on supramolecular polyelectrolyte complexation with sulfonated polyrotaxanes (PRXs) consisting of sulfopropyl ether (SPE)-modified α-cyclodextrins threaded along a poly(ethylene glycol) chain capped with terminal bulky stopper molecules. In this study, we evaluated the in vivo bone regeneration ability of the SPE-PRX/BMP-2 complexes in a mouse calvarial defect model in comparison to free BMP-2 and heparin/BMP-2 complexes. The regenerated bone area was determined by X-ray computed microtomography, and the mice implanted with sulfonated PRX/BMP-2 complexes exhibited rapid and significant bone regeneration compared to those implanted with free BMP-2 and heparin/BMP-2 complexes. We concluded that the sulfonated PRX/BMP-2 complexes are a promising candidate for clinical bone regeneration. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 1355-1363, 2017.
Collapse
Affiliation(s)
- Masahiko Terauchi
- Department of Maxillofacial Surgery, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo, Tokyo, 113-8549, Japan
| | - Takasuke Inada
- Department of Maxillofacial Surgery, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo, Tokyo, 113-8549, Japan
| | - Tomoki Kanemaru
- Department of Maxillofacial Surgery, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo, Tokyo, 113-8549, Japan
| | - Go Ikeda
- Department of Organic Biomaterials, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, 2-3-10 Kanda-Surugadai, Chiyoda, Tokyo, 101-0062, Japan
| | - Asato Tonegawa
- Department of Organic Biomaterials, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, 2-3-10 Kanda-Surugadai, Chiyoda, Tokyo, 101-0062, Japan
| | - Kei Nishida
- Department of Organic Biomaterials, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, 2-3-10 Kanda-Surugadai, Chiyoda, Tokyo, 101-0062, Japan
| | - Yoshinori Arisaka
- Department of Organic Biomaterials, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, 2-3-10 Kanda-Surugadai, Chiyoda, Tokyo, 101-0062, Japan
| | - Atsushi Tamura
- Department of Organic Biomaterials, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, 2-3-10 Kanda-Surugadai, Chiyoda, Tokyo, 101-0062, Japan
| | - Satoshi Yamaguchi
- Department of Maxillofacial Surgery, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo, Tokyo, 113-8549, Japan
| | - Nobuhiko Yui
- Department of Organic Biomaterials, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, 2-3-10 Kanda-Surugadai, Chiyoda, Tokyo, 101-0062, Japan
| |
Collapse
|
16
|
Terauchi M, Inada T, Tonegawa A, Tamura A, Yamaguchi S, Harada K, Yui N. Supramolecular inclusion complexation of simvastatin with methylated β-cyclodextrins for promoting osteogenic differentiation. Int J Biol Macromol 2016; 93:1492-1498. [DOI: 10.1016/j.ijbiomac.2016.01.114] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Revised: 01/26/2016] [Accepted: 01/29/2016] [Indexed: 10/22/2022]
|
17
|
Pramanik S, Sulistio YA, Heese K. Neurotrophin Signaling and Stem Cells-Implications for Neurodegenerative Diseases and Stem Cell Therapy. Mol Neurobiol 2016; 54:7401-7459. [PMID: 27815842 DOI: 10.1007/s12035-016-0214-7] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Accepted: 10/11/2016] [Indexed: 02/07/2023]
Abstract
Neurotrophins (NTs) are members of a neuronal growth factor protein family whose action is mediated by the tropomyosin receptor kinase (TRK) receptor family receptors and the p75 NT receptor (p75NTR), a member of the tumor necrosis factor (TNF) receptor family. Although NTs were first discovered in neurons, recent studies have suggested that NTs and their receptors are expressed in various types of stem cells mediating pivotal signaling events in stem cell biology. The concept of stem cell therapy has already attracted much attention as a potential strategy for the treatment of neurodegenerative diseases (NDs). Strikingly, NTs, proNTs, and their receptors are gaining interest as key regulators of stem cells differentiation, survival, self-renewal, plasticity, and migration. In this review, we elaborate the recent progress in understanding of NTs and their action on various stem cells. First, we provide current knowledge of NTs, proNTs, and their receptor isoforms and signaling pathways. Subsequently, we describe recent advances in the understanding of NT activities in various stem cells and their role in NDs, particularly Alzheimer's disease (AD) and Parkinson's disease (PD). Finally, we compile the implications of NTs and stem cells from a clinical perspective and discuss the challenges with regard to transplantation therapy for treatment of AD and PD.
Collapse
Affiliation(s)
- Subrata Pramanik
- Graduate School of Biomedical Science and Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul, 133-791, Republic of Korea
| | - Yanuar Alan Sulistio
- Graduate School of Biomedical Science and Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul, 133-791, Republic of Korea
| | - Klaus Heese
- Graduate School of Biomedical Science and Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul, 133-791, Republic of Korea.
| |
Collapse
|
18
|
Yang K, Wang Y, Ju Y, Li G, Liu C, Liu J, Liu Q, Wen X, Liu LC. p75 neurotrophin receptor regulates differential mineralization of rat ectomesenchymal stem cells. Cell Prolif 2016; 50. [PMID: 27672006 DOI: 10.1111/cpr.12290] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2016] [Accepted: 07/30/2016] [Indexed: 12/13/2022] Open
Abstract
OBJECTIVES The aim of this study was to investigate whether p75NTR (p75 neurotrophin receptor) regulates differential mineralization capacity of rEMSCs (rat ectomesenchymal stem cells) and underlying mechanisms associated with Mage-D1 (melanoma-associated antigens-D1). MATERIALS AND METHODS Immunohistochemical staining of p75NTR in developing tooth germs was performed on E12.5d (embryonic 12.5 days) and E19.5d (embryonic 19.5 days). E12.5d EMSCs and E19.5d EMSCs were isolated in the same pregnant Sprague-Dawley rats from embryonic maxillofacial processes and tooth germs. p75NTR small-interfering RNA, p75NTR overexpression plasmid, Mage-D1 small-interfering RNA and recombined rat NGF were used to transfect cells. RESULTS p75NTR was expressed in epithelial-mesenchymal interaction areas at E12.5d and E19.5d tooth germ development stages. E19.5d EMSCs had higher p75NTR expression levels and differential mineralization capacity but lower levels of cell proliferation. Under induction by mineralized culture medium, the potential of differential mineralization had identical trends in regulation of p75NTR in EMSCs; Mage-D1 did not fluctuate and TrkA was not expressed. Binding of p75NTR and Mage-D1 were detected. Mage-D1 knockdown significantly down-regulated expression of related genes, which NGF could not rescue. CONCLUSION p75NTR participated in tooth germ development stages and mediated differential mineralization of EMSCs. p75NTR played a critical role in regulating the potential of differential mineralization of EMSCs. Mage-D1 seemed to act as a bridge in the underlying mechanism of effects of p75NTR.
Collapse
Affiliation(s)
- Kun Yang
- Department of Stomatology, Daping Hospital of the Third Military Medical University, Chongqing, China
| | - Yingying Wang
- Department of Stomatology, Daping Hospital of the Third Military Medical University, Chongqing, China
| | - Yingxin Ju
- Department of Stomatology, Daping Hospital of the Third Military Medical University, Chongqing, China
| | - Gang Li
- Department of Stomatology, Daping Hospital of the Third Military Medical University, Chongqing, China
| | - Chang Liu
- Department of Stomatology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Junyu Liu
- Department of Stomatology, Xinqiao Hospital of the Third Military Medical University, Chongqing, China
| | - Qi Liu
- Department of Stomatology, The Affiliated Hospital of Zunyi Medical University, Guizhou, China
| | - Xiujie Wen
- Department of Stomatology, Daping Hospital of the Third Military Medical University, Chongqing, China
| | - Lu Chuan Liu
- Department of Stomatology, Daping Hospital of the Third Military Medical University, Chongqing, China
| |
Collapse
|
19
|
The Trk family of neurotrophin receptors is downregulated in the lumbar spines of rats with congenital kyphoscoliosis. Mol Cell Biochem 2015; 412:11-8. [DOI: 10.1007/s11010-015-2603-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Accepted: 10/29/2015] [Indexed: 02/07/2023]
|
20
|
Hu H, Pu Y, Lu S, Zhang K, Guo Y, Lu H, Li D, Li X, Li Z, Wu Y, Tang Z. The Osteogenesis Effect and Underlying Mechanisms of Local Delivery of gAPN in Extraction Sockets of Beagle Dogs. Int J Mol Sci 2015; 16:24946-64. [PMID: 26492241 PMCID: PMC4632783 DOI: 10.3390/ijms161024946] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Revised: 09/21/2015] [Accepted: 10/13/2015] [Indexed: 01/20/2023] Open
Abstract
A plastic and biodegradable bone substitute consists of poly (L-lactic-co-glycolic) acid and 30 wt % β-tricalcium phosphate has been previously fabricated, but its osteogenic capability required further improvement. We investigated the use of globular adiponectin (gAPN) as an anabolic agent for tissue-engineered bone using this scaffold. A qualitative analysis of the bone regeneration process was carried out using μCT and histological analysis 12 weeks after implantation. CBCT (Cone Beam Computed Tomography) superimposition was used to characterise the effect of the different treatments on bone formation. In this study, we also explored adiponectin's (APN) influence on primary cultured human jaw bone marrow mesenchymal stem cells gene expressions involved in the osteogenesis. We found OPEN ACCESS Int. J. Mol. Sci. 2015, 16 24947 that composite scaffolds loaded with gAPN or bone morphogenetic protein 2 (BMP2) exhibited significantly increased bone formation and mineralisation following 12 weeks in the extraction sockets of beagle dogs, as well as enhanced expression of osteogenic markers. In vitro investigation revealed that APN also promoted osteoblast differentiation of primary cultured human jaw bone marrow mesenchymal stem cells (h-JBMMSCs), accompanied by increased activity of alkaline phosphatase, greater mineralisation, and production of the osteoblast-differentiated genes osteocalcin, bone sialoprotein and collagen type I, which was reversed by APPL1 siRNA. Therefore, the composite scaffold loaded with APN exhibited superior activity for guided bone regeneration compared with blank control or Bio-Oss® (a commercially available product). The composite scaffold with APN has significant potential for clinical applications in bone tissue engineering.
Collapse
Affiliation(s)
- Hongcheng Hu
- Dental Center, Peking University School and Hospital of Stomatology, Beijing 100101, China.
- National Engineering Laboratory for Digital and Material Technology of Stomatology, Peking University School and Hospital of Stomatology, Beijing 100081, China.
| | - Yinfei Pu
- Dental Center, Peking University School and Hospital of Stomatology, Beijing 100101, China.
- National Engineering Laboratory for Digital and Material Technology of Stomatology, Peking University School and Hospital of Stomatology, Beijing 100081, China.
| | - Songhe Lu
- Dental Center, Peking University School and Hospital of Stomatology, Beijing 100101, China.
- National Engineering Laboratory for Digital and Material Technology of Stomatology, Peking University School and Hospital of Stomatology, Beijing 100081, China.
| | - Kuo Zhang
- Department of Laboratory Animal Science, Peking University Health Science Center, Beijing 100191, China.
| | - Yuan Guo
- Dental Center, Peking University School and Hospital of Stomatology, Beijing 100101, China.
- National Engineering Laboratory for Digital and Material Technology of Stomatology, Peking University School and Hospital of Stomatology, Beijing 100081, China.
| | - Hui Lu
- Dental Center, Peking University School and Hospital of Stomatology, Beijing 100101, China.
- National Engineering Laboratory for Digital and Material Technology of Stomatology, Peking University School and Hospital of Stomatology, Beijing 100081, China.
| | - Deli Li
- Dental Center, Peking University School and Hospital of Stomatology, Beijing 100101, China.
- National Engineering Laboratory for Digital and Material Technology of Stomatology, Peking University School and Hospital of Stomatology, Beijing 100081, China.
| | - Xuefen Li
- National Engineering Laboratory for Digital and Material Technology of Stomatology, Peking University School and Hospital of Stomatology, Beijing 100081, China.
| | - Zichen Li
- Department of Polymer Science & Engineering College of Chemistry & Molecular Engineering, Peking University, Beijing 100871, China.
| | - Yuwei Wu
- Dental Center, Peking University School and Hospital of Stomatology, Beijing 100101, China.
- National Engineering Laboratory for Digital and Material Technology of Stomatology, Peking University School and Hospital of Stomatology, Beijing 100081, China.
| | - Zhihui Tang
- Dental Center, Peking University School and Hospital of Stomatology, Beijing 100101, China.
- National Engineering Laboratory for Digital and Material Technology of Stomatology, Peking University School and Hospital of Stomatology, Beijing 100081, China.
| |
Collapse
|
21
|
Li M, Armelloni S, Zennaro C, Wei C, Corbelli A, Ikehata M, Berra S, Giardino L, Mattinzoli D, Watanabe S, Agostoni C, Edefonti A, Reiser J, Messa P, Rastaldi MP. BDNF repairs podocyte damage by microRNA-mediated increase of actin polymerization. J Pathol 2015; 235:731-44. [PMID: 25408545 DOI: 10.1002/path.4484] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Revised: 10/17/2014] [Accepted: 11/11/2014] [Indexed: 12/24/2022]
Abstract
Idiopathic focal segmental glomerulosclerosis (FSGS) is a progressive and proteinuric kidney disease that starts with podocyte injury. Podocytes cover the external side of the glomerular capillary by a complex web of primary and secondary ramifications. Similar to dendritic spines of neuronal cells, podocyte processes rely on a dynamic actin-based cytoskeletal architecture to maintain shape and function. Brain-derived neurotrophic factor (BDNF) is a pleiotropic neurotrophin that binds to the tropomyosin-related kinase B receptor (TrkB) and has crucial roles in neuron maturation, survival, and activity. In neuronal cultures, exogenously added BDNF increases the number and size of dendritic spines. In animal models, BDNF administration is beneficial in both central and peripheral nervous system disorders. Here we show that BDNF has a TrkB-dependent trophic activity on podocyte cell processes; by affecting microRNA-134 and microRNA-132 signalling, BDNF up-regulates Limk1 translation and phosphorylation, and increases cofilin phosphorylation, which results in actin polymerization. Importantly, BDNF effectively repairs podocyte damage in vitro, and contrasts proteinuria and glomerular lesions in in vivo models of FSGS, opening a potential new perspective to the treatment of podocyte disorders.
Collapse
Affiliation(s)
- Min Li
- Renal Research Laboratory, Fondazione D'Amico per la Ricerca sulle Malattie Renali & Fondazione IRCCS Ca', Granda Ospedale Maggiore Policlinico, Milano, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Akiyama Y, Mikami Y, Watanabe E, Watanabe N, Toriumi T, Takahashi T, Komiyama K, Isokawa K, Shimizu N, Honda MJ. The P75 neurotrophin receptor regulates proliferation of the human MG63 osteoblast cell line. Differentiation 2014; 87:111-8. [PMID: 24582280 DOI: 10.1016/j.diff.2014.01.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2013] [Accepted: 01/17/2014] [Indexed: 02/07/2023]
Abstract
The 75 kDa transmembrane protein, p75(NTR), is a marker of mesenchymal stem cells (MSCs). Isolated MSCs are capable of differentiating into osteoblasts, but the molecular function of p75(NTR) in MSCs and osteoblasts is poorly understood. The aim of this study was to examine the function of p75(NTR) in the human MG63 osteoblast cell line compared to the murine MC3T3E-1 pre-osteoblast cell line. MG63 cells and MC3T3-E1 cells expressing exogenous p75(NTR) protein (denoted as p75-MG63 and p75GFP-E1, respectively) were generated to compare osteogenic differentiation and cell proliferation abilities. Overexpression of p75(NTR) induced alkaline phosphatase activity and the mRNA expression of osteoblast-related genes such as osterix and bone sialoprotein in both p75-MG63 and p75GFP-E1. Interestingly, exogenous p75(NTR) stimulated cell proliferation and cell cycle progression in p75GFP-E1, but not in p75-MG63. To elucidate any different effects of p75(NTR) expression on osteogenic differentiation and cell proliferation, we examined the mRNA expression of tropomyosin receptor kinase (trk) genes (trkA, trkB, trkC) and Nogo receptor (NgR), which are binding partners of p75(NTR). Although trkA, trkB, and trkC were detected in both p75-MG63 and p75GFP-E1, only NgR was detected in p75-MG63. We then used the K252a inhibitor of the trks to identify the signaling pathway for osteogenic differentiation and cell proliferation. Inhibition of trks by K252a suppressed p75(NTR)-mediated osteogenic differentiation of p75GFP-E1, whereas deletion of the GDI domain in P75(NTR) from the p75-MG63 produced enhanced cell proliferation compared to p75-MG63. These results suggest that p75(NTR) signaling associated with trk receptors promotes both cell proliferation and osteoblast differentiation, but that p75(NTR)-mediated proliferation may be suppressed by signaling from the p75(NTR)/NgR complex.
Collapse
Affiliation(s)
- Yuko Akiyama
- Nihon University Graduate School of Dentistry, 1-8-13, Kanda-Surugadai, Chiyoda-ku, Tokyo 101-8310, Japan
| | - Yoshikazu Mikami
- Department of Pathology, Nihon University School of Dentistry, 1-8-13, Kanda-Surugadai, Chiyoda-ku, Tokyo 101-8310, Japan; Dental Research Center, Nihon University School of Dentistry, 1-8-13, Kanda-Surugadai, Chiyoda-ku, Tokyo 101-8310, Japan
| | - Eri Watanabe
- Laboratory of Diagnostic Medicine, The Institute of Medical Science, The University of Tokyo, 4-6-1, Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Nobukazu Watanabe
- Laboratory of Diagnostic Medicine, The Institute of Medical Science, The University of Tokyo, 4-6-1, Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Taku Toriumi
- Dental Research Center, Nihon University School of Dentistry, 1-8-13, Kanda-Surugadai, Chiyoda-ku, Tokyo 101-8310, Japan; Department of Anatomy, Nihon University School of Dentistry, 1-8-13, Kanda-Surugadai, Chiyoda-ku, Tokyo 101-8310, Japan
| | - Tomihisa Takahashi
- Dental Research Center, Nihon University School of Dentistry, 1-8-13, Kanda-Surugadai, Chiyoda-ku, Tokyo 101-8310, Japan; Department of Anatomy, Nihon University School of Dentistry, 1-8-13, Kanda-Surugadai, Chiyoda-ku, Tokyo 101-8310, Japan
| | - Kazuo Komiyama
- Department of Pathology, Nihon University School of Dentistry, 1-8-13, Kanda-Surugadai, Chiyoda-ku, Tokyo 101-8310, Japan; Dental Research Center, Nihon University School of Dentistry, 1-8-13, Kanda-Surugadai, Chiyoda-ku, Tokyo 101-8310, Japan
| | - Keitaro Isokawa
- Dental Research Center, Nihon University School of Dentistry, 1-8-13, Kanda-Surugadai, Chiyoda-ku, Tokyo 101-8310, Japan; Department of Anatomy, Nihon University School of Dentistry, 1-8-13, Kanda-Surugadai, Chiyoda-ku, Tokyo 101-8310, Japan
| | - Noriyoshi Shimizu
- Dental Research Center, Nihon University School of Dentistry, 1-8-13, Kanda-Surugadai, Chiyoda-ku, Tokyo 101-8310, Japan; Department of Orthodontics, Nihon University School of Dentistry, 1-8-13 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-8310, Japan
| | - Masaki J Honda
- Dental Research Center, Nihon University School of Dentistry, 1-8-13, Kanda-Surugadai, Chiyoda-ku, Tokyo 101-8310, Japan; Department of Anatomy, Nihon University School of Dentistry, 1-8-13, Kanda-Surugadai, Chiyoda-ku, Tokyo 101-8310, Japan.
| |
Collapse
|