1
|
Liu X, Wan X, Sui B, Hu Q, Liu Z, Ding T, Zhao J, Chen Y, Wang ZL, Li L. Piezoelectric hydrogel for treatment of periodontitis through bioenergetic activation. Bioact Mater 2024; 35:346-361. [PMID: 38379699 PMCID: PMC10876489 DOI: 10.1016/j.bioactmat.2024.02.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 01/26/2024] [Accepted: 02/07/2024] [Indexed: 02/22/2024] Open
Abstract
The impaired differentiation ability of resident cells and disordered immune microenvironment in periodontitis pose a huge challenge for bone regeneration. Herein, we construct a piezoelectric hydrogel to rescue the impaired osteogenic capability and rebuild the regenerative immune microenvironment through bioenergetic activation. Under local mechanical stress, the piezoelectric hydrogel generated piezopotential that initiates osteogenic differentiation of inflammatory periodontal ligament stem cells (PDLSCs) via modulating energy metabolism and promoting adenosine triphosphate (ATP) synthesis. Moreover, it also reshapes an anti-inflammatory and pro-regenerative niche through switching M1 macrophages to the M2 phenotype. The synergy of tilapia gelatin and piezoelectric stimulation enhances in situ regeneration in periodontal inflammatory defects of rats. These findings pave a new pathway for treating periodontitis and other immune-related bone defects through piezoelectric stimulation-enabled energy metabolism modulation and immunomodulation.
Collapse
Affiliation(s)
- Xin Liu
- Department of Dental Materials, Shanghai Biomaterials Research & Testing Center, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, 200011, PR China
| | - Xingyi Wan
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, PR China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Baiyan Sui
- Department of Dental Materials, Shanghai Biomaterials Research & Testing Center, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, 200011, PR China
| | - Quanhong Hu
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, PR China
| | - Zhirong Liu
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, PR China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Tingting Ding
- Department of Dental Materials, Shanghai Biomaterials Research & Testing Center, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, 200011, PR China
| | - Jiao Zhao
- Department of Dental Materials, Shanghai Biomaterials Research & Testing Center, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, 200011, PR China
| | - Yuxiao Chen
- Department of Dental Materials, Shanghai Biomaterials Research & Testing Center, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, 200011, PR China
| | - Zhong Lin Wang
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, PR China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Linlin Li
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, PR China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, PR China
| |
Collapse
|
2
|
Sirisereephap K, Tamura H, Lim JH, Surboyo MDC, Isono T, Hiyoshi T, Rosenkranz AL, Sato-Yamada Y, Domon H, Ikeda A, Hirose T, Sunazuka T, Yoshiba N, Okada H, Terao Y, Maeda T, Tabeta K, Chavakis T, Hajishengallis G, Maekawa T. A novel macrolide-Del-1 axis to regenerate bone in old age. iScience 2024; 27:108798. [PMID: 38261928 PMCID: PMC10797555 DOI: 10.1016/j.isci.2024.108798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/24/2023] [Accepted: 01/02/2024] [Indexed: 01/25/2024] Open
Abstract
Aging is associated with increased susceptibility to chronic inflammatory bone loss disorders, such as periodontitis, in large part due to the impaired regenerative potential of aging tissues. DEL-1 exerts osteogenic activity and promotes bone regeneration. However, DEL-1 expression declines with age. Here we show that systemically administered macrolide antibiotics and a non-antibiotic erythromycin derivative, EM-523, restore DEL-1 expression in 18-month-old ("aged") mice while promoting regeneration of bone lost due to naturally occurring age-related periodontitis. These compounds failed to induce bone regeneration in age-matched DEL-1-deficient mice. Consequently, these drugs promoted DEL-1-dependent functions, including alkaline phosphatase activity and osteogenic gene expression in the periodontal tissue while inhibiting osteoclastogenesis, leading to net bone growth. Macrolide-treated aged mice exhibited increased skeletal bone mass, suggesting that this treatment may be pertinent to systemic bone loss disorders. In conclusion, we identified a macrolide-DEL-1 axis that can regenerate bone lost due to aging-related disease.
Collapse
Affiliation(s)
- Kridtapat Sirisereephap
- Division of Periodontology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8514, Japan
- Center for Advanced Oral Science, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8514, Japan
- Faculty of Dentistry, Chulalongkorn University, Bangkok 10330, Thailand
| | - Hikaru Tamura
- Center for Advanced Oral Science, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8514, Japan
| | - Jong-Hyung Lim
- Department of Basic and Translational Sciences, Laboratory of Innate Immunity and Inflammation, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Meircurius Dwi Condro Surboyo
- Center for Advanced Oral Science, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8514, Japan
- Faculty of Dentistry, Universitas Airlangga, Surabaya 60132, Indonesia
| | - Toshihito Isono
- Division of Microbiology and Infectious Diseases, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8514, Japan
| | - Takumi Hiyoshi
- Center for Advanced Oral Science, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8514, Japan
| | - Andrea L. Rosenkranz
- Center for Advanced Oral Science, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8514, Japan
| | - Yurie Sato-Yamada
- Center for Advanced Oral Science, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8514, Japan
| | - Hisanori Domon
- Division of Microbiology and Infectious Diseases, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8514, Japan
| | - Akari Ikeda
- Ōmura Satoshi Memorial Institute, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
- Graduate School of Infection Control Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Tomoyasu Hirose
- Ōmura Satoshi Memorial Institute, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
- Graduate School of Infection Control Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Toshiaki Sunazuka
- Ōmura Satoshi Memorial Institute, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
- Graduate School of Infection Control Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Nagako Yoshiba
- Division of Cariology, Operative Dentistry and Endodontics, Department of Oral Health Science, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8514, Japan
| | - Hiroyuki Okada
- Laboratory of Clinical Biotechnology, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| | - Yutaka Terao
- Division of Microbiology and Infectious Diseases, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8514, Japan
| | - Takeyasu Maeda
- Center for Advanced Oral Science, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8514, Japan
| | - Koichi Tabeta
- Division of Periodontology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8514, Japan
| | - Triantafyllos Chavakis
- Institute for Clinical Chemistry and Laboratory Medicine, University Hospital and Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
- Centre for Cardiovascular Science, Queen’s Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - George Hajishengallis
- Department of Basic and Translational Sciences, Laboratory of Innate Immunity and Inflammation, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Tomoki Maekawa
- Center for Advanced Oral Science, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8514, Japan
| |
Collapse
|
3
|
Morsczeck C, Pieles O, Beck HC. Analysis of the phosphoproteome in human dental follicle cells during osteogenic differentiation. Eur J Oral Sci 2023; 131:e12952. [PMID: 37664892 DOI: 10.1111/eos.12952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 08/18/2023] [Indexed: 09/05/2023]
Abstract
Dental follicle cells (DFCs) are osteogenic progenitor cells and are well suited for molecular studies of differentiation of alveolar osteoblasts. A recent study examined the metabolism in DFCs during osteogenic differentiation and showed that energy metabolism is increased after 14 days of differentiation (mid phase). However, previous studies have examined proteomes at early (2 h, 24 h) or very late (28 days) stages of differentiation, but not during the phase of increased metabolic activity. In this study, we examined the phosphoproteome at the mid phase (14 days) of osteogenic differentiation. Analysis of DFC phosphoproteomes showed that during this phase of osteogenic differentiation, proteins that are part of signal transduction are significantly regulated. Proteins involved in the regulation of the cytoskeleton and apoptosis were also increased in expression. As osteogenic differentiation induced oxidative stress and apoptosis in DFCs, the oxidative stress defense protein, catalase, was also upregulated during osteogenic differentiation, which supports the biomineralization of DFCs. In summary, this study revealed that during the middle phase (14 days) of osteogenic differentiation, processes in DFCs related to the control of cell organization, apoptosis, and oxidative stress are regulated.
Collapse
Affiliation(s)
- Christian Morsczeck
- Department of Oral and Maxillofacial Surgery, University Hospital Regensburg, Regensburg, Germany
| | - Oliver Pieles
- Department of Oral and Maxillofacial Surgery, University Hospital Regensburg, Regensburg, Germany
| | - Hans-Christian Beck
- Department of Clinical Biochemistry and Pharmacology, Centre for Clinical Proteomics, Odense University Hospital, Odense, Denmark
| |
Collapse
|
4
|
Mao Y, Hu M, Chen L, Chen X, Liu M, Zhang M, Nie M, Liu X. CGF-HLC-I repaired the bone defect repair of the rabbits mandible through tight junction pathway. Front Bioeng Biotechnol 2022; 10:976499. [PMID: 36204467 PMCID: PMC9530711 DOI: 10.3389/fbioe.2022.976499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 09/02/2022] [Indexed: 11/13/2022] Open
Abstract
Background: The human-like collagen I (HLC-I) combined concentrated growth factors was used to construct CGF-HLC-I composite biomaterials to repair the critical bone defect disease model of rabbit mandible. This study aimed to research the repair mechanism of CGF-HLC-I/Bio-Oss in rabbit mandibular critical bone defect, to provide a new treatment direction for clinical bone defect repair. Methods: The optimal concentration of HLC-I (0.75%) was selected in this study. Nine New Zealand white rabbits were randomly divided into 3 groups, normal control group, Bio-Gide/Bio-Oss and CGF-0.75%HLC-I/Bio-Oss group (n = 3, each group). CGF-0.75%HLC-I/Bio-Oss and Bio-Gide/Bio-Oss were implanted into rabbit mandibles, then X-ray, Micro-CT, HE and Masson staining, immunohistochemical staining and biomechanical testing were performed with the bone continuity or maturity at 4, 8 and 12 weeks after surgery. The repair mechanism was studied by bioinformatics experiments. Results: As the material degraded, the rate of new bone formation in the CGF-0.75% HLC-I/Bio-Oss group was better than that the control group by micro-CT. The biomechanical test showed that the compressive strength and elastic modulus of the CGF-0.75%HLC-I/Bio-Oss group were higher than those of the control group. HE and Masson staining showed that the bone continuity or maturity of the CGF-0.75%HLC-I/Bio-Oss group was better than that of the control group. Immunohistochemical staining showed significantly higher bone morphogenetic protein 2 (BMP2) and Runt-related transcription factor 2 (RUNX2) in the CGF-0.75%HLC-I/Bio-Oss group than the control group at 8 and 12 W and the difference gradually decreased with time. There were 131 differentially expressed proteins (DEPs) in the Bio-Gide/Bio-Oss and CGF-0.75%HLC-I/Bio-Oss groups, containing 95 up-regulated proteins and 36 down-regulated proteins. KEGG database enrichment analysis showed actinin alpha 1 (ACTN1) and myosin heavy-Chain 9 (MYH9) are the main potential differential proteins related to osteogenesis, and they are enriched in the TJs pathway. Conclusion: CGF-0.75%HLC-I/Bio-Oss materials are good biomaterials for bone regeneration which have strong osteoinductive activity. CGF-0.75%HLC-I/Bio-Oss materials can promote new bone formation, providing new ideas for the application of bone tissue engineering scaffold materials in oral clinics.
Collapse
Affiliation(s)
- Yalin Mao
- Department of Periodontics and Oral Mucosal Diseases, The Affiliated Stomatological Hospital of Southwest Medical University, Luzhou, Sichuan, China
- Luzhou Key Laboratory of Oral and Maxillofacial Reconstruction and Regeneration, Southwest Medical University, Luzhou, China
| | - Miaoling Hu
- Department of Periodontics and Oral Mucosal Diseases, The Affiliated Stomatological Hospital of Southwest Medical University, Luzhou, Sichuan, China
- Luzhou Key Laboratory of Oral and Maxillofacial Reconstruction and Regeneration, Southwest Medical University, Luzhou, China
| | - Li Chen
- Department of Periodontics and Oral Mucosal Diseases, The Affiliated Stomatological Hospital of Southwest Medical University, Luzhou, Sichuan, China
- Luzhou Key Laboratory of Oral and Maxillofacial Reconstruction and Regeneration, Southwest Medical University, Luzhou, China
| | - Xiao Chen
- Department of Stomatology Technology, School of Medical Technology, Sichuan College of Traditional Medcine, Mianyang, China
- Department of Orthodontics, Mianyang Stomatological Hospital, Mianyang, China
| | - Maohua Liu
- Department of Periodontics and Oral Mucosal Diseases, The Affiliated Stomatological Hospital of Southwest Medical University, Luzhou, Sichuan, China
- Luzhou Key Laboratory of Oral and Maxillofacial Reconstruction and Regeneration, Southwest Medical University, Luzhou, China
| | - Menglian Zhang
- Department of Periodontics and Oral Mucosal Diseases, The Affiliated Stomatological Hospital of Southwest Medical University, Luzhou, Sichuan, China
- Luzhou Key Laboratory of Oral and Maxillofacial Reconstruction and Regeneration, Southwest Medical University, Luzhou, China
| | - Minhai Nie
- Department of Periodontics and Oral Mucosal Diseases, The Affiliated Stomatological Hospital of Southwest Medical University, Luzhou, Sichuan, China
- Luzhou Key Laboratory of Oral and Maxillofacial Reconstruction and Regeneration, Southwest Medical University, Luzhou, China
- *Correspondence: Xuqian Liu, ; Minhai Nie,
| | - Xuqian Liu
- Department of Periodontics and Oral Mucosal Diseases, The Affiliated Stomatological Hospital of Southwest Medical University, Luzhou, Sichuan, China
- Luzhou Key Laboratory of Oral and Maxillofacial Reconstruction and Regeneration, Southwest Medical University, Luzhou, China
- *Correspondence: Xuqian Liu, ; Minhai Nie,
| |
Collapse
|
5
|
Self-Organization Provides Cell Fate Commitment in MSC Sheet Condensed Areas via ROCK-Dependent Mechanism. Biomedicines 2021; 9:biomedicines9091192. [PMID: 34572378 PMCID: PMC8470239 DOI: 10.3390/biomedicines9091192] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 08/30/2021] [Accepted: 09/07/2021] [Indexed: 12/13/2022] Open
Abstract
Multipotent mesenchymal stem/stromal cells (MSC) are one of the crucial regulators of regeneration and tissue repair and possess an intrinsic program from self-organization mediated by condensation, migration and self-patterning. The ability to self-organize has been successfully exploited in tissue engineering approaches using cell sheets (CS) and their modifications. In this study, we used CS as a model of human MSC spontaneous self-organization to demonstrate its structural, transcriptomic impact and multipotent stromal cell commitment. We used CS formation to visualize MSC self-organization and evaluated the role of the Rho-GTPase pathway in spontaneous condensation, resulting in a significant anisotropy of the cell density within the construct. Differentiation assays were carried out using conventional protocols, and microdissection and RNA-sequencing were applied to establish putative targets behind the observed phenomena. The differentiation of MSC to bone and cartilage, but not to adipocytes in CS, occurred more effectively than in the monolayer. RNA-sequencing indicated transcriptional shifts involving the activation of the Rho-GTPase pathway and repression of SREBP, which was concordant with the lack of adipogenesis in CS. Eventually, we used an inhibitory analysis to validate our findings and suggested a model where the self-organization of MSC defined their commitment and cell fate via ROCK1/2 and SREBP as major effectors under the putative switching control of AMP kinase.
Collapse
|
6
|
Dieterle MP, Husari A, Steinberg T, Wang X, Ramminger I, Tomakidi P. From the Matrix to the Nucleus and Back: Mechanobiology in the Light of Health, Pathologies, and Regeneration of Oral Periodontal Tissues. Biomolecules 2021; 11:824. [PMID: 34073044 PMCID: PMC8228498 DOI: 10.3390/biom11060824] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/25/2021] [Accepted: 05/27/2021] [Indexed: 02/07/2023] Open
Abstract
Among oral tissues, the periodontium is permanently subjected to mechanical forces resulting from chewing, mastication, or orthodontic appliances. Molecularly, these movements induce a series of subsequent signaling processes, which are embedded in the biological concept of cellular mechanotransduction (MT). Cell and tissue structures, ranging from the extracellular matrix (ECM) to the plasma membrane, the cytosol and the nucleus, are involved in MT. Dysregulation of the diverse, fine-tuned interaction of molecular players responsible for transmitting biophysical environmental information into the cell's inner milieu can lead to and promote serious diseases, such as periodontitis or oral squamous cell carcinoma (OSCC). Therefore, periodontal integrity and regeneration is highly dependent on the proper integration and regulation of mechanobiological signals in the context of cell behavior. Recent experimental findings have increased the understanding of classical cellular mechanosensing mechanisms by both integrating exogenic factors such as bacterial gingipain proteases and newly discovered cell-inherent functions of mechanoresponsive co-transcriptional regulators such as the Yes-associated protein 1 (YAP1) or the nuclear cytoskeleton. Regarding periodontal MT research, this review offers insights into the current trends and open aspects. Concerning oral regenerative medicine or weakening of periodontal tissue diseases, perspectives on future applications of mechanobiological principles are discussed.
Collapse
Affiliation(s)
- Martin Philipp Dieterle
- Center for Dental Medicine, Division of Oral Biotechnology, Medical Center—University of Freiburg, Faculty of Medicine, University of Freiburg, Hugstetterstr. 55, 79106 Freiburg, Germany; (M.P.D.); (X.W.); (I.R.); (P.T.)
| | - Ayman Husari
- Center for Dental Medicine, Department of Orthodontics, Medical Center—University of Freiburg, Faculty of Medicine, University of Freiburg, Hugstetterstr. 55, 79106 Freiburg, Germany;
- Faculty of Engineering, University of Freiburg, Georges-Köhler-Allee 101, 79110 Freiburg, Germany
| | - Thorsten Steinberg
- Center for Dental Medicine, Division of Oral Biotechnology, Medical Center—University of Freiburg, Faculty of Medicine, University of Freiburg, Hugstetterstr. 55, 79106 Freiburg, Germany; (M.P.D.); (X.W.); (I.R.); (P.T.)
| | - Xiaoling Wang
- Center for Dental Medicine, Division of Oral Biotechnology, Medical Center—University of Freiburg, Faculty of Medicine, University of Freiburg, Hugstetterstr. 55, 79106 Freiburg, Germany; (M.P.D.); (X.W.); (I.R.); (P.T.)
| | - Imke Ramminger
- Center for Dental Medicine, Division of Oral Biotechnology, Medical Center—University of Freiburg, Faculty of Medicine, University of Freiburg, Hugstetterstr. 55, 79106 Freiburg, Germany; (M.P.D.); (X.W.); (I.R.); (P.T.)
| | - Pascal Tomakidi
- Center for Dental Medicine, Division of Oral Biotechnology, Medical Center—University of Freiburg, Faculty of Medicine, University of Freiburg, Hugstetterstr. 55, 79106 Freiburg, Germany; (M.P.D.); (X.W.); (I.R.); (P.T.)
| |
Collapse
|
7
|
Osteogenic Potential of Mesenchymal Stem Cells from Adipose Tissue, Bone Marrow and Hair Follicle Outer Root Sheath in a 3D Crosslinked Gelatin-Based Hydrogel. Int J Mol Sci 2021; 22:ijms22105404. [PMID: 34065598 PMCID: PMC8161179 DOI: 10.3390/ijms22105404] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/06/2021] [Accepted: 05/14/2021] [Indexed: 11/23/2022] Open
Abstract
Bone transplantation is regarded as the preferred therapy to treat a variety of bone defects. Autologous bone tissue is often lacking at the source, and the mesenchymal stem cells (MSCs) responsible for bone repair mechanisms are extracted by invasive procedures. This study explores the potential of autologous mesenchymal stem cells derived from the hair follicle outer root sheath (MSCORS). We demonstrated that MSCORS have a remarkable capacity to differentiate in vitro towards the osteogenic lineage. Indeed, when combined with a novel gelatin-based hydrogel called Osteogel, they provided additional osteoinductive cues in vitro that may pave the way for future application in bone regeneration. MSCORS were also compared to MSCs from adipose tissue (ADMSC) and bone marrow (BMMSC) in a 3D Osteogel model. We analyzed gel plasticity, cell phenotype, cell viability, and differentiation capacity towards the osteogenic lineage by measuring alkaline phosphatase (ALP) activity, calcium deposition, and specific gene expression. The novel injectable hydrogel filled an irregularly shaped lesion in a porcine wound model displaying high plasticity. MSCORS in Osteogel showed a higher osteo-commitment in terms of calcium deposition and expression dynamics of OCN, BMP2, and PPARG when compared to ADMSC and BMMSC, whilst displaying comparable cell viability and ALP activity. In conclusion, autologous MSCORS combined with our novel gelatin-based hydrogel displayed a high capacity for differentiation towards the osteogenic lineage and are acquired by non-invasive procedures, therefore qualifying as a suitable and expandable novel approach in the field of bone regeneration therapy.
Collapse
|
8
|
Ma P, Yu Y, Yie KHR, Fang K, Zhou Z, Pan X, Deng Z, Shen X, Liu J. Effects of titanium with different micro/nano structures on the ability of osteoblasts to resist oxidative stress. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 123:111969. [PMID: 33812597 DOI: 10.1016/j.msec.2021.111969] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 01/23/2021] [Accepted: 02/10/2021] [Indexed: 12/13/2022]
Abstract
Excessive accumulation of oxidative intermediates in the elderly significantly aggravates bone degradation and hinders the osseointegration of topological titanium (Ti) implants. Thus, it is of great significance to evaluate the antioxidant and osteoinduction capabilities of various nano, micro or micro/nano-composite structures under oxidative stress (OS) microenvironment. In this study, we discovered that 110 nm titania nanotubes (TNTs) enhanced the adsorption of fibronectin (FN) proteins onto smooth and rough titanium surfaces to varying degrees. Compared with Ti and 30 nm TNTs (T30) groups, cells on 110 nm TNTs (T110), microstructure/30 nm TNTs (M30) and microstructure/110 nm TNTs (M110) had smaller area, lower reactive oxygen species (ROS), and better proliferation/osteogenic differentiation abilities under OS condition, but there was no significant difference among the three groups. In addition, combined with our previous study, we suggested that T110, M30 and M110 resistance to OS was also strongly associated with the high expression of FN-receptor integrin α5 or β1. All the findings indicated that the micro/nano-composed structures (M30 & M110) had similar anti-oxidation and osteogenesis abilities to T110, which provided guidance for the application of different titanium implants with different topologies in the elderly.
Collapse
Affiliation(s)
- Pingping Ma
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, 325027, China
| | - Yonglin Yu
- Department of Pathology, Affiliated Hospital of Zunyi Medical College, Zunyi, 563003, China
| | - Kendrick Hii Ru Yie
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, 325027, China
| | - Kai Fang
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, 325027, China
| | - Zixin Zhou
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, 325027, China
| | - Xiaoyi Pan
- Ruian People's Hospital, Ruian, 325200, China
| | - Zhennan Deng
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, 325027, China.
| | - Xinkun Shen
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, 325027, China.
| | - Jinsong Liu
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, 325027, China
| |
Collapse
|
9
|
Wang Y, Hu B, Hu R, Tong X, Zhang M, Xu C, He Z, Zhao Y, Deng H. TAZ contributes to osteogenic differentiation of periodontal ligament cells under tensile stress. J Periodontal Res 2019; 55:152-160. [PMID: 31539181 DOI: 10.1111/jre.12698] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 08/14/2019] [Accepted: 09/01/2019] [Indexed: 12/15/2022]
Abstract
BACKGROUND AND OBJECTIVE Bone remodeling during orthodontic treatment is achieved by the osteogenesis of human periodontal ligament cells (PDLCs) subjected to mechanical loadings. Transcriptional co-activator with PDZ-binding motif (TAZ) mediates bone remodeling in response to extracellular mechanical signals. This study aims to investigate the role of TAZ in osteogenesis of PDLCs under tensile strain. MATERIALS AND METHODS A uniaxial cyclic tensile stress (CTS) at 12% elongation and 6 cycles/min (5 s on and 5 s off) was applied to PDLCs. The osteogenic differentiation was determined by the protein and gene expressions of osteogenic markers using qRT-PCR and Western blot, respectively, and further by alkaline phosphatase (ALP) activity and Alizarin Red S staining. The interaction of TAZ with core-binding factor α1 (Cbfα1) was examined by co-immunoprecipitation. The immunofluorescence histochemistry was used to examine the nucleus aggregation of TAZ and the reorganization of actin filaments. Moreover, small interfering RNA-targeting TAZ (TAZsiRNA) was used for TAZ inhibition and Y-27632 was employed for Ras homologue-associated coiled-coil protein kinase (ROCK) signaling blockage. RESULTS CTS clearly stimulated the nucleus accumulation of TAZ and its interaction with Cbfα1. CTS-induced osteogenesis in PDLCs was significantly abrogated by the infection with TAZsiRNA, as shown by the decreased stained nodules and protein expressions of Cbfα1, collagen type I, osterix, and osteocalcin, along with the inhibition of β-catenin signaling. Moreover, ROCK inhibition by Y-27632 hindered TAZ nucleus aggregation and its binding with Cbfα1, which subsequently lead to the decreased osteoblastic differentiation of PDLCs. CONCLUSIONS Taken together, we propose that TAZ nucleus localization and its interaction with Cbfα1 are essential for the CTS-induced osteogenic differentiation in PDLCs. And such TAZ activation by CTS could be mediated by ROCK signaling, indicating the pivot role of ROCK-TAZ pathway for PDLCs differentiation.
Collapse
Affiliation(s)
- Yi Wang
- Department of Orthodontics, School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, China
| | - Bibo Hu
- Department of Orthodontics, School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, China
| | - Rongdang Hu
- Department of Orthodontics, School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, China
| | - Xianqin Tong
- Department of Orthodontics, School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, China
| | - Menghan Zhang
- Department of Orthodontics, School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, China
| | - Chuchu Xu
- Department of Orthodontics, School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, China
| | - Zhiqi He
- Department of Orthodontics, School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, China
| | - Ya Zhao
- Department of Periodontics, School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, China
| | - Hui Deng
- Department of Periodontics, School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
10
|
Xie H, Cao T, Franco-Obregón A, Rosa V. Graphene-Induced Osteogenic Differentiation Is Mediated by the Integrin/FAK Axis. Int J Mol Sci 2019; 20:ijms20030574. [PMID: 30699966 PMCID: PMC6387117 DOI: 10.3390/ijms20030574] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 01/22/2019] [Accepted: 01/23/2019] [Indexed: 12/22/2022] Open
Abstract
Graphene is capable of promoting osteogenesis without chemical induction. Nevertheless, the underlying mechanism(s) remain largely unknown. The objectives here were: (i) to assess whether graphene scaffolds are capable of supporting osteogenesis in vivo and; (ii) to ascertain the participation of the integrin/FAK mechanotransduction axis during the osteogenic differentiation induced by graphene. MSC-impregnated graphene scaffolds (n = 6) were implanted into immunocompromised mice (28 days). Alternatively, MSCs were seeded onto PDMS substrates (modulus of elasticity = 130, 830 and 1300 kPa) coated with a single monomolecular layer of graphene and cultured in basal medium (10 days). The ensuing expressions of FAK-p397, integrin, ROCK1, F-actin, Smad p1/5, RUNX2, OCN and OPN were evaluated by Western blot (n = 3). As controls, MSCs were plated onto uncoated PDMS in the presence of mechanotransduction inhibitors (echistatin, Y27632 and DMH1). MSC-impregnated graphene scaffolds exhibited positive immunoexpression of bone-related markers (RUNX2 and OPN) without the assistance of osteogenic inducers. In vitro, regardless of the stiffness of the underlying PDMS substrate, MSCs seeded onto graphene-coated PDMS substrates demonstrated higher expressions of all tested osteogenic and integrin/FAK proteins tested compared to MSCs seeded onto PDMS alone. Hence, graphene promotes osteogenesis via the activation of the mechanosensitive integrin/FAK axis.
Collapse
Affiliation(s)
- Han Xie
- Faculty of Dentistry, National University of Singapore, 9 Lower Kent Ridge Road, Singapore 119085, Singapore.
| | - Tong Cao
- Faculty of Dentistry, National University of Singapore, 9 Lower Kent Ridge Road, Singapore 119085, Singapore.
| | - Alfredo Franco-Obregón
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, NUHS Tower Block, Level 8, IE Kent Ridge Road, Singapore 119228, Singapore.
- BioIonic Currents Electromagnetic Pulsing Systems Laboratory, BICEPS, National University of Singapore, MD6, 14 medical Drive, #14-01, Singapore 117599, Singapore.
| | - Vinicius Rosa
- Faculty of Dentistry, National University of Singapore, 9 Lower Kent Ridge Road, Singapore 119085, Singapore.
- Department of Materials Science and Engineering, National University of Singapore, Blk EA, #03-09 9 Engineering Drive 1, Singapore 117575, Singapore.
- Centre for Advanced 2D Materials and Graphene Research Centre, National University of Singapore, 6 Science Drive 2, Singapore 117546, Singapore.
| |
Collapse
|
11
|
Kawamura M, Yamamoto T, Yamashiro K, Kochi S, Yoshihara-Hirata C, Ideguchi H, Aoyagi H, Omori K, Takashiba S. Induction of migration of periodontal ligament cells by selective regulation of integrin subunits. J Cell Mol Med 2018; 23:1211-1223. [PMID: 30511442 PMCID: PMC6349235 DOI: 10.1111/jcmm.14023] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 08/06/2018] [Accepted: 10/20/2018] [Indexed: 01/09/2023] Open
Abstract
The recruitment of tissue-resident stem cells is important for wound regeneration. Periodontal ligament cells (PDL cells) are heterogeneous cell populations with stemness features that migrate into wound sites to regenerate periodontal fibres and neighbouring hard tissues. Cell migration is regulated by the local microenvironment, coordinated by growth factors and the extracellular matrix (ECM). Integrin-mediated cell adhesion to the ECM provides essential signals for migration. We hypothesized that PDL cell migration could be enhanced by selective expression of integrins. The migration of primary cultured PDL cells was induced by platelet-derived growth factor-BB (PDGF-BB). The effects of blocking specific integrins on migration and ECM adhesion were investigated based on the integrin expression profiles observed during migration. Up-regulation of integrins α3, α5, and fibronectin was identified at distinct localizations in migrating PDL cells. Treatment with anti-integrin α5 antibodies inhibited PDL cell migration. Treatment with anti-integrin α3, α3-blocking peptide, and α3 siRNA significantly enhanced cell migration, comparable to treatment with PDGF-BB. Furthermore, integrin α3 inhibition preferentially enhanced adhesion to fibronectin via integrin α5. These findings indicate that PDL cell migration is reciprocally regulated by integrin α3-mediated inhibition and α5-mediated promotion. Thus, targeting integrin expression is a possible therapeutic strategy for periodontal regeneration.
Collapse
Affiliation(s)
- Mari Kawamura
- Department of Pathophysiology - Periodontal Science, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Tadashi Yamamoto
- Department of Pathophysiology - Periodontal Science, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Keisuke Yamashiro
- Department of Pathophysiology - Periodontal Science, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Shinsuke Kochi
- Department of Pathophysiology - Periodontal Science, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Chiaki Yoshihara-Hirata
- Department of Pathophysiology - Periodontal Science, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Hidetaka Ideguchi
- Department of Pathophysiology - Periodontal Science, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Hiroaki Aoyagi
- Department of Pathophysiology - Periodontal Science, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Kazuhiro Omori
- Department of Pathophysiology - Periodontal Science, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Shogo Takashiba
- Department of Pathophysiology - Periodontal Science, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| |
Collapse
|
12
|
Yamamoto T, Ugawa Y, Kawamura M, Yamashiro K, Kochi S, Ideguchi H, Takashiba S. Modulation of microenvironment for controlling the fate of periodontal ligament cells: the role of Rho/ROCK signaling and cytoskeletal dynamics. J Cell Commun Signal 2018; 12:369-378. [PMID: 29086204 PMCID: PMC5842188 DOI: 10.1007/s12079-017-0425-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2017] [Accepted: 10/17/2017] [Indexed: 12/20/2022] Open
Abstract
Cells behave in a variety of ways when they perceive changes in their microenvironment; the behavior of cells is guided by their coordinated interactions with growth factors, niche cells, and extracellular matrix (ECM). Modulation of the microenvironment affects the cell morphology and multiple gene expressions. Rho/Rho-associated coiled-coil-containing protein kinase (ROCK) signaling is one of the key regulators of cytoskeletal dynamics and actively and/or passively determines the cell fate, such as proliferation, migration, differentiation, and apoptosis, by reciprocal communication with the microenvironment. During periodontal wound healing, it is important to recruit the residential stem cells into the defect site for regeneration and homeostasis of the periodontal tissue. Periodontal ligament (PDL) cells contain a heterogeneous fibroblast population, including mesenchymal stem cells, and contribute to the reconstruction of tooth-supporting tissues. Therefore, bio-regeneration of PDL cells has been the ultimate goal of periodontal therapy for decades. Recent stem cell researches have shed light on intrinsic ECM properties, providing paradigm shifts in cell fate determination. This review focuses on the role of ROCK activity and the effects of Y-27632, a specific inhibitor of ROCK, in the modulation of ECM-microenvironment. Further, it presents the current understanding of how Rho/ROCK signaling affects the fate determination of stem cells, especially PDL cells. In addition, we have also discussed in detail the underlying mechanisms behind the reciprocal response to the microenvironment.
Collapse
Affiliation(s)
- Tadashi Yamamoto
- Department of Pathophysiology - Periodontal Science, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8525, Japan
| | - Yuki Ugawa
- Department of Pathophysiology - Periodontal Science, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8525, Japan
| | - Mari Kawamura
- Department of Pathophysiology - Periodontal Science, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8525, Japan
| | - Keisuke Yamashiro
- Department of Pathophysiology - Periodontal Science, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8525, Japan
| | - Shinsuke Kochi
- Department of Pathophysiology - Periodontal Science, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8525, Japan
| | - Hidetaka Ideguchi
- Department of Pathophysiology - Periodontal Science, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8525, Japan
| | - Shogo Takashiba
- Department of Pathophysiology - Periodontal Science, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8525, Japan.
| |
Collapse
|
13
|
Wang T, Kang W, Du L, Ge S. Rho-kinase inhibitor Y-27632 facilitates the proliferation, migration and pluripotency of human periodontal ligament stem cells. J Cell Mol Med 2017; 21:3100-3112. [PMID: 28661039 PMCID: PMC5661246 DOI: 10.1111/jcmm.13222] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2016] [Accepted: 03/30/2017] [Indexed: 01/03/2023] Open
Abstract
The selective in vitro expansion and differentiation of multipotent stem cells are critical steps in cell-based regenerative therapies, while technical challenges have limited cell yield and thus affected the success of these potential treatments. The Rho GTPases and downstream Rho kinases are central regulators of cytoskeletal dynamics during cell cycle and determine the balance between stem cells self-renewal, lineage commitment and apoptosis. Trans-4-[(1R)-aminoethyl]-N-(4-pyridinyl)cylohexanecarboxamidedihydrochloride (Y-27632), Rho-associated kinase (ROCK) inhibitor, involves various cellular functions that include actin cytoskeleton organization, cell adhesion, cell motility and anti-apoptosis. Here, human periodontal ligament stem cells (PDLSCs) were isolated by limiting dilution method. Cell counting kit-8 (CCK8), 5-ethynyl-2'-deoxyuridine (EdU) labelling assay, cell apoptosis assay, cell migration assay, wound-healing assay, alkaline phosphatase (ALP) activity assay, Alizarin Red S staining, Oil Red O staining, quantitative real-time polymerase chain reaction (qRT-PCR) were used to determine the effects of Y-27632 on the proliferation, apoptosis, migration, stemness, osteogenic and adipogenic differentiation of PDLSCs. Afterwards, Western blot analysis was performed to elucidate the mechanism of cell proliferation. The results indicated that Y-27632 significantly promoted cell proliferation, chemotaxis, wound healing, fat droplets formation and pluripotency, while inhibited ALP activity and mineral deposition. Furthermore, Y-27632 induced PDLSCs proliferation through extracellular-signal-regulated kinase (ERK) signalling cascade. Therefore, control of Rho-kinase activity may enhance the efficiency of stem cell-based treatments for periodontal diseases and the strategy may have the potential to promote periodontal tissue regeneration by facilitating the chemotaxis of PDLSCs to the injured site, and then enhancing the proliferation of these cells and maintaining their pluripotency.
Collapse
Affiliation(s)
- Ting Wang
- Shandong Provincial Key Laboratory of Oral Tissue RegenerationSchool of StomatologyShandong UniversityJinanChina
- Department of PeriodontologySchool of StomatologyShandong UniversityJinanChina
| | - Wenyan Kang
- Shandong Provincial Key Laboratory of Oral Tissue RegenerationSchool of StomatologyShandong UniversityJinanChina
- Department of PeriodontologySchool of StomatologyShandong UniversityJinanChina
| | - Lingqian Du
- Shandong Provincial Key Laboratory of Oral Tissue RegenerationSchool of StomatologyShandong UniversityJinanChina
- Department of StomatologyThe Second Hospital of Shandong UniversityJinanChina
| | - Shaohua Ge
- Shandong Provincial Key Laboratory of Oral Tissue RegenerationSchool of StomatologyShandong UniversityJinanChina
- Department of PeriodontologySchool of StomatologyShandong UniversityJinanChina
| |
Collapse
|
14
|
Li KQ, Jia SS, Ma M, Shen HZ, Xu L, Liu GP, Huang SY, Zhang DS. Effects of fluoride on proliferation and mineralization in periodontal ligament cells in vitro. ACTA ACUST UNITED AC 2017; 49:S0100-879X2016000800601. [PMID: 27409336 PMCID: PMC4954738 DOI: 10.1590/1414-431x20165291] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Accepted: 04/29/2016] [Indexed: 12/28/2022]
Abstract
Fluoride, which is often added to toothpaste or mouthwash in order to protect teeth from decay, may be a novel therapeutic approach for acceleration of periodontal regeneration. Therefore, we investigated the effects of fluoride on proliferation and mineralization in human periodontal ligament cells in vitro. The periodontal ligament cells were stimulated with various concentrations of NaF added into osteogenic inductive medium. Immunohistochemistry of cell identification, cell proliferation, alkaline phosphatase (ALP) activity assay, Alizarin red S staining and quantitative real-time-polymerase chain reaction (RT-PCR) were performed. Moderate concentrations of NaF (50-500 μmol/L) had pro-proliferation effects, while 500 μmol/L had the best effects. ALP activity and calcium content were significantly enhanced by 10 μmol/L NaF with osteogenic inductive medium. Quantitative RT-PCR data varied in genes as a result of different NaF concentrations and treatment periods. We conclude that moderate concentrations of NaF can stimulate proliferation and mineralization in periodontal ligament cells. These in vitro findings may provide a novel therapeutic approach for acceleration of periodontal regeneration by addition of suitable concentrations of NaF into the medication for periodontitis treatment, i.e., into periodontal packs and tissue patches.
Collapse
Affiliation(s)
- K Q Li
- Department of Oral and Maxillofacial Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
| | - S S Jia
- Department of Oral and Maxillofacial Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
| | - M Ma
- Department of Oral and Maxillofacial Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
| | - H Z Shen
- Department of Oral and Maxillofacial Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
| | - L Xu
- Department of Oral and Maxillofacial Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
| | - G P Liu
- Department of Oral and Maxillofacial Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
| | - S Y Huang
- Department of Oral and Maxillofacial Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
| | - D S Zhang
- Department of Oral and Maxillofacial Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
| |
Collapse
|
15
|
Ugawa Y, Yamamoto T, Kawamura M, Yamashiro K, Shimoe M, Tomikawa K, Hongo S, Maeda H, Takashiba S. Rho-kinase regulates extracellular matrix-mediated osteogenic differentiation of periodontal ligament cells. Cell Biol Int 2017; 41:651-658. [DOI: 10.1002/cbin.10769] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Accepted: 03/26/2017] [Indexed: 11/06/2022]
Affiliation(s)
- Yuki Ugawa
- Department of Pathophysiology-Periodontal Science; Okayama University Graduate School of Medicine; Dentistry and Pharmaceutical Sciences; 2-5-1 Shikata-cho Kita-ku Okayama 700-8525 Japan
| | - Tadashi Yamamoto
- Department of Pathophysiology-Periodontal Science; Okayama University Graduate School of Medicine; Dentistry and Pharmaceutical Sciences; 2-5-1 Shikata-cho Kita-ku Okayama 700-8525 Japan
| | - Mari Kawamura
- Department of Pathophysiology-Periodontal Science; Okayama University Graduate School of Medicine; Dentistry and Pharmaceutical Sciences; 2-5-1 Shikata-cho Kita-ku Okayama 700-8525 Japan
| | - Keisuke Yamashiro
- Department of Pathophysiology-Periodontal Science; Okayama University Graduate School of Medicine; Dentistry and Pharmaceutical Sciences; 2-5-1 Shikata-cho Kita-ku Okayama 700-8525 Japan
| | - Masayuki Shimoe
- Department of Pathophysiology-Periodontal Science; Okayama University Graduate School of Medicine; Dentistry and Pharmaceutical Sciences; 2-5-1 Shikata-cho Kita-ku Okayama 700-8525 Japan
| | - Kazuya Tomikawa
- Department of Pathophysiology-Periodontal Science; Okayama University Graduate School of Medicine; Dentistry and Pharmaceutical Sciences; 2-5-1 Shikata-cho Kita-ku Okayama 700-8525 Japan
| | - Shoichi Hongo
- Department of Pathophysiology-Periodontal Science; Okayama University Graduate School of Medicine; Dentistry and Pharmaceutical Sciences; 2-5-1 Shikata-cho Kita-ku Okayama 700-8525 Japan
| | - Hiroshi Maeda
- Department of Pathophysiology-Periodontal Science; Okayama University Graduate School of Medicine; Dentistry and Pharmaceutical Sciences; 2-5-1 Shikata-cho Kita-ku Okayama 700-8525 Japan
| | - Shogo Takashiba
- Department of Pathophysiology-Periodontal Science; Okayama University Graduate School of Medicine; Dentistry and Pharmaceutical Sciences; 2-5-1 Shikata-cho Kita-ku Okayama 700-8525 Japan
| |
Collapse
|
16
|
Li Z, Qiu J, Du LQ, Jia L, Liu H, Ge S. TiO 2 nanorod arrays modified Ti substrates promote the adhesion, proliferation and osteogenic differentiation of human periodontal ligament stem cells. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 76:684-691. [PMID: 28482579 DOI: 10.1016/j.msec.2017.03.148] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Revised: 03/08/2017] [Accepted: 03/13/2017] [Indexed: 11/27/2022]
Abstract
Nanostructure coating on titanium (Ti) implants is well known as a cue for directing osteoblast behavior and function. However, effects of nanostructure coatings on dental stem cells have been rarely explored. In this work, assembled TiO2 nanorod arrays (TNRs) were fabricated on the polished Ti substrates using hydrothermal and sintering methods. The adhesion, morphology, proliferation and osteogenic differentiation of human periodontal ligament stem cells (PDLSCs) seeded onto TNRs substrates were evaluated. Ti substrates were used as control. Rougher TNRs showed better hydrophilicity and protein adsorption capacity compared with Ti control. When seeded on TNRs substrates, PDLSCs exhibited more stretched morphology and higher proliferation rate. Cytoskeletal F-actin expression was markedly promoted for PDLSCs cultured on TNRs substrates under osteogenic induction. Alkaline phosphatase (ALP) activity and mineral deposition were also enhanced by TNRs. Moreover, osteogenesis-related markers of ALP, runt related transcription factor 2 (Runx2) and osteopontin (OPN) of PDLSCs cultured on TNRs substrates were significantly up-regulated at both gene and protein levels when compared to Ti substrates. In conclusion, the unique structure of TNRs provided a biocompatible platform for modulating morphology and function of PDLSCs. The promotion of osteogenic differentiation indicated that the surface modification of implants with TNRs may improve the osteogenic activity of implants and the bone-implant integration in future clinical applications.
Collapse
Affiliation(s)
- Zhi Li
- Shandong Provincial Key Laboratory of Oral Tissue Regeneration, School of Stomatology, Shandong University, Jinan 250012, China; Department of Periodontology, School of Stomatology, Shandong University, Jinan 250012, China
| | - Jichuan Qiu
- Center of Bio&Micro/Nano Functional Materials, State Key Laboratory of Crystal Materials, Shandong University, Jinan 250010, China
| | - Ling Qian Du
- Shandong Provincial Key Laboratory of Oral Tissue Regeneration, School of Stomatology, Shandong University, Jinan 250012, China; Department of Stomatology, The Second Hospital of Shandong University, Jinan 250033, China
| | - Lu Jia
- Shandong Provincial Key Laboratory of Oral Tissue Regeneration, School of Stomatology, Shandong University, Jinan 250012, China; Department of Periodontology, School of Stomatology, Shandong University, Jinan 250012, China
| | - Hong Liu
- Center of Bio&Micro/Nano Functional Materials, State Key Laboratory of Crystal Materials, Shandong University, Jinan 250010, China
| | - Shaohua Ge
- Shandong Provincial Key Laboratory of Oral Tissue Regeneration, School of Stomatology, Shandong University, Jinan 250012, China; Department of Periodontology, School of Stomatology, Shandong University, Jinan 250012, China.
| |
Collapse
|
17
|
Functions of Rho family of small GTPases and Rho-associated coiled-coil kinases in bone cells during differentiation and mineralization. Biochim Biophys Acta Gen Subj 2017; 1861:1009-1023. [PMID: 28188861 DOI: 10.1016/j.bbagen.2017.02.005] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Revised: 02/02/2017] [Accepted: 02/06/2017] [Indexed: 12/12/2022]
Abstract
BACKGROUND Members of Rho-associated coiled-coil kinases (ROCKs) are effectors of Rho family of small GTPases. ROCKs have multiple functions that include regulation of cellular contraction and polarity, adhesion, motility, proliferation, apoptosis, differentiation, maturation and remodeling of the extracellular matrix (ECM). SCOPE OF THE REVIEW Here, we focus on the action of RhoA and RhoA effectors, ROCK1 and ROCK2, in cells related to tissue mineralization: mesenchymal stem cells, chondrocytes, preosteoblasts, osteoblasts, osteocytes, lining cells and osteoclasts. MAJOR CONCLUSIONS The activation of the RhoA/ROCK pathway promotes stress fiber formation and reduces chondrocyte and osteogenic differentiations, in contrast to that in mesenchymal stem cells which stimulated the osteogenic and the chondrogenic differentiation. The effects of Rac1 and Cdc42 in promoting chondrocyte hypertrophy and of Rac1, Rac2 and Cdc42 in osteoclast are discussed. In addition, members of the Rho family of GTPases such Rac1, Rac2, Rac3 and Cdc42, acting upstream of ROCK and/or other protein effectors, may compensate the actions of RhoA, affecting directly or indirectly the actions of ROCKs as well as other protein effectors. GENERAL SIGNIFICANCE ROCK activity can trigger cartilage degradation and affect bone formation, therefore these kinases may represent a possible therapeutic target to treat osteoarthritis and osseous diseases. Inhibition of Rho/ROCK activity in chondrocytes prevents cartilage degradation, stimulate mineralization of osteoblasts and facilitate bone formation around implanted metals. Treatment with osteoprotegerin results in a significant decrease in the expression of Rho GTPases, ROCK1 and ROCK2, reducing bone resorption. Inhibition of ROCK signaling increases osteoblast differentiation in a topography-dependent manner.
Collapse
|
18
|
Uzawa K, Kasamatsu A, Saito T, Takahara T, Minakawa Y, Koike K, Yamatoji M, Nakashima D, Higo M, Sakamoto Y, Shiiba M, Tanzawa H. Long-term culture of human odontoma-derived cells with a Rho kinase inhibitor. Exp Cell Res 2016; 347:232-240. [PMID: 27514999 DOI: 10.1016/j.yexcr.2016.08.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Revised: 07/27/2016] [Accepted: 08/07/2016] [Indexed: 10/21/2022]
Abstract
Because of cellular senescence/apoptosis, no effective culture systems are available to maintain replication of cells from odontogenic tumors especially for odontoma, and, thus, the ability to isolate human odontoma-derived cells (hODCs) for functional studies is needed. The current study was undertaken to develop an approach to isolate hODCs and fully characterize the cells in vitro. The hODCs were cultured successfully with a Rho-associated protein kinase inhibitor (Y-27632) for an extended period with stabilized lengths of the telomeres to sustain a similar phenotype/property as the primary tumoral cells. While the hODCs showed stable long-term expansion with expression of major dental epithelial markers including dentin sialophosphoprotein (DSPP) even in the three-dimensional microenvironment, they lack the specific markers for the characteristics of stem cells. Moreover, cells from dental pulp showed significant up-regulation of DSPP when co-cultured with the hODCs, while control fibroblasts with the hODCs did not. Taken together, we propose that the hODCs can be isolated and expanded over the long term with Y-27632 to investigate not only the development of the hODCs but also other types of benign human tumors.
Collapse
Affiliation(s)
- Katsuhiro Uzawa
- Department of Oral Science, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-Ku, Chiba 260-8670, Japan; Department of Dentistry and Oral-Maxillofacial Surgery, Chiba University Hospital, 1-8-1 Inohana, Chuo-Ku, Chiba 260-8677, Japan.
| | - Atsushi Kasamatsu
- Department of Dentistry and Oral-Maxillofacial Surgery, Chiba University Hospital, 1-8-1 Inohana, Chuo-Ku, Chiba 260-8677, Japan
| | - Tomoaki Saito
- Department of Oral Science, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-Ku, Chiba 260-8670, Japan
| | - Toshikazu Takahara
- Department of Oral Science, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-Ku, Chiba 260-8670, Japan
| | - Yasuyuki Minakawa
- Department of Oral Science, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-Ku, Chiba 260-8670, Japan
| | - Kazuyuki Koike
- Department of Dentistry and Oral-Maxillofacial Surgery, Chiba University Hospital, 1-8-1 Inohana, Chuo-Ku, Chiba 260-8677, Japan
| | - Masanobu Yamatoji
- Department of Dentistry and Oral-Maxillofacial Surgery, Chiba University Hospital, 1-8-1 Inohana, Chuo-Ku, Chiba 260-8677, Japan
| | - Dai Nakashima
- Department of Dentistry and Oral-Maxillofacial Surgery, Chiba University Hospital, 1-8-1 Inohana, Chuo-Ku, Chiba 260-8677, Japan
| | - Morihiro Higo
- Department of Dentistry and Oral-Maxillofacial Surgery, Chiba University Hospital, 1-8-1 Inohana, Chuo-Ku, Chiba 260-8677, Japan
| | - Yosuke Sakamoto
- Department of Dentistry and Oral-Maxillofacial Surgery, Chiba University Hospital, 1-8-1 Inohana, Chuo-Ku, Chiba 260-8677, Japan
| | - Masashi Shiiba
- Department of Medical Oncology, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-Ku, Chiba 260-8670, Japan
| | - Hideki Tanzawa
- Department of Oral Science, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-Ku, Chiba 260-8670, Japan; Department of Dentistry and Oral-Maxillofacial Surgery, Chiba University Hospital, 1-8-1 Inohana, Chuo-Ku, Chiba 260-8677, Japan
| |
Collapse
|
19
|
Ma Y, Ji Y, Huang G, Ling K, Zhang X, Xu F. Bioprinting 3D cell-laden hydrogel microarray for screening human periodontal ligament stem cell response to extracellular matrix. Biofabrication 2015; 7:044105. [DOI: 10.1088/1758-5090/7/4/044105] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|