1
|
Estermann MA, Grimm S, Kitakule A, Rodriguez K, Brown P, McClelland K, Amato C, Yao HHC. NR2F2 regulation of interstitial to fetal Leydig cell differentiation in the testis: insights into differences of sex development. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.16.613312. [PMID: 39345510 PMCID: PMC11429913 DOI: 10.1101/2024.09.16.613312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Testicular fetal Leydig cells are a specialized cell type responsible for embryo masculinization. Fetal Leydig cells produce androgens, that induce the differentiation of male reproductive system and sexual characteristics. Deficiencies in Leydig cell differentiation leads to various disorders of sex development and male reproductive defects such as ambiguous genitalia, hypospadias, cryptorchidism, and infertility. Fetal Leydig cells are thought to originate from proliferating progenitor cells in the testis interstitium, marked by genes like Arx , Pdgfra , Tcf21 and Wnt5a . However, the precise mechanisms governing the transition from interstitial cells to fetal Leydig cells remain elusive. Through integrated approaches involving mouse models and single-nucleus multiomic analyses, we discovered that fetal Leydig cells originate from a Nr2f2 -positive non-steroidogenic interstitial cell population. Embryonic deletion of Nr2f2 in mouse testes resulted in disorders of sex development, including dysgenic testes, Leydig cell hypoplasia, cryptorchidism, and hypospadias. We found that NR2F2 promotes the progenitor cell fate while suppresses Leydig cell differentiation by directly and indirectly controlling a cohort of transcription factors and downstream genes. Bioinformatic analyses of single-nucleus ATAC-seq and NR2F2 ChIP-seq data revealed putative transcription factors co-regulating the process of interstitial to Leydig cell differentiation. Collectively, our findings not only highlight the critical role of Nr2f2 in orchestrating the transition from interstitial cells to fetal Leydig cells, but also provide molecular insight into the disorders of sex development as a result of Nr2f2 mutations.
Collapse
|
2
|
Jessl L, Oehlmann J. No effects of the antiandrogens cyproterone acetate (CPA), flutamide and p,p'-DDE on early sexual differentiation but CPA-induced retardation of embryonic development in the domestic fowl ( Gallus gallus domesticus). PeerJ 2023; 11:e16249. [PMID: 37901474 PMCID: PMC10601917 DOI: 10.7717/peerj.16249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 09/18/2023] [Indexed: 10/31/2023] Open
Abstract
Because a wide range of environmental contaminants are known to cause endocrine disorders in humans and animals, in vivo tests are needed to identify such endocrine disrupting chemicals (EDCs) and to assess their biological effects. Despite the lack of a standardized guideline, the avian embryo has been shown to be a promising model system which responds sensitively to EDCs. After previous studies on the effects of estrogenic, antiestrogenic and androgenic substances, the present work focuses on the effects of in ovo exposure to p,p'-DDE, flutamide and cyproterone acetate (CPA) as antiandrogenic model compounds regarding gonadal sex differentiation and embryonic development of the domestic fowl (Gallus gallus domesticus). The substances were injected into the yolk of fertilized eggs on embryonic day one. On embryonic day 19 sex genotype and phenotype were determined, followed by gross morphological and histological examination of the gonads. Treatment with flutamide (0.5, 5, 50 µg/g egg), p,p'-DDE (0.5, 5, 50 µg/g egg) or CPA (0.2, 2, 20 µg/g egg) did not affect male or female gonad development, assessed by gonad surface area and cortex thickness in both sexes and by the percentage of seminiferous tubules in males as endpoints. This leads to the conclusion that antiandrogens do not affect sexual differentiation during embryonic development of G. gallus domesticus, reflecting that gonads are not target organs for androgens in birds. In ovo exposure to 2 and 20 µg CPA/g egg, however, resulted in significantly smaller embryos as displayed by shortened lengths of skull, ulna and tarsometatarsus. Although gonadal endpoints were not affected by antiandrogens, the embryo of G. gallus domesticus is shown to be a suitable test system for the identification of substance-related mortality and developmental delays.
Collapse
Affiliation(s)
- Luzie Jessl
- Aquatic Ecotoxicology, Goethe University Frankfurt, Frankfurt am Main, Hesse, Germany
- R-Biopharm AG, Darmstadt, Hesse, Germany
| | - Jörg Oehlmann
- Aquatic Ecotoxicology, Goethe University Frankfurt, Frankfurt am Main, Hesse, Germany
| |
Collapse
|
3
|
Huang J, Su C, Lu P, Zhao X, Liu Y, Xie Q, Chen C. hsa_circ_0000417 downregulation suppresses androgen receptor expression and apoptotic signals in human foreskin fibroblasts via sponging miR-6756-5p. Mol Biol Rep 2023; 50:6769-6781. [PMID: 37389702 DOI: 10.1007/s11033-023-08628-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 06/22/2023] [Indexed: 07/01/2023]
Abstract
BACKGROUND Dysregulated apoptosis of penile mesenchymal cells during male urethragenesis has been previously demonstrated to underly hypospadiac urethral closure failure, and androgen receptor (AR) has been shown to play a central role in regulating penile mesenchyme cell proliferation and survival. However, the regulatory mechanisms upstream and downstream of AR remain poorly understood. Our clinical data and bioinformatics analysis previously indicated that hsa_circ_0000417, a circRNA significantly downregulated in hypospadias preputial specimens, may act as a ceRNA for AR via sequestering hsa_miR-6756-5p, and that the biological functions of hsa_circ_0000417 may significantly involve the PI3K/AKT pathway. In this study, we employed human foreskin fibroblasts (HFF-1) to experimentally validate this putative hsa_circ_0000417/miR-6756-5p/AR axis and its impact on penile mesenchymal cell proliferation and apoptosis. METHOD AND RESULTS We showed that hsa_circ_0000417 knockdown significantly promoted proliferation and suppressed apoptosis of HFF-1 cells. Mechanistically, hsa_circ_0000417 functioned as a molecular sponge for miR-6756-5p in HFF-1 cells and relieved the latter's translational repression on AR mRNA, leading to decreased AKT activation and increased expression of pro-apoptotic proteins BAX and cleaved-caspase 9. Conversely, elevated levels of miR-6756-5p resulted in diminished AR expression concomitant with enhanced AKT activation and HFF-1 cell proliferation. CONCLUSIONS Collectively, our data describe for the first time a circRNA-mediated post-transcriptional regulatory mechanism of AR and its functional consequences in penile mesenchymal cells in the context of hypospadias. These findings may contribute to advancing our current understanding of the roles of AR and mesenchymal cell fate decisions during penile morphogenesis.
Collapse
Affiliation(s)
- Junqiang Huang
- Department of Pediatric Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Cheng Su
- Department of Pediatric Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Pingan Lu
- Faculty of Medicine, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, Amsterdam, Netherlands
| | - Xiangyou Zhao
- Department of Pediatric Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Yuling Liu
- Department of Pediatric Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Qike Xie
- Department of Pediatric Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Chao Chen
- Department of Pediatric Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China.
| |
Collapse
|
4
|
Tysman M, Toppari J, Main KM, Adamsson A, Wohlfahrt-Veje C, Antignac JP, Le Bizec B, Löyttyniemi E, Skakkebæk NE, Virtanen HE. Levels of persistent organic pollutants in breast milk samples representing Finnish and Danish boys with and without hypospadias. CHEMOSPHERE 2023; 313:137343. [PMID: 36423724 DOI: 10.1016/j.chemosphere.2022.137343] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 11/18/2022] [Accepted: 11/19/2022] [Indexed: 06/16/2023]
Abstract
Hypospadias is a congenital malformation of penile urethra with unknown etiology in most cases. Persistent organic pollutant (POP) exposure may disrupt endocrine function during a critical window of development of male genitalia. In animal studies, POPs have been associated with male reproductive disorders, including hypospadias, but only few studies have assessed this relationship in humans. The aim of this study is to investigate the association between hypospadias and POP concentration levels in breast milk, as a proxy for prenatal exposure. This is a nested case-control study of Danish and Finnish mother-son pairs. Maternal breast milk samples were collected between 1997 and 2002, and they represent infant boys born with hypospadias [n = 33 (n = 22 Danish and n = 11 Finnish)] and their 1:1 matched controls. Breast milk samples were analyzed for six classes of POPs [including dioxins, polychlorinated biphenyls, flame retardants and perfluorinated alkylated substances (PFAS)]. We estimated odds ratios (ORs) and 95% confidence intervals (CI) for each chemical class using conditional logistic regression. In addition, a composite exposure score system was used to explore the effect of a POP mixture (four chemical classes): The composite score was categorized as low, moderate, or high exposure, and differences between cases and controls were tested with conditional logistic regression. No statistically significant associations were observed between the sums of the chemical classes and hypospadias in either country. The composite score was unable to detect differences in the risk of hypospadias between the tertiles of POP exposure. Levels of PFAS were significantly higher in Danish than in Finnish breast milk samples. This small study does not provide evidence for an association between hypospadias and exposure to POPs but adds information on quantitative exposures. Further development of multi-exposure models is needed for assessing the potential mixture effect associated with multiple chemical exposures.
Collapse
Affiliation(s)
- Marie Tysman
- Institute of Biomedicine, Research Centre for Integrative Physiology and Pharmacology, And Centre for Population Health Research, University of Turku, Turku, Finland; Adjunct Affiliation with General Pediatrics, Michigan State University, East Lansing, MI, USA.
| | - Jorma Toppari
- Institute of Biomedicine, Research Centre for Integrative Physiology and Pharmacology, And Centre for Population Health Research, University of Turku, Turku, Finland; Department of Pediatrics, Turku University Hospital, Turku, Finland; Int Center for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Copenhagen University Hospital-Rigshospitalet, Copenhagen, Denmark.
| | - Katharina M Main
- Dept. of Growth and Reproduction, Copenhagen University Hospital-Rigshospitalet, Copenhagen, Denmark; Int Center for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Copenhagen University Hospital-Rigshospitalet, Copenhagen, Denmark; Dept of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark.
| | - Annika Adamsson
- Department of Pediatrics, Turku University Hospital, Turku, Finland.
| | - Christine Wohlfahrt-Veje
- Dept. of Growth and Reproduction, Copenhagen University Hospital-Rigshospitalet, Copenhagen, Denmark; Int Center for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Copenhagen University Hospital-Rigshospitalet, Copenhagen, Denmark.
| | | | | | | | - Niels E Skakkebæk
- Dept. of Growth and Reproduction, Copenhagen University Hospital-Rigshospitalet, Copenhagen, Denmark; Int Center for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Copenhagen University Hospital-Rigshospitalet, Copenhagen, Denmark; Dept of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark.
| | - Helena E Virtanen
- Institute of Biomedicine, Research Centre for Integrative Physiology and Pharmacology, And Centre for Population Health Research, University of Turku, Turku, Finland.
| |
Collapse
|
5
|
Jorgensen A, Svingen T, Miles H, Chetty T, Stukenborg JB, Mitchell RT. Environmental Impacts on Male Reproductive Development: Lessons from Experimental Models. Horm Res Paediatr 2021; 96:190-206. [PMID: 34607330 DOI: 10.1159/000519964] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 09/11/2021] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Male reproductive development in mammals can be divided into a gonadal formation phase followed by a hormone-driven differentiation phase. Failure of these processes may result in Differences in Sex Development (DSD), which may include abnormalities of the male reproductive tract, including cryptorchidism, hypospadias, infertility, and testicular germ cell cancer (TGCC). These disorders are also considered to be part of a testicular dysgenesis syndrome (TDS) in males. Whilst DSDs are considered to result primarily from genetic abnormalities, the development of TDS disorders is frequently associated with environmental factors. SUMMARY In this review, we will discuss the development of the male reproductive system in relation to DSD and TDS. We will also describe the experimental systems, including studies involving animals and human tissues or cells that can be used to investigate the role of environmental factors in inducing male reproductive disorders. We will discuss recent studies investigating the impact of environmental chemicals (e.g., phthalates and bisphenols), lifestyle factors (e.g., smoking) and pharmaceuticals (e.g., analgesics) on foetal testis development. Finally, we will describe the evidence, involving experimental and epidemiologic approaches, for a role of environmental factors in the development of specific male reproductive disorders, including cryptorchidism, hypospadias, and TGCC. KEY MESSAGES Environmental exposures can impact the development and function of the male reproductive system in humans. Epidemiology studies and experimental approaches using human tissues are important to translate findings from animal studies and account for species differences in response to environmental exposures.
Collapse
Affiliation(s)
- Anne Jorgensen
- Department of Growth and Reproduction, Copenhagen University Hospital (Rigshospitalet), Copenhagen, Denmark
| | - Terje Svingen
- Division of Diet, Disease Prevention and Toxicology, National Food Institute, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Harriet Miles
- Royal Hospital for Children and Young People, Edinburgh, UK
| | - Tarini Chetty
- Royal Hospital for Children and Young People, Edinburgh, UK
| | - Jan-Bernd Stukenborg
- NORDFERTIL Research Lab Stockholm, Childhood Cancer Research Unit, Department of Women's and Children's Health, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - Rod T Mitchell
- Royal Hospital for Children and Young People, Edinburgh, UK
- MRC Centre for Reproductive Health, The Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, UK
| |
Collapse
|
6
|
Cornification and classical versus nonclassical androgen receptor signaling in mouse penile/preputial development. Differentiation 2021; 121:1-12. [PMID: 34416482 DOI: 10.1016/j.diff.2021.08.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 08/11/2021] [Accepted: 08/13/2021] [Indexed: 11/23/2022]
Abstract
Mouse penile development is androgen-dependent. During development of male and female external genitalia, an internal ectodermal epithelial structure forms called the preputial lamina. At puberty the male preputial lamina canalizes to create the preputial space, effectively splitting into two layers: (a) the epithelial lining of the prepuce and (b) the surface epithelium of the penis. The female preputial lamina does not canalize, and instead remodels into the inverted U-shaped clitoral lamina of the adult female mouse. Androgen-dependent penile development was studied in transgenic mice with pathway-selective AR mutant transgenes through which AR signaling was activated either via the classical (AR-C) or the nonclassical pathway (AR-NC). Penile development and canalization of the preputial lamina was observed in AR-C and wild-type male mice naturally having both AR-C and AR-NC pathways. Conversely, clitoral development occurred in AR null (lacking both AR-C and AR-NC pathways) and AR-NC mice. The process of canalization of the preputial lamina seen in wild-type, AR-C and AR-C/AR-NC male mice involved cornification of the preputial lamina which involved up-regulation of keratin 10 and loricrin. Such up-regulation of these epidermal proteins was absent in the developing and adult clitoral lamina seen in wild-type female mice and AR-NC and AR null male (XY) mice. Thus, signaling through AR-C is sufficient to initiate and promote penile development and canalization of the preputial lamina, a process involving epithelial cornification.
Collapse
|
7
|
Yu H, Zhou X, Zhang Y, Wen K, Yan Z, Fu H, Zhu Y. Flutamide induces uterus and ovary damage in the mouse via apoptosis and excessive autophagy of cells following triggering of the unfolded protein response. Reprod Fertil Dev 2021; 33:466-475. [PMID: 33789078 DOI: 10.1071/rd20287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Accepted: 03/09/2021] [Indexed: 11/23/2022] Open
Abstract
Intrauterine exposure to flutamide not only causes abnormal development of the reproductive organs in male offspring, but also damages ovaries and uteri. The unfolded protein response (UPR) is believed to play an important role in embryo development and teratogenic processes. In the present study, pregnant mice were administered either flutamide (300mg kg-1 day-1, p.o.) on an equivalent volume of soybean oil (control) on Days 12-18 of gestation. Eight weeks after birth, female offspring in the flutamide-treated group had a lower bodyweight and lower ovarian and uterine weights, but there was no significant difference in uterine and ovarian weights normalised by bodyweight between the flutamide-treated and control groups. Furthermore, histopathological changes were observed in all uteri and ovaries in the flutamide-treated group, with fewer and less-developed follicles in the ovaries. In both the uteri and ovaries, flutamide increased the expression of UPR members, although the expression of cell cycle-related genes remained unchanged compared with the control group. Flutamide increased the expression of all autophagy- and apoptosis-related genes evaluated in the uterus, as well as some in the ovary. The results suggest that the in utero exposure of mice to flutamide may contribute to uterine and ovarian damage in the offspring, with endoplasmic reticulum stress possibly triggered by the UPR leading to the induction of excessive autophagy and apoptosis.
Collapse
Affiliation(s)
- Haiming Yu
- Department of Critical Medicine, The First Affiliated Hospital of Hunan Normal University (The People's Hospital of Hunan Province), Changsha 410002, PR China
| | - Xiaoqing Zhou
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Medical School, Hunan Normal University, Changsha 410013, PR China; and Department of Infection Control, The Eighth Hospital of Xi'An/Shanxi Provincial Infectious Disease Hospital, Xi'An 710061, PR China
| | - Yujing Zhang
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Medical School, Hunan Normal University, Changsha 410013, PR China
| | - Kexin Wen
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Medical School, Hunan Normal University, Changsha 410013, PR China; and Changsha Center for Disease Control and Prevention of Hunan Province, Changsha 410004, PR China
| | - Zhengli Yan
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Medical School, Hunan Normal University, Changsha 410013, PR China
| | - Hu Fu
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Medical School, Hunan Normal University, Changsha 410013, PR China
| | - Yongfei Zhu
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Medical School, Hunan Normal University, Changsha 410013, PR China; and Corresponding author.
| |
Collapse
|
8
|
Endocrine disrupting chemicals in the pathogenesis of hypospadias; developmental and toxicological perspectives. Curr Res Toxicol 2021; 2:179-191. [PMID: 34345859 PMCID: PMC8320613 DOI: 10.1016/j.crtox.2021.03.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 03/24/2021] [Accepted: 03/25/2021] [Indexed: 12/11/2022] Open
Abstract
Penis development is regulated by a tight balance of androgens and estrogens. EDCs that impact androgen/estrogen balance during development cause hypospadias. Cross-disciplinary collaborations are needed to define a mechanistic link.
Hypospadias is a defect in penile urethral closure that occurs in approximately 1/150 live male births in developed nations, making it one of the most common congenital abnormalities worldwide. Alarmingly, the frequency of hypospadias has increased rapidly over recent decades and is continuing to rise. Recent research reviewed herein suggests that the rise in hypospadias rates can be directly linked to our increasing exposure to endocrine disrupting chemicals (EDCs), especially those that affect estrogen and androgen signalling. Understanding the mechanistic links between endocrine disruptors and hypospadias requires toxicologists and developmental biologists to define exposures and biological impacts on penis development. In this review we examine recent insights from toxicological, developmental and epidemiological studies on the hormonal control of normal penis development and describe the rationale and evidence for EDC exposures that impact these pathways to cause hypospadias. Continued collaboration across these fields is imperative to understand the full impact of endocrine disrupting chemicals on the increasing rates of hypospadias.
Collapse
Key Words
- Androgen
- BBP, benzyl butyl phthalate
- BPA, bisphenol A
- DBP, Σdibutyl phthalate
- DDT, dichlorodiphenyltrichloroethane
- DEHP, Σdi-2(ethylhexyl)-phthalate
- DHT, dihydrotestosterone
- EDC, endocrine disrupting chemicals
- EMT, epithelial to mesenchymal transition
- ER, estrogen receptor
- Endocrine disruptors
- Estrogen
- GT, genital tubercle
- Hypospadias
- NOAEL, no observed adverse effect level
- PBB, polybrominated biphenyl
- PBDE, polybrominated diphenyl ether
- PCB, polychlorinated biphenyl
- PCE, tetrachloroethylene
- Penis
Collapse
|
9
|
Chang J, Wang S, Zheng Z. Etiology of Hypospadias: A Comparative Review of Genetic Factors and Developmental Processes Between Human and Animal Models. Res Rep Urol 2021; 12:673-686. [PMID: 33381468 PMCID: PMC7769141 DOI: 10.2147/rru.s276141] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Accepted: 09/28/2020] [Indexed: 11/23/2022] Open
Abstract
Hypospadias is a congenital anomaly of the penis with an occurrence of approximately 1 in 200 boys, but the etiology of the majority of hypospadias has remained unknown. Numerous genes have been reported as having variants in hypospadias patients, and many studies on genetic deletion of key genes in mouse genital development have also been published. Until now, no comparative analysis in the genes related literature has been reported. The basic knowledge of penile development and hypospadias is mainly obtained from animal model studies. Understanding of the differences and similarities between human and animal models is crucial for studies of hypospadias. In this review, mutations and polymorphisms of hypospadias-related genes have been compared between humans and mice, and differential genotype–phenotype relationships of certain genes between humans and mice have been discussed using the data available in PubMed and MGI online databases, and our analysis only revealed mutations in seven out of 43 human hypospadias related genes which have been reported to show similar phenotypes in mutant mice. The differences and similarities in the processes of penile development and hypospadias malformation among human and commonly used animal models suggest that the guinea pig may be a good model to study the mechanism of human penile development and etiology of hypospadias.
Collapse
Affiliation(s)
- Jun Chang
- Department of Physiology, School of Medicine, Southern Illinois University Carbondale, Carbondale, IL 62901, USA.,School of Life Science, Jiangxi Science & Technology Normal University, Nanchang, Jiangxi 330013, People's Republic of China
| | - Shanshan Wang
- Department of Physiology, School of Medicine, Southern Illinois University Carbondale, Carbondale, IL 62901, USA
| | - Zhengui Zheng
- Department of Physiology, School of Medicine, Southern Illinois University Carbondale, Carbondale, IL 62901, USA
| |
Collapse
|
10
|
Yu H, Wen K, Zhou X, Zhang Y, Yan Z, Fu H, Zhu J, Zhu Y. Role of unfolded protein response in genital malformation/damage of male mice induced by flutamide. Hum Exp Toxicol 2020; 39:1690-1699. [PMID: 32662666 DOI: 10.1177/0960327120937049] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The unfolded protein response (UPR) is one of a switch of autophagy and apoptosis, and the endoplasmic reticulum stress (ERS) which inducing UPR plays a role in the malformations caused by some genetic and environmental factors. Exposure to flutamide during pregnancy will also cause abnormalities in some male offspring reproductive organs such as cryptorchidism. In this study, after administered the pregnant mouse orally at a dose of 300 mg/kg body weight every day during gestational day (GD)12 to GD18, flutamide can not only caused hypospadias in the male mouse offspring but also damaged the morphology and function of their testis. And the expression of UPR-related genes and proteins, autophagy, apoptosis, and angiogenesis-related genes of the damaged/teratogenic testis and penis in the mice were investigated to determine the role of UPR in this model. It was found that flutamide activated maybe the Atg7-Atg3-Lc3 pathway through the UPR pathway, caused cells excessive autophagy and apoptosis, and inhibited the formation of penile and testicular blood vessels by activating UPR and affecting the messenger RNA level of vascular endothelial growth factor and hypoxia-inducible factor 1.
Collapse
Affiliation(s)
- H Yu
- Department of Critical Medicine, 12568the First Affiliated Hospital of Hunan Normal University/the People's Hospital of Hunan Province, Changsha, People's Republic of China
| | - K Wen
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Medical School, 12568Hunan Normal University, Changsha, People's Republic of China.,Changsha Center for Disease Control and Prevention of Hunan Province, Changsha, People's Republic of China
| | - X Zhou
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Medical School, 12568Hunan Normal University, Changsha, People's Republic of China
| | - Y Zhang
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Medical School, 12568Hunan Normal University, Changsha, People's Republic of China
| | - Z Yan
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Medical School, 12568Hunan Normal University, Changsha, People's Republic of China
| | - H Fu
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Medical School, 12568Hunan Normal University, Changsha, People's Republic of China
| | - J Zhu
- Department of Health Toxicology, Naval Military Medical University, Shanghai, People's Republic of China
| | - Y Zhu
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Medical School, 12568Hunan Normal University, Changsha, People's Republic of China
| |
Collapse
|
11
|
Johansson HK, Svingen T. Hedgehog signal disruption, gonadal dysgenesis and reproductive disorders: Is there a link to endocrine disrupting chemicals? Curr Res Toxicol 2020; 1:116-123. [PMID: 34345840 PMCID: PMC8320607 DOI: 10.1016/j.crtox.2020.10.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 10/05/2020] [Accepted: 10/06/2020] [Indexed: 01/04/2023] Open
Abstract
Developmental exposure to chemicals that can disrupt sex hormone signaling may cause a broad spectrum of reproductive disorders. This is because reproductive development is tightly regulated by steroid sex hormones. Consequently, non-animal screening methods currently used to test chemicals for potential endocrine disrupting activities typically include steroidogenesis and nuclear receptor assays. In many cases there is a correlation between in vitro and in vivo data examining endocrine disruption, for example between blocked androgen receptor activity and feminized male genitals. However, there are many examples where there is poor, or no, correlation between in vitro data and in vivo effect outcomes in rodent studies, for various reasons. One possible, and less studied, reason for discordance between in vitro and in vivo data is that the mechanisms causing the in vivo effects are not covered by those typically tested for in vitro. This knowledge gap must be addressed if we are to elaborate robust testing strategies that do not rely on animal experimentation. In this review, we highlight the Hedgehog (HH) signaling pathway as a target for environmental chemicals and its potential implications for reproductive disorders originating from early life exposure. A central proposition is that, by disrupting HH signal transduction during critical stages of mammalian development, the endocrine cells of the testes or ovaries fail to develop normally, which ultimately will lead to disrupted sex hormone synthesis and sexual development in both sexes. If this is the case, then such mechanism must also be included in future test strategies aimed at eliminating chemicals that may cause reproductive disorders in humans.
Collapse
Affiliation(s)
- Hanna K.L. Johansson
- Division of Diet, Disease Prevention and Toxicology, National Food Institute, Technical University of Denmark, Kgs. Lyngby, DK-2800, Denmark
| | - Terje Svingen
- Division of Diet, Disease Prevention and Toxicology, National Food Institute, Technical University of Denmark, Kgs. Lyngby, DK-2800, Denmark
| |
Collapse
|
12
|
Discrete Hedgehog Factor Expression and Action in the Developing Phallus. Int J Mol Sci 2020; 21:ijms21041237. [PMID: 32059607 PMCID: PMC7072906 DOI: 10.3390/ijms21041237] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 02/10/2020] [Accepted: 02/10/2020] [Indexed: 01/02/2023] Open
Abstract
Hypospadias is a failure of urethral closure within the penis occurring in 1 in 125 boys at birth and is increasing in frequency. While paracrine hedgehog signalling is implicated in the process of urethral closure, how these factors act on a tissue level to execute closure itself is unknown. This study aimed to understand the role of different hedgehog signalling members in urethral closure. The tammar wallaby (Macropus eugenii) provides a unique system to understand urethral closure as it allows direct treatment of developing offspring because mothers give birth to young before urethral closure begins. Wallaby pouch young were treated with vehicle or oestradiol (known to induce hypospadias in males) and samples subjected to RNAseq for differential expression and gene ontology analyses. Localisation of Sonic Hedgehog (SHH) and Indian Hedgehog (IHH), as well as the transcription factor SOX9, were assessed in normal phallus tissue using immunofluorescence. Normal tissue culture explants were treated with SHH or IHH and analysed for AR, ESR1, PTCH1, GLI2, SOX9, IHH and SHH expression by qPCR. Gene ontology analysis showed enrichment for bone differentiation terms in male samples compared with either female samples or males treated with oestradiol. Expression of SHH and IHH localised to specific tissue areas during development, akin to their compartmentalised expression in developing bone. Treatment of phallus explants with SHH or IHH induced factor-specific expression of genes associated with bone differentiation. This reveals a potential developmental interaction involved in urethral closure that mimics bone differentiation and incorporates discrete hedgehog activity within the developing phallus and phallic urethra.
Collapse
|
13
|
Baskin L, Cao M, Sinclair A, Li Y, Overland M, Isaacson D, Cunha GR. Androgen and estrogen receptor expression in the developing human penis and clitoris. Differentiation 2020; 111:41-59. [PMID: 31655443 PMCID: PMC6926156 DOI: 10.1016/j.diff.2019.08.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 08/28/2019] [Accepted: 08/28/2019] [Indexed: 12/21/2022]
Abstract
To better understand how the human fetal penis and clitoris grows and remodels, we undertook an investigation to define active areas of cellular proliferation and programmed cell death spatially and temporally during development of human fetal external genitalia from the indifferent stage (8 weeks) to 18 weeks of gestation. Fifty normal human fetal penile and clitoral specimens were examined using macroscopic imaging, scanning electron microscopy and immunohistochemical localization for the cellular proliferation and apoptotic markers, Ki67 and Caspase-3. A number of hot spots of cellular proliferation characterized by Ki67 localization are present in the penis and clitoris especially early in development, most notably in the corporal body, glans, remodeling glanular urethra, the urethral plate, the roof of the urethral groove and the fully formed penile urethra. The 12-fold increase in penile length over 10 weeks of growth from 8 to 18 weeks of gestation based on Ki67 labelling appears to be driven by cellular proliferation in the corporal body and glans. Throughout all ages in both the developing penis and clitoris Ki67 labeling was consistently elevated in the ventral epidermis and ventral mesenchyme relative to the dorsal counterparts. This finding is consistent with the intense morphogenetic activity/remodeling in the ventral half of the genital tubercle in both sexes involving formation of the urethral/vestibular plates, canalization of the urethral/vestibular plates and fusion of the urethral folds to form the penile urethra. Areas of reduced or absent Ki67 staining include the urethral fold epithelium that fuses to form the penile tubular urethra. In contrast, the urethral fold mesenchyme is positive for Ki67. Apoptosis was rarely noted in the developing penis and clitoris; the only area of minimal Caspase-3 localization was in the epithelium of the ventral epithelial glanular channel remodeling.
Collapse
Affiliation(s)
- Laurence Baskin
- Department of Urology, University of California, San Francisco, San Francisco, CA, USA; Division of Pediatric Urology, University of California San Francisco Benioff Children's Hospital, San Francisco, CA, USA.
| | - Mei Cao
- Department of Urology, University of California, San Francisco, San Francisco, CA, USA; Division of Pediatric Urology, University of California San Francisco Benioff Children's Hospital, San Francisco, CA, USA
| | - Adriane Sinclair
- Department of Urology, University of California, San Francisco, San Francisco, CA, USA; Division of Pediatric Urology, University of California San Francisco Benioff Children's Hospital, San Francisco, CA, USA
| | - Yi Li
- Department of Urology, University of California, San Francisco, San Francisco, CA, USA; Division of Pediatric Urology, University of California San Francisco Benioff Children's Hospital, San Francisco, CA, USA
| | - Maya Overland
- Department of Urology, University of California, San Francisco, San Francisco, CA, USA; Division of Pediatric Urology, University of California San Francisco Benioff Children's Hospital, San Francisco, CA, USA
| | - Dylan Isaacson
- Department of Urology, University of California, San Francisco, San Francisco, CA, USA; Division of Pediatric Urology, University of California San Francisco Benioff Children's Hospital, San Francisco, CA, USA
| | - Gerald R Cunha
- Department of Urology, University of California, San Francisco, San Francisco, CA, USA; Division of Pediatric Urology, University of California San Francisco Benioff Children's Hospital, San Francisco, CA, USA
| |
Collapse
|
14
|
Kuznetsova T, Fedulov A, Fedulova E, Semenov B, Prusakov A. Hypospadias in a Sheltie puppy: A case report. BULGARIAN JOURNAL OF VETERINARY MEDICINE 2020. [DOI: 10.15547/bjvm.2257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Hypospadias in dogs is a rare pathology in the veterinary practice. The manifestation of hypospadias in dogs is diverse, since there is a varying degree of damage to the urogenital apparatus. The owners of a Sheltie puppy at the age of 3 days came to the clinic due to the difficulty of determining sex, the presence of inflammation of the anus and abdominal skin, defecation and urination violations. Clinical examination of the puppy showed a blind-closed preputial sac, absence of the ventral wall of the prepuce and an open urogenital urine trough was located in its place in the abdominal wall area. On examination of the puppy at the age of 28 days, hyperaemia and swelling of the anus were noted, as well as prolapse of the rectum. Findings of the examination at the age of 4 months consisted of drying of the mucous part of the open urogenital canal chute and accumulation of pus in the underdeveloped preputial sac. Bilateral cryptorchidism and the absence of the scrotum were also found out. A decision on the surgical treatment was made. The anus and the opening of the urethra were separated to form a urethrostomy in the scrotum and restore the integrity of the anus. On the 5th post operative day, oedema and stricture of the reconstructed urethra resulted in difficulty urinating, followed by the formation of urinary fistula in the perineal region below the anus opening. As a result of the chosen surgical treatment approach, the problem with contact dermatitis of the perineum and pollakiuria was solved.
Collapse
|
15
|
Cunha GR, Sinclair A, Ricke WA, Robboy SJ, Cao M, Baskin LS. Reproductive tract biology: Of mice and men. Differentiation 2019; 110:49-63. [PMID: 31622789 PMCID: PMC7339118 DOI: 10.1016/j.diff.2019.07.004] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 07/24/2019] [Accepted: 07/26/2019] [Indexed: 12/11/2022]
Abstract
The study of male and female reproductive tract development requires expertise in two separate disciplines, developmental biology and endocrinology. For ease of experimentation and economy, the mouse has been used extensively as a model for human development and pathogenesis, and for the most part similarities in developmental processes and hormone action provide ample justification for the relevance of mouse models for human reproductive tract development. Indeed, there are many examples describing the phenotype of human genetic disorders that have a reasonably comparable phenotype in mice, attesting to the congruence between mouse and human development. However, anatomic, developmental and endocrinologic differences exist between mice and humans that (1) must be appreciated and (2) considered with caution when extrapolating information between all animal models and humans. It is critical that the investigator be aware of both the similarities and differences in organogenesis and hormone action within male and female reproductive tracts so as to focus on those features of mouse models with clear relevance to human development/pathology. This review, written by a team with extensive expertise in the anatomy, developmental biology and endocrinology of both mouse and human urogenital tracts, focusses upon the significant human/mouse differences, and when appropriate voices a cautionary note regarding extrapolation of mouse models for understanding development of human male and female reproductive tracts.
Collapse
Affiliation(s)
- Gerald R Cunha
- Department of Urology, University of California, 400 Parnassus Avenue, San Francisco, CA, 94143, USA; George M. O'Brien Center of Research Excellence, Department of Urology, University of Wisconsin, Madison, WI, 93705, USA; Department of Pathology, Duke University, Davison Building, Box 3712, Durham, NC, 27710, USA.
| | - Adriane Sinclair
- Department of Urology, University of California, 400 Parnassus Avenue, San Francisco, CA, 94143, USA
| | - Will A Ricke
- George M. O'Brien Center of Research Excellence, Department of Urology, University of Wisconsin, Madison, WI, 93705, USA
| | - Stanley J Robboy
- Department of Pathology, Duke University, Davison Building, Box 3712, Durham, NC, 27710, USA
| | - Mei Cao
- Department of Urology, University of California, 400 Parnassus Avenue, San Francisco, CA, 94143, USA
| | - Laurence S Baskin
- Department of Urology, University of California, 400 Parnassus Avenue, San Francisco, CA, 94143, USA
| |
Collapse
|
16
|
Hashimoto D, Hyuga T, Acebedo AR, Alcantara MC, Suzuki K, Yamada G. Developmental mutant mouse models for external genitalia formation. Congenit Anom (Kyoto) 2019; 59:74-80. [PMID: 30554442 DOI: 10.1111/cga.12319] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 11/07/2018] [Accepted: 11/14/2018] [Indexed: 02/06/2023]
Abstract
Development of external genitalia and perineum is the subject of developmental biology as well as toxicology and teratology researches. Cloaca forms in the lower (caudal) end of endoderm. Such endodermal epithelia and surrounding mesenchyme interact with various signals to form the external genitalia. External genitalia (the anlage termed as genital tubercle: GT) formation shows prominent sexually dimorphic morphogenesis in late embryonic stages, which is an unexplored developmental research field because of many reasons. External genitalia develop adjacent to the cloaca which develops urethra and corporal bodies. Developmental regulators including growth factor signals are necessary for epithelia-mesenchyme interaction (EMI) in posterior embryos including the cloaca and urethra in the genitalia. In the case of male type urethra, formation of tubular urethra proceeds from the lower (ventral) side of external genitalia as a masculinization process in contrast to the case of female urethra. Mechanisms for its development are not elucidated yet due to the lack of suitable mutant mouse models. Because of the recent progresses of Cre (recombinase)-mediated conditional target gene modification analyses, many developmental regulatory genes become increasingly analyzed. Conditional gene knockout mouse approaches and tissue lineage approaches are expected to offer vital information for such sexually dimorphic developmental processes. This review aims to offer recent updates on the progresses of these emerging developmental processes for the research field of congenital anomalies.
Collapse
Affiliation(s)
- Daiki Hashimoto
- Department of Developmental Genetics, Institute of Advanced Medicine, Wakayama Medical University (WMU), Wakayama, Japan
| | - Taiju Hyuga
- Department of Developmental Genetics, Institute of Advanced Medicine, Wakayama Medical University (WMU), Wakayama, Japan
| | - Alvin R Acebedo
- Department of Developmental Genetics, Institute of Advanced Medicine, Wakayama Medical University (WMU), Wakayama, Japan
| | - Mellissa C Alcantara
- Department of Developmental Genetics, Institute of Advanced Medicine, Wakayama Medical University (WMU), Wakayama, Japan
| | - Kentaro Suzuki
- Department of Developmental Genetics, Institute of Advanced Medicine, Wakayama Medical University (WMU), Wakayama, Japan
| | - Gen Yamada
- Department of Developmental Genetics, Institute of Advanced Medicine, Wakayama Medical University (WMU), Wakayama, Japan
| |
Collapse
|
17
|
Shen J, Isaacson D, Cao M, Sinclair A, Cunha GR, Baskin L. Immunohistochemical expression analysis of the human fetal lower urogenital tract. Differentiation 2018; 103:100-119. [PMID: 30287094 PMCID: PMC6589035 DOI: 10.1016/j.diff.2018.09.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 09/16/2018] [Accepted: 09/18/2018] [Indexed: 12/15/2022]
Abstract
We have studied the ontogeny of the developing human male and female urogenital tracts from 9 weeks (indifferent stage) to 16 weeks (advanced sex differentiation) of gestation by immunohistochemistry on mid-sagittal sections. Sixteen human fetal pelvises were serial sectioned in the sagittal plane and stained with antibodies to epithelial, muscle, nerve, proliferation and hormone receptor markers. Key findings are: (1) The corpus cavernosum in males and females extends into the glans penis and clitoris, respectively, during the ambisexual stage (9 weeks) and thus appears to be an androgen-independent event. (2) The entire human male (and female) urethra is endodermal in origin based on the presence of FOXA1, KRT 7, uroplakin, and the absence of KRT10 staining. The endoderm of the urethra interfaces with ectodermal epidermis at the site of the urethral meatus. (3) The surface epithelium of the verumontanum is endodermal in origin (FOXA1-positive) with a possible contribution of Pax2-positive epithelial cells implying additional input from the Wolffian duct epithelium. (4) Prostatic ducts arise from the endodermal (FOXA1-positive) urogenital sinus epithelium near the verumontanum. (5) Immunohistochemical staining of mid-sagittal and para-sagittal sections revealed the external anal sphincter, levator ani, bulbospongiosus muscle and the anatomic relationships between these developing skeletal muscles and organs of the male and female reproductive tracts. Future studies of normal human developmental anatomy will lay the foundation for understanding congenital anomalies of the lower urogenital tract.
Collapse
Affiliation(s)
- Joel Shen
- Department of Urology, University of California, San Francisco, San Francisco, CA, United States; Division of Pediatric Urology, University of California San Francisco Benioff Children's Hospital, San Francisco, CA, United States
| | - Dylan Isaacson
- Department of Urology, University of California, San Francisco, San Francisco, CA, United States; Division of Pediatric Urology, University of California San Francisco Benioff Children's Hospital, San Francisco, CA, United States
| | - Mei Cao
- Department of Urology, University of California, San Francisco, San Francisco, CA, United States; Division of Pediatric Urology, University of California San Francisco Benioff Children's Hospital, San Francisco, CA, United States
| | - Adriane Sinclair
- Department of Urology, University of California, San Francisco, San Francisco, CA, United States; Division of Pediatric Urology, University of California San Francisco Benioff Children's Hospital, San Francisco, CA, United States
| | - Gerald R Cunha
- Department of Urology, University of California, San Francisco, San Francisco, CA, United States; Division of Pediatric Urology, University of California San Francisco Benioff Children's Hospital, San Francisco, CA, United States
| | - Laurence Baskin
- Department of Urology, University of California, San Francisco, San Francisco, CA, United States; Division of Pediatric Urology, University of California San Francisco Benioff Children's Hospital, San Francisco, CA, United States.
| |
Collapse
|
18
|
Regulation of masculinization: androgen signalling for external genitalia development. Nat Rev Urol 2018; 15:358-368. [DOI: 10.1038/s41585-018-0008-y] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
19
|
Bertoldo MJ, Andraweera PH, Bromfield EG, Cousins FL, Lindsay LA, Paiva P, Regan SL, Rose RD, Akison LK. Recent and emerging reproductive biology research in Australia and New Zealand: highlights from the Society for Reproductive Biology Annual Meeting, 2017. Reprod Fertil Dev 2018; 30:1049-1054. [PMID: 29381876 DOI: 10.1071/rd17445] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Accepted: 12/09/2017] [Indexed: 12/27/2022] Open
Abstract
Research in reproductive science is essential to promote new developments in reproductive health and medicine, agriculture and conservation. The Society for Reproductive Biology (SRB) 2017 conference held in Perth (WA, Australia) provided a valuable update on current research programs in Australia and New Zealand. This conference review delivers a dedicated summary of significant questions, emerging concepts and innovative technologies presented in the symposia. This research demonstrates significant advances in the identification of precursors for a healthy pregnancy, birth and child, and discusses how these factors can influence disease risk. A key theme included preconception parental health and its effect on gametogenesis, embryo and fetal development and placental function. In addition, the perturbation of key developmental checkpoints was shown to contribute to a variety of pathological states that have the capacity to affect health and fertility. Importantly, the symposia discussed in this review emphasised the role of reproductive biology as a conduit for understanding the transmission of non-communicable diseases, such as metabolic disorders and cancers. The research presented at SRB 2017 has revealed key findings that have the prospect to change not only the fertility of the present generation, but also the health and reproductive capacity of future generations.
Collapse
Affiliation(s)
- M J Bertoldo
- Fertility and Research Centre, School of Women's and Children's Health, The University of New South Wales, Wallace Wurth Building, Randwick, NSW 2052, Australia
| | - P H Andraweera
- Adelaide Medical School and Robinson Research Institute, The University of Adelaide, North Terrace, Adelaide, SA 5005, Australia
| | - E G Bromfield
- Priority Research Centre for Reproductive Science, The University of Newcastle, University Drive, Callaghan, NSW 2308, Australia
| | - F L Cousins
- The Ritchie Centre, Hudson Institute of Medical Research, 27-31 Wright Street, Clayton, Vic. 3141, Australia
| | - L A Lindsay
- School of Medical Sciences (Anatomy and Histology), The University of Sydney, Anderson Stuart Building, F13, Sydney, NSW 2006, Australia
| | - P Paiva
- Gynaecology Research Centre, Department of Obstetrics and Gynaecology, Royal Women's Hospital, The University of Melbourne, Parkville, Vic. 3010, Australia
| | - S L Regan
- Stem Cell and Cancer Biology Laboratory, School of Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, Perth, WA 6102, Australia
| | - R D Rose
- Adelaide Medical School and Robinson Research Institute, The University of Adelaide, North Terrace, Adelaide, SA 5005, Australia
| | - L K Akison
- School of Biomedical Sciences, Sir William MacGregor Building, The University of Queensland, St Lucia, Qld 4072, Australia
| |
Collapse
|
20
|
Wang S, Shi M, Zhu D, Mathews R, Zheng Z. External Genital Development, Urethra Formation, and Hypospadias Induction in Guinea Pig: A Double Zipper Model for Human Urethral Development. Urology 2017; 113:179-186. [PMID: 29155192 DOI: 10.1016/j.urology.2017.11.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 10/31/2017] [Accepted: 11/02/2017] [Indexed: 01/23/2023]
Abstract
OBJECTIVE To determine whether the guinea pig phallus would be an appropriate model of human penile development, we characterized the embryology and sexual differentiation of guinea pig external genitalia and attended to induce hypospadias in males and tubular urethra formation in females pharmacologically. MATERIALS AND METHODS The external genitalia of guinea pig were collected from genital swelling initiation to newborn stages, and scanning electronic microscopy and histology were performed to visualize the morphology and structure. Immunohistochemistry was used to determine the androgen receptor localization. Bicalutamide and methyltestosterone were given to pregnant dams to reveal the role and timing of androgen in guinea pig penile masculinization. RESULTS Canalization and dorsal-to-ventral movement of the urethral canal develops the urethral groove in both sexes, and then the males perform distal-opening-proximal-closing to form tubular urethra. More nuclear-localized androgen receptor is found in proximal genital tubercles of males than in females at (E) 29. Antiandrogen treatment at E26-E30 can cause hypospadias, and methyltestosterone administration at E27-E31 can induce tubular urethra formation in females. CONCLUSION Fetal development of the guinea pig phallus is homologous to that of humans. Although guinea pig has structures similar to mouse, the urethral groove and the tubular urethra formation are more similar to humans. Antiandrogen treatment causes hypospadias in males and additional androgen induces tubular urethra formation in females. Thus, guinea pig is an appropriate model for further study of cellular and molecular mechanisms involved in distal-opening-proximal-closing in tubular urethra formation and the evaluation of the pathophysiological processes of hypospadias.
Collapse
Affiliation(s)
- Shanshan Wang
- Department of Physiology, School of Medicine, Southern Illinois University Carbondale, Carbondale, IL
| | - Mingxin Shi
- Department of Physiology, School of Medicine, Southern Illinois University Carbondale, Carbondale, IL
| | - Dongqing Zhu
- Department of Physiology, School of Medicine, Southern Illinois University Carbondale, Carbondale, IL; Department of Pharmacy, Jiangsu Food & Pharmaceutical Science College, Huai'an, Jiangsu Province, China
| | - Ranjiv Mathews
- Department of Urology, School of Medicine, Southern Illinois University, Springfield, IL
| | - Zhengui Zheng
- Department of Physiology, School of Medicine, Southern Illinois University Carbondale, Carbondale, IL.
| |
Collapse
|
21
|
Picut CA, Ziejewski MK, Stanislaus D. Comparative Aspects of Pre- and Postnatal Development of the Male Reproductive System. Birth Defects Res 2017; 110:190-227. [PMID: 29063715 DOI: 10.1002/bdr2.1133] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 08/29/2017] [Accepted: 08/30/2017] [Indexed: 01/01/2023]
Abstract
This review describes pre- and postnatal development of the male reproductive system in humans and laboratory animals, and highlights species differences in the timing and control of hormonal and morphologic events. Major differences are that the fetal testis is dependent on gonadotropins in humans, but is independent of such in rats; humans have an extended postnatal quiescent period, whereas rats exhibit no quiescence; and events such as secretion by the prostate and seminal vesicles, testicular descent, and the appearance of spermatogonia are all prenatal events in humans, but are postnatal events in rats. Major differences in the timing of the developmental sequence between rats and humans include: gonocyte transformation period (rat: postnatal day 0-9; human: includes gestational week 22 to 9 months of age); masculinization programming window (rat: gestational day 15.5-17.5; human: gestational week 9-14); and mini-puberty (rat: 0-6 hr after birth; human: 3-6 months of age). Endocrine disruptors can cause unique lesions in the prenatal and early postnatal testis; therefore, it is important to consider the differences in the timing of the developmental sequence when designing preclinical studies as identification of windows of sensitivity for endocrine disruption or toxicants will aid in interpretation of results and provide clues to a mode of action. Birth Defects Research 110:190-227, 2018. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Catherine A Picut
- Charles River Laboratories, Pathology Associates, Durham, North Carolina
| | - Mary K Ziejewski
- GlaxoSmithKline Research & Development, King of Prussia, Pennsylvania
| | - D Stanislaus
- GlaxoSmithKline Research & Development, King of Prussia, Pennsylvania
| |
Collapse
|
22
|
Isaacson D, Shen J, Cao M, Sinclair A, Yue X, Cunha G, Baskin L. Renal Subcapsular xenografing of human fetal external genital tissue - A new model for investigating urethral development. Differentiation 2017; 98:1-13. [PMID: 29031189 DOI: 10.1016/j.diff.2017.09.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 08/26/2017] [Accepted: 09/11/2017] [Indexed: 12/01/2022]
Abstract
In this paper, we introduce our novel renal subcapsular xenograft model for the study of human penile urethral and clitoral development. We grafted fifteen intact fetal penes and clitorides 8-11 weeks fetal age under the renal capsules of gonadectomized athymic mice. The mice were treated with a subcutaneous pellet of dihydrotestosterone (DHT), diethylstilbestrol (DES) or untreated with hormones. Xenografts were harvested after fourteen days of growth and analyzed via serial histologic sectioning and immunostaining for Ki-67, cytokeratins 6, 7 and 10, uroplakin and the androgen receptor. Non-grafted specimens of similar fetal age were sectioned and immunostained for the same antigenic markers. 14/15 (93.3%) grafts were successfully propagated and harvested. The developing urethral plate, urethral groove, tubular urethra, corporal bodies and preputial lamina were easily identifiable. These structures demonstrated robust cellularity, appropriate architecture and abundant Ki-67 expression. Expression patterns of cytokeratins 6, 7 and 10, uroplakin and the androgen receptor in xenografted specimens demonstrated characteristic male/female differences analogous to non-grafted specimens. DHT treatment reliably produced tubularization of nascent urethral and vestibular structures and male patterns of androgen receptor expression in grafts of both genetic sexes while estrogenic or hormonally absent conditions reliably resulted in a persistent open urethral/vestibular groove and female patterns of androgen receptor expression. This model's success enables further study into causal pathways by which endocrine-disrupting and endocrine-mimicking substances may directly cause disruption of normal human urethral development or hypospadias.
Collapse
Affiliation(s)
- Dylan Isaacson
- School of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Joel Shen
- Department of Urology, University of California, San Francisco, San Francisco, CA, USA
| | - Mei Cao
- Department of Urology, University of California, San Francisco, San Francisco, CA, USA
| | - Adriane Sinclair
- Department of Urology, University of California, San Francisco, San Francisco, CA, USA
| | - Xuan Yue
- Department of Urology, University of California, San Francisco, San Francisco, CA, USA
| | - Gerald Cunha
- Department of Urology, University of California, San Francisco, San Francisco, CA, USA
| | - Laurence Baskin
- Department of Urology, University of California, San Francisco, San Francisco, CA, USA; Division of Pediatric Urology, University of California San Francisco Benioff Children's Hospital, San Francisco, CA, USA.
| |
Collapse
|
23
|
|