1
|
Rhee JW, Adzavon YM, Sun Z. Stromal androgen signaling governs essential niches in supporting prostate development and tumorigenesis. Oncogene 2024; 43:3419-3425. [PMID: 39369165 PMCID: PMC11573710 DOI: 10.1038/s41388-024-03175-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 09/17/2024] [Accepted: 09/18/2024] [Indexed: 10/07/2024]
Abstract
Androgens and androgen receptor (AR) mediated signaling pathways are essential for prostate development, morphogenesis, growth, and regeneration. Early tissue recombination experiments showed that AR-deficient urogenital sinus mesenchyme combined with intact urogenital sinus epithelium failed to develop into a prostate, demonstrating a stem cell niche for mesenchymal AR in prostatic development. Androgen signaling remains critical for prostate maturation and growth during postnatal stages. Importantly, most primary prostate cancer (PCa) cells express the AR, and aberrant activation of AR directly promotes PCa development, growth, and progression. Therefore, androgen deprivation therapy (ADT) targeting the AR in PCa cells is the main treatment for advanced PCa. However, it eventually fails, leading to the development of castration-resistant PCa, an incurable disease. Given these clinical challenges, the oncogenic AR action needs to be reevaluated for developing new and effective therapies. Recently, an essential niche role of stromal AR was identified in regulating prostate development and tumorigenesis. Here, we summarize the latest discoveries of stromal AR niches and their interactions with prostatic epithelia. In combination with emerging clinical and experimental evidence, we specifically discuss several important and long-term unanswered questions regarding tumor niche roles of stromal AR and highlight future therapeutic strategies by co-targeting epithelial and stromal AR for treating advanced PCa.
Collapse
Affiliation(s)
- June-Wha Rhee
- Department of Medicine, City of Hope Comprehensive Cancer Center, Duarte, CA, USA
| | - Yao Mawulikplimi Adzavon
- Department of Cell Biology, Department of Oncology, Montefiore Cancer Center, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Zijie Sun
- Department of Cell Biology, Department of Oncology, Montefiore Cancer Center, Albert Einstein College of Medicine, Bronx, NY, USA.
| |
Collapse
|
2
|
Mori JO, Elhussin I, Brennen WN, Graham MK, Lotan TL, Yates CC, De Marzo AM, Denmeade SR, Yegnasubramanian S, Nelson WG, Denis GV, Platz EA, Meeker AK, Heaphy CM. Prognostic and therapeutic potential of senescent stromal fibroblasts in prostate cancer. Nat Rev Urol 2024; 21:258-273. [PMID: 37907729 PMCID: PMC11058122 DOI: 10.1038/s41585-023-00827-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/03/2023] [Indexed: 11/02/2023]
Abstract
The stromal component of the tumour microenvironment in primary and metastatic prostate cancer can influence and promote disease progression. Within the prostatic stroma, fibroblasts are one of the most prevalent cell types associated with precancerous and cancerous lesions; they have a vital role in the structural composition, organization and integrity of the extracellular matrix. Fibroblasts within the tumour microenvironment can undergo cellular senescence, which is a stable arrest of cell growth and a phenomenon that is emerging as a recognized hallmark of cancer. Supporting the idea that cellular senescence has a pro-tumorigenic role, a subset of senescent cells exhibits a senescence-associated secretory phenotype (SASP), which, along with increased inflammation, can promote prostate cancer cell growth and survival. These cellular characteristics make targeting senescent cells and/or modulating SASP attractive as a potential preventive or therapeutic option for prostate cancer.
Collapse
Affiliation(s)
- Joakin O Mori
- Department of Medicine, Boston University Chobanian & Avedisian School of Medicine and Boston Medical Center, Boston, MA, USA
| | - Isra Elhussin
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Urology and the James Buchanan Brady Urological Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - W Nathaniel Brennen
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Urology and the James Buchanan Brady Urological Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Mindy K Graham
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Tamara L Lotan
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Urology and the James Buchanan Brady Urological Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Clayton C Yates
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Urology and the James Buchanan Brady Urological Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Angelo M De Marzo
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Urology and the James Buchanan Brady Urological Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Samuel R Denmeade
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Urology and the James Buchanan Brady Urological Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Srinivasan Yegnasubramanian
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Urology and the James Buchanan Brady Urological Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - William G Nelson
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Urology and the James Buchanan Brady Urological Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Gerald V Denis
- Department of Medicine, Boston University Chobanian & Avedisian School of Medicine and Boston Medical Center, Boston, MA, USA
- Department of Pharmacology and Experimental Therapeutics, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Elizabeth A Platz
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Urology and the James Buchanan Brady Urological Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Alan K Meeker
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Urology and the James Buchanan Brady Urological Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Christopher M Heaphy
- Department of Medicine, Boston University Chobanian & Avedisian School of Medicine and Boston Medical Center, Boston, MA, USA.
- Department of Pathology and Laboratory Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA.
| |
Collapse
|
3
|
Jiang L, Khawaja H, Tahsin S, Clarkson TA, Miranti CK, Zohar Y. Microfluidic-based human prostate-cancer-on-chip. Front Bioeng Biotechnol 2024; 12:1302223. [PMID: 38322789 PMCID: PMC10844564 DOI: 10.3389/fbioe.2024.1302223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 01/09/2024] [Indexed: 02/08/2024] Open
Abstract
Lack of adequate models significantly hinders advances in prostate cancer treatment, where resistance to androgen-deprivation therapies and bone metastasis remain as major challenges. Current in vitro models fail to faithfully mimic the complex prostate physiology. In vivo animal models can shed light on the oncogenes involved in prostate cancer development and progression; however, the animal prostate gland is fundamentally different from that of human, and the underlying genetic mechanisms are different. To address this problem, we developed the first in vitro microfluidic human Prostate-Cancer-on-Chip (PCoC) model, where human prostate cancer and stromal fibroblast cells were co-cultivated in two channels separated by a porous membrane under culture medium flow. The established microenvironment enables soluble signaling factors secreted by each culture to locally diffuse through the membrane pores affecting the neighboring culture. We particularly explored the conversion of the stromal fibroblasts into cancer-associated fibroblasts (CAFs) due to the interaction between the 2 cell types. Immunofluorescence microscopy revealed that tumor cells induced CAF biomarkers, αSMA and COL1A1, in stromal fibroblasts. The stromal CAF conversion level was observed to increase along the flow direction in response to diffusion agents, consistent with simulations of solute concentration gradients. The tumor cells also downregulated androgen receptor (AR) expression in stromal fibroblasts, while an adequate level of stromal AR expression is maintained in normal prostate homeostasis. We further investigated tumor invasion into the stroma, an early step in the metastatic cascade, in devices featuring a serpentine channel with orthogonal channel segments overlaying a straight channel and separated by an 8 µm-pore membrane. Both tumor cells and stromal CAFs were observed to cross over into their neighboring channel, and the stroma's role seemed to be proactive in promoting cell invasion. As control, normal epithelial cells neither induced CAF conversion nor promoted cell invasion. In summary, the developed PCoC model allows spatiotemporal analysis of the tumor-stroma dynamic interactions, due to bi-directional signaling and physical contact, recapitulating tissue-level multicellular responses associated with prostate cancer in vivo. Hence, it can serve as an in vitro model to dissect mechanisms in human prostate cancer development and seek advanced therapeutic strategies.
Collapse
Affiliation(s)
- Linan Jiang
- Department of Aerospace and Mechanical Engineering, Tucson, AZ, United States
| | - Hunain Khawaja
- Cancer Biology Graduate Interdisciplinary Program, Tucson, AZ, United States
| | - Shekha Tahsin
- Cancer Biology Graduate Interdisciplinary Program, Tucson, AZ, United States
| | | | - Cindy K. Miranti
- Department of Molecular and Cellular Biology, Tucson, AZ, United States
- University of Arizona Cancer Center, University of Arizona, Tucson, AZ, United States
| | - Yitshak Zohar
- Department of Aerospace and Mechanical Engineering, Tucson, AZ, United States
- University of Arizona Cancer Center, University of Arizona, Tucson, AZ, United States
| |
Collapse
|
4
|
Sasaki T, Yoshikawa Y, Kageyama T, Sugino Y, Kato M, Masui S, Nishikawa K, Inoue T. Prostate fibroblasts enhance androgen receptor splice variant 7 expression in prostate cancer cells. Prostate 2023; 83:364-375. [PMID: 36479717 DOI: 10.1002/pros.24468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 10/22/2022] [Accepted: 11/20/2022] [Indexed: 12/12/2022]
Abstract
BACKGROUND Androgen receptor splice variant (AR-V) expression has been associated with prostate cancer (PCa) progression to castration-resistant PCa during androgen deprivation therapy, which reduces androgen production and inhibits androgen action in PCa cells. However, the mechanisms whereby aberrant AR-V expression is increased in PCa are still largely unknown. Fibroblasts in tumor stroma influence PCa initiation and aggressiveness, and which may play a crucial role in eliciting genetic changes during malignant transformation in human prostate epithelium. Here, our aim was to determine whether prostate fibroblasts in tumor stroma induce aberrant AR-V7 expression in PCa cells under low androgen concentration. METHODS We performed in vitro experiments using androgen-sensitive, AR-positive PCa cell lines (LNCaP and 22Rv1 cells), commercially available prostate stromal cells (PrSC), and primary cultured prostate fibroblasts (pcPrF) from PCa specimens collected from biopsies of patients with advanced PCa. PCa cells were cocultured with each of the three fibroblast lines (PrSC, pcPrF-M37, and pcPrF-M48). RESULTS The proliferation under low androgen concentration of LNCaP and 22Rv1 cells cocultured with PrSC, pcPrF-M37, or pcPrF-M48 was significantly increased compared to that of PCa cells cultured alone. Androgen receptor-full length (AR-FL) protein expression was increased in LNCaP and 22Rv1 cells cocultured with PrSC, pcPrF-M37, or pcPrF-M48. AR-V7 protein expression was increased in 22Rv1 cells cocultured with PrSC, pcPrF-M37, or pcPrF-M48. Under low androgen concentration, AR-V7 protein expression was slightly detected in LNCaP cells cocultured with PrSC or pcPrF-M37. Cytokine array analysis revealed that monocyte chemotactic protein-1 (MCP-1) and interleukin-8 (IL-8) levels in the conditioned medium of 22Rv1 cells cocultured with PrSC, pcPrF-M37, or pcPrF-M48 were increased under low androgen concentration. High IL-8 concentration (30 ng/ml) resulted in significantly increased protein expression of AR-FL, AR-V7, and phospho-NF-κB p65 in 22Rv1 cells. In contrast, IL-8 antibody (1 µg/ml) decreased AR-V7 protein expression in 22Rv1 cells cocultured with PrSC, pcPrF-M37, or pcPrF-M48. CONCLUSIONS pcPrF from PCa specimens increase the expression of aberrant AR-V7 in PCa cells. IL-8 may be a target for preventing the expression of aberrant AR-Vs in PCa.
Collapse
Affiliation(s)
- Takeshi Sasaki
- Department of Nephro-Urologic Surgery and Andrology, Mie University Graduate School of Medicine, Mie, Japan
| | - Yumi Yoshikawa
- Department of Nephro-Urologic Surgery and Andrology, Mie University Graduate School of Medicine, Mie, Japan
| | - Takumi Kageyama
- Department of Nephro-Urologic Surgery and Andrology, Mie University Graduate School of Medicine, Mie, Japan
| | - Yusuke Sugino
- Department of Nephro-Urologic Surgery and Andrology, Mie University Graduate School of Medicine, Mie, Japan
| | - Manabu Kato
- Department of Nephro-Urologic Surgery and Andrology, Mie University Graduate School of Medicine, Mie, Japan
| | - Satoru Masui
- Department of Nephro-Urologic Surgery and Andrology, Mie University Graduate School of Medicine, Mie, Japan
| | - Kouhei Nishikawa
- Department of Nephro-Urologic Surgery and Andrology, Mie University Graduate School of Medicine, Mie, Japan
| | - Takahiro Inoue
- Department of Nephro-Urologic Surgery and Andrology, Mie University Graduate School of Medicine, Mie, Japan
| |
Collapse
|
5
|
Koivusalo S, Schmidt A, Manninen A, Wenta T. Regulation of Kinase Signaling Pathways by α6β4-Integrins and Plectin in Prostate Cancer. Cancers (Basel) 2022; 15:149. [PMID: 36612146 PMCID: PMC9818203 DOI: 10.3390/cancers15010149] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/19/2022] [Accepted: 12/24/2022] [Indexed: 12/28/2022] Open
Abstract
Hemidesmosomes (HDs) are adhesive structures that ensure stable anchorage of cells to the basement membrane. They are formed by α6β4-integrin heterodimers and linked to intermediate filaments via plectin. It has been reported that one of the most common events during the pathogenesis of prostate cancer (PCa) is the loss of HD organization. While the expression levels of β4-integrins are strongly reduced, the expression levels of α6-integrins and plectin are maintained or even elevated, and seem to promote tumorigenic properties of PCa cells, such as proliferation, invasion, metastasis, apoptosis- and drug-resistance. In this review, we discuss the potential mechanisms of how HD components might contribute to various cellular signaling pathways to promote prostate carcinogenesis. Moreover, we summarize the current knowledge on the involvement of α6β4-integrins and plectin in PCa initiation and progression.
Collapse
Affiliation(s)
- Saara Koivusalo
- Disease Networks Research Unit, Faculty of Biochemistry and Molecular Medicine, Biocenter Oulu, University of Oulu, 90220 Oulu, Finland
| | - Anette Schmidt
- Disease Networks Research Unit, Faculty of Biochemistry and Molecular Medicine, Biocenter Oulu, University of Oulu, 90220 Oulu, Finland
| | - Aki Manninen
- Disease Networks Research Unit, Faculty of Biochemistry and Molecular Medicine, Biocenter Oulu, University of Oulu, 90220 Oulu, Finland
| | - Tomasz Wenta
- Disease Networks Research Unit, Faculty of Biochemistry and Molecular Medicine, Biocenter Oulu, University of Oulu, 90220 Oulu, Finland
- Department of General and Medical Biochemistry, Faculty of Biology, University of Gdansk, 80-308 Gdansk, Poland
| |
Collapse
|
6
|
Hiroto A, Kim WK, Pineda A, He Y, Lee DH, Le V, Olson AW, Aldahl J, Nenninger CH, Buckley AJ, Xiao GQ, Geradts J, Sun Z. Stromal androgen signaling acts as tumor niches to drive prostatic basal epithelial progenitor-initiated oncogenesis. Nat Commun 2022; 13:6552. [PMID: 36323713 PMCID: PMC9630272 DOI: 10.1038/s41467-022-34282-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 10/19/2022] [Indexed: 11/05/2022] Open
Abstract
The androgen receptor (AR)-signaling pathways are essential for prostate tumorigenesis. Although significant effort has been devoted to directly targeting AR-expressing tumor cells, these therapies failed in most prostate cancer patients. Here, we demonstrate that loss of AR in stromal sonic-hedgehog Gli1-lineage cells diminishes prostate epithelial oncogenesis and tumor development using in vivo assays and mouse models. Single-cell RNA sequencing and other analyses identified a robust increase of insulin-like growth factor (IGF) binding protein 3 expression in AR-deficient stroma through attenuation of AR suppression on Sp1-regulated transcription, which further inhibits IGF1-induced Wnt/β-catenin activation in adjacent basal epithelial cells and represses their oncogenic growth and tumor development. Epithelial organoids from stromal AR-deficient mice can regain IGF1-induced oncogenic growth. Loss of human prostate tumor basal cell signatures reveals in basal cells of stromal AR-deficient mice. These data demonstrate a distinct mechanism for prostate tumorigenesis and implicate co-targeting stromal and epithelial AR-signaling for prostate cancer.
Collapse
Affiliation(s)
- Alex Hiroto
- Department of Cancer Biology, Cancer Center and Beckman Research Institute, City of Hope, Duarte, CA, USA
| | - Won Kyung Kim
- Department of Cancer Biology, Cancer Center and Beckman Research Institute, City of Hope, Duarte, CA, USA
| | - Ariana Pineda
- Department of Cancer Biology, Cancer Center and Beckman Research Institute, City of Hope, Duarte, CA, USA
| | - Yongfeng He
- Department of Cancer Biology, Cancer Center and Beckman Research Institute, City of Hope, Duarte, CA, USA
| | - Dong-Hoon Lee
- Department of Cancer Biology, Cancer Center and Beckman Research Institute, City of Hope, Duarte, CA, USA
| | - Vien Le
- Department of Cancer Biology, Cancer Center and Beckman Research Institute, City of Hope, Duarte, CA, USA
| | - Adam W Olson
- Department of Cancer Biology, Cancer Center and Beckman Research Institute, City of Hope, Duarte, CA, USA
| | - Joseph Aldahl
- Department of Cancer Biology, Cancer Center and Beckman Research Institute, City of Hope, Duarte, CA, USA
| | - Christian H Nenninger
- Department of Cancer Biology, Cancer Center and Beckman Research Institute, City of Hope, Duarte, CA, USA
| | - Alyssa J Buckley
- Department of Cancer Biology, Cancer Center and Beckman Research Institute, City of Hope, Duarte, CA, USA
| | - Guang-Qian Xiao
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Joseph Geradts
- Department of Pathology and Laboratory Medicine, Brody School of Medicine, East Carolina University, Greenville, NC, USA
| | - Zijie Sun
- Department of Cancer Biology, Cancer Center and Beckman Research Institute, City of Hope, Duarte, CA, USA.
| |
Collapse
|
7
|
Liu Y, Wang J, Horton C, Yu C, Knudsen B, Stefanson J, Hu K, Stefanson O, Green J, Guo C, Xie Q, Wang ZA. Stromal AR inhibits prostate tumor progression by restraining secretory luminal epithelial cells. Cell Rep 2022; 39:110848. [PMID: 35613593 PMCID: PMC9175887 DOI: 10.1016/j.celrep.2022.110848] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 04/03/2022] [Accepted: 04/29/2022] [Indexed: 11/23/2022] Open
Abstract
Androgen receptor (AR) is expressed in both the prostate epithelium and the prostate stroma and plays diverse roles in prostate physiology. Although low expression of stromal AR is clinically associated with advanced cancer stage and worse outcome, whether stromal AR inhibits or promotes prostate cancer progression remains controversial. Here, we specifically delete AR in smooth muscle cells of the adult mouse prostate under two tumorigenic conditions, namely, the Hi-Myc genetic model and the T + E2 hormonal carcinogenesis model. Histology analyses show that stromal AR deletion exacerbates tumor progression phenotypes in both models. Furthermore, single-cell analyses of the tumor samples reveal that secretory luminal cells are the cell population particularly affected by stromal AR deletion, as they transition to a cellular state of potentiated PI3K-mTORC1 activities. Our results suggest that stromal AR normally inhibits prostate cancer progression by restraining secretory luminal cells and imply possible unintended negative effects of androgen deprivation therapy.
Collapse
Affiliation(s)
- Yueli Liu
- Department of Molecular, Cell, and Developmental Biology, University of California, Santa Cruz, Santa Cruz, CA 95064, USA
| | - Jiawen Wang
- Sequencing Center, National Institute of Biological Sciences, Beijing 102206, China
| | - Corrigan Horton
- Department of Molecular, Cell, and Developmental Biology, University of California, Santa Cruz, Santa Cruz, CA 95064, USA
| | - Chuan Yu
- Department of Molecular, Cell, and Developmental Biology, University of California, Santa Cruz, Santa Cruz, CA 95064, USA
| | - Beatrice Knudsen
- Department of Pathology, University of Utah, Salt Lake City, UT 84112, USA
| | - Joshua Stefanson
- Department of Molecular, Cell, and Developmental Biology, University of California, Santa Cruz, Santa Cruz, CA 95064, USA
| | - Kevin Hu
- Department of Molecular, Cell, and Developmental Biology, University of California, Santa Cruz, Santa Cruz, CA 95064, USA
| | - Ofir Stefanson
- Department of Molecular, Cell, and Developmental Biology, University of California, Santa Cruz, Santa Cruz, CA 95064, USA
| | - Jonathan Green
- Department of Molecular, Cell, and Developmental Biology, University of California, Santa Cruz, Santa Cruz, CA 95064, USA
| | - Charlene Guo
- Department of Molecular, Cell, and Developmental Biology, University of California, Santa Cruz, Santa Cruz, CA 95064, USA
| | - Qing Xie
- Department of Molecular, Cell, and Developmental Biology, University of California, Santa Cruz, Santa Cruz, CA 95064, USA
| | - Zhu A Wang
- Department of Molecular, Cell, and Developmental Biology, University of California, Santa Cruz, Santa Cruz, CA 95064, USA.
| |
Collapse
|
8
|
Shi X, Pei X, Fan J, Liu T, Zhang D, Yang T, Wu K, He D, Li L. PSA nadir and time to PSA nadir during initial androgen deprivation therapy as prognostic factors in metastatic castration-resistance prostate cancer patients treated with docetaxel. Andrologia 2021; 53:e13916. [PMID: 33591598 DOI: 10.1111/and.13916] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Revised: 10/28/2020] [Accepted: 11/05/2020] [Indexed: 11/29/2022] Open
Abstract
Prostate-specific antigen nadir (nPSA) and time to nPSA (TTN) have been proved to be associated with the prognosis of prostate cancer. In this study, we explored the prognosis effect of nPSA and TTN during initial androgen deprivation therapy (ADT) in patients with metastatic castration-resistant prostate cancer (mCRPC) after treatment with docetaxel-based chemotherapy. The data of 153 mCRPC patients received docetaxel followed by ADT were retrospectively reviewed. Multivariate Cox regression analysis demonstrated that TTN (overall survival (OS): Hazard ratio [HR] 0.096, 95% confidence interval [CI] 0.045-0.206, p < .001; progression-free survival (PFS): HR 0.128, 95% CI 0.078-0.211, p < .001) and nPSA (OS: HR 2.849, 95% CI 1.318-6.157, p = .008; PFS: HR 1.573, 95% CI 1.008-2.454, p = .046) acted as independent predictors of chemotherapy prognosis. Kaplan-Meier analysis showed that patients with nPSA ≥ 0.2 ng/ml or TTN < 6.5 months had shorter OS and PFS. These results suggest that TTN and nPSA during ADT can affect the prognosis of docetaxel-based chemotherapy prognosis post-castration resistance in patients with mCRPC, and higher nPSA and shorter TTN lead to poor chemotherapy prognosis. What is more, TTN has a greater impact during ADT on the prognosis of chemotherapy than nPSA.
Collapse
Affiliation(s)
- Xinyu Shi
- Department of Urology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Xinqi Pei
- Department of Urology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Junjie Fan
- Department of Urology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,Department of Urology, Baoji Center Hospital, Baoji, China
| | - Tianjie Liu
- Department of Urology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Dize Zhang
- Department of Urology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Tao Yang
- Department of Urology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Kaijie Wu
- Department of Urology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Dalin He
- Department of Urology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Lei Li
- Department of Urology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
9
|
Kato M, Sasaki T, Inoue T. Current experimental human tissue-derived models for prostate cancer research. Int J Urol 2020; 28:150-162. [PMID: 33247498 DOI: 10.1111/iju.14441] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 10/18/2020] [Indexed: 12/17/2022]
Abstract
Scientists engaged in prostate cancer research have been conducting experiments using two-dimensional cultures of prostate cancer cell lines for decades. However, these experiments fail to reproduce and reflect the clinical course of individual patients with prostate cancer, or the molecular and genetic characteristics of prostate cancer, the basic requirement for most of the preclinical studies on prostate cancer. The use of human prostate cancer tissues in experiments has enabled the collection and verification of clinically relevant data, including chemical reactions, changes in proteins, and specific gene expression. Tissue recombination models have been employed for studying prostate development, the initiation and progression of prostate cancer, and the tumor microenvironment. Notably, the epithelial-stromal interaction, which might play a critical role in prostate cancer pathogenesis, can be reproduced in this model. Patient-derived xenograft models have been developed as powerful avatars comprising patient-derived prostate cancer tissues implanted in immunocompromised mice and could serve as a precision medicine approach for each prostate cancer patient. Spheroid and organoid assays, representative of modern three-dimensional cultures, can replicate the conditions in human prostate tumors and the prostate organ itself as a miniature model. Although an intact immune system against the tumor is missing from the models aimed at investigating immuno-oncological reagents in various malignancies, all these experimental models can help researchers in developing new drugs and selecting appropriate treatment strategies for prostate cancer patients.
Collapse
Affiliation(s)
- Manabu Kato
- Department of Nephro-Urologic Surgery and Andrology, Mie University Graduate School of Medicine, Tsu, Mie, Japan
| | - Takeshi Sasaki
- Department of Nephro-Urologic Surgery and Andrology, Mie University Graduate School of Medicine, Tsu, Mie, Japan
| | - Takahiro Inoue
- Department of Nephro-Urologic Surgery and Andrology, Mie University Graduate School of Medicine, Tsu, Mie, Japan
| |
Collapse
|
10
|
Chen W, Pascal LE, Wang K, Dhir R, Sims AM, Campbell R, Gasper G, DeFranco DB, Yoshimura N, Wang Z. Differential impact of paired patient-derived BPH and normal adjacent stromal cells on benign prostatic epithelial cell growth in 3D culture. Prostate 2020; 80:1177-1187. [PMID: 32659026 PMCID: PMC7710585 DOI: 10.1002/pros.24044] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 06/25/2020] [Indexed: 02/02/2023]
Abstract
BACKGROUND Benign prostatic hyperplasia (BPH) is an age-related disease characterized by nonmalignant abnormal growth of the prostate, which is also frequently associated with lower urinary tract symptoms. The prostate with BPH exhibits enhanced growth not only in the epithelium but also in the stroma, and stromal-epithelial interactions are thought to play an important role in BPH pathogenesis. However, our understanding of the mechanisms of stromal-epithelial interactions in the development and progression of BPH is very limited. METHODS Matched pairs of glandular BPH and normal adjacent prostate specimens were obtained from BPH patients undergoing simple prostatectomy for symptomatic BPH. Tissues were divided further into fresh specimens for culture of primary prostatic stromal cells, and specimens were embedded in paraffin for immunohistochemical analyses. Proliferation assays, immunohistochemistry, and immunoblotting were used to characterize the primary prostate stromal cells and tissue sections. Coculture of the primary stromal cells with benign human prostate epithelial cell lines BHPrE1 or BPH-1 was performed in three-dimensional (3D) Matrigel to determine the impact of primary stromal cells derived from BPH on epithelial proliferation. The effect of stromal-conditioned medium (CM) on BHPrE1 and BPH-1 cell growth was tested in 3D Matrigel as well. RESULTS BPH stromal cells expressed less smooth muscle actin and calponin and increased vimentin, exhibiting a more fibroblast and myofibroblast phenotype compared with normal adjacent stromal cells both in culture and in corresponding paraffin sections. Epithelial spheroids formed in 3D cocultures with primary BPH stromal cells were larger than those formed in coculture with primary normal stromal cells. Furthermore, CM from BPH stromal cells stimulated epithelial cell growth while CM from normal primary stromal cells did not in 3D culture. CONCLUSIONS These findings suggest that the stromal cells in BPH tissues are different from normal adjacent stromal cells and could promote epithelial cell proliferation, potentially contributing to the development and progression of BPH.
Collapse
Affiliation(s)
- Wei Chen
- Department of Urology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Laura E. Pascal
- Department of Urology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Ke Wang
- Department of Urology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Urology, the First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shangxi, 710061, China
| | - Rajiv Dhir
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Alexa M. Sims
- Department of Urology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Robert Campbell
- Department of Urology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Gwenyth Gasper
- Department of Urology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Donald B. DeFranco
- Department of Pharmacology and Chemical Biology, and University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh School of Medicine Pittsburgh, PA, USA
| | - Naoki Yoshimura
- Department of Urology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Pharmacology and Chemical Biology, and University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Zhou Wang
- Department of Urology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Pharmacology and Chemical Biology, and University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh School of Medicine Pittsburgh, PA, USA
- Corresponding author address: Zhou Wang, Department of Urology, University of Pittsburgh School of Medicine, 5200 Centre Ave, Suite G40, Pittsburgh, PA, 15232.,
| |
Collapse
|
11
|
Rinella L, Pizzo B, Frairia R, Delsedime L, Calleris G, Gontero P, Zunino V, Fortunati N, Arvat E, Catalano MG. Modulating tumor reactive stroma by extracorporeal shock waves to control prostate cancer progression. Prostate 2020; 80:1087-1096. [PMID: 32609927 DOI: 10.1002/pros.24037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 06/16/2020] [Accepted: 06/18/2020] [Indexed: 12/25/2022]
Abstract
BACKGROUND Prostate cancer is the second most common cancer worldwide. Tumor microenvironment is composed of activated fibroblasts, the so called carcinoma-associated fibroblasts (CAFs). They express high levels of α-smooth muscle actin (α-SMA) and type I collagen (COL1), and support proliferation and migration of tumor epithelial cells. Extracorporeal shock waves (ESWs), acoustic waves, are effective in the treatment of hypertrophic scars, due to their ability to modulate fibrosis. Based on this rationale, the study evaluated the effects of ESWs on CAF activation and the influence of ESW-treated CAFs on the growth and migration of epithelial prostatic carcinoma cells. METHODS Primary cultures of CAFs (n = 10) were prepared from tumors of patients undergoing surgery for high-risk prostate carcinoma. CAFs were treated with ESWs (energy levels: 0.32 mJ/mm2 , 1000 pulses; 0.59 mJ/mm2 , 250 pulses). After treatment, the messenger RNA and protein levels of the stromal activation markers α-SMA and COL1 were determined. Subsequently, two different stabilized cell lines (PC3 and DU145) of androgen-resistant prostate cancer were treated with the conditioned media produced by ESW-treated CAFs. At different times, viability and migration of PC3 and DU145 cells were evaluated. Viability was also assessed by coculture system using CAFs and PC3 or DU145 cells. RESULTS ESWs reduced gene expression and protein level of α-SMA and COL1 in CAFs. The treatment of PC3 and DU145 with conditioned media of ESW-treated CAFs determined a reduction of their growth and invasive potential. Coculture systems between ESW-treated CAFs and PC3 or DU145 cells confirmed the epithelial cell number reduction. CONCLUSIONS This in vitro study demonstrates for the first time that ESWs are able to modulate the activation of prostate CAFs in favor of a less "reactive" stroma, with consequent slowing of the growth and migration of prostate cancer epithelial cells. However, only further studies to be performed in vivo will confirm the possibility of using this new therapy in patients with prostate cancer.
Collapse
Affiliation(s)
- Letizia Rinella
- Department of Medical Sciences, University of Turin, Turin, Italy
| | - Benedetta Pizzo
- Department of Medical Sciences, University of Turin, Turin, Italy
| | - Roberto Frairia
- Department of Medical Sciences, University of Turin, Turin, Italy
| | - Luisa Delsedime
- Department of Oncology, Pathology Unit, A.O.U., Città della Salute e della Scienza Hospital, Turin, Italy
| | - Giorgio Calleris
- Division of Urology, Department of Surgical Sciences, AOU Città della Salute e della Scienza di Torino, Turin, Italy
| | - Paolo Gontero
- Division of Urology, Department of Surgical Sciences, AOU Città della Salute e della Scienza di Torino, Turin, Italy
| | - Valentina Zunino
- Department of Medical Sciences, University of Turin, Turin, Italy
| | - Nicoletta Fortunati
- Department of Oncology, Oncological Endocrinology Unit, AO Città della Salute e della Scienza di Torino, Turin, Italy
| | - Emanuela Arvat
- Department of Medical Sciences, University of Turin, Turin, Italy
- Department of Oncology, Oncological Endocrinology Unit, AO Città della Salute e della Scienza di Torino, Turin, Italy
| | | |
Collapse
|
12
|
Linxweiler J, Hajili T, Körbel C, Berchem C, Zeuschner P, Müller A, Stöckle M, Menger MD, Junker K, Saar M. Cancer-associated fibroblasts stimulate primary tumor growth and metastatic spread in an orthotopic prostate cancer xenograft model. Sci Rep 2020; 10:12575. [PMID: 32724081 PMCID: PMC7387494 DOI: 10.1038/s41598-020-69424-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Accepted: 07/03/2020] [Indexed: 12/13/2022] Open
Abstract
The unique microenvironment of the prostate plays a crucial role in the development and progression of prostate cancer (PCa). We examined the effects of cancer-associated fibroblasts (CAFs) on PCa progression using patient-derived fibroblast primary cultures in a representative orthotopic xenograft model. Primary cultures of CAFs, non-cancer-associated fibroblasts (NCAFs) and benign prostate hyperplasia-associated fibroblasts (BPHFs) were generated from patient-derived tissue specimens. These fibroblasts were coinjected together with cancer cells (LuCaP136 spheroids or LNCaP cells) in orthotopic PCa xenografts to investigate their effects on local and systemic tumor progression. Primary tumor growth as well as metastatic spread to lymph nodes and lungs were significantly stimulated by CAF coinjection in LuCaP136 xenografts. When NCAFs or BPHFs were coinjected, tumor progression was similar to injection of tumor cells alone. In LNCaP xenografts, all three fibroblast types significantly stimulated primary tumor progression compared to injection of LNCaP cells alone. CAF coinjection further increased the frequency of lymph node and lung metastases. This is the first study using an orthotopic spheroid culture xenograft model to demonstrate a stimulatory effect of patient-derived CAFs on PCa progression. The established experimental setup will provide a valuable tool to further unravel the interacting mechanisms between PCa cells and their microenvironment.
Collapse
Affiliation(s)
- Johannes Linxweiler
- Department of Urology and Pediatric Urology, Saarland University, Kirrberger Straße 100, Gebäude 6, 66424, Homburg/Saar, Germany.
| | - Turkan Hajili
- Department of Urology and Pediatric Urology, Saarland University, Kirrberger Straße 100, Gebäude 6, 66424, Homburg/Saar, Germany
| | - Christina Körbel
- Institute for Clinical and Experimental Surgery, Saarland University, Homburg/Saar, Germany
| | - Carolina Berchem
- Department of Urology and Pediatric Urology, Saarland University, Kirrberger Straße 100, Gebäude 6, 66424, Homburg/Saar, Germany
| | - Philip Zeuschner
- Department of Urology and Pediatric Urology, Saarland University, Kirrberger Straße 100, Gebäude 6, 66424, Homburg/Saar, Germany
| | - Andreas Müller
- Department of Diagnostic and Interventional Radiology, Saarland University, Homburg/Saar, Germany
| | - Michael Stöckle
- Department of Urology and Pediatric Urology, Saarland University, Kirrberger Straße 100, Gebäude 6, 66424, Homburg/Saar, Germany
| | - Michael D Menger
- Institute for Clinical and Experimental Surgery, Saarland University, Homburg/Saar, Germany
| | - Kerstin Junker
- Department of Urology and Pediatric Urology, Saarland University, Kirrberger Straße 100, Gebäude 6, 66424, Homburg/Saar, Germany
| | - Matthias Saar
- Department of Urology and Pediatric Urology, Saarland University, Kirrberger Straße 100, Gebäude 6, 66424, Homburg/Saar, Germany
| |
Collapse
|
13
|
Klukovich R, Nilsson E, Sadler-Riggleman I, Beck D, Xie Y, Yan W, Skinner MK. Environmental Toxicant Induced Epigenetic Transgenerational Inheritance of Prostate Pathology and Stromal-Epithelial Cell Epigenome and Transcriptome Alterations: Ancestral Origins of Prostate Disease. Sci Rep 2019; 9:2209. [PMID: 30778168 PMCID: PMC6379561 DOI: 10.1038/s41598-019-38741-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 01/09/2019] [Indexed: 12/15/2022] Open
Abstract
Prostate diseases include prostate cancer, which is the second most common male neoplasia, and benign prostatic hyperplasia (BPH), which affects approximately 50% of men. The incidence of prostate disease is increasing, and some of this increase may be attributable to ancestral exposure to environmental toxicants and epigenetic transgenerational inheritance mechanisms. The goal of the current study was to determine the effects that exposure of gestating female rats to vinclozolin has on the epigenetic transgenerational inheritance of prostate disease, and to characterize by what molecular epigenetic mechanisms this has occurred. Gestating female rats (F0 generation) were exposed to vinclozolin during E8-E14 of gestation. F1 generation offspring were bred to produce the F2 generation, which were bred to produce the transgenerational F3 generation. The transgenerational F3 generation vinclozolin lineage males at 12 months of age had an increased incidence of prostate histopathology and abnormalities compared to the control lineage. Ventral prostate epithelial and stromal cells were isolated from F3 generation 20-day old rats, prior to the onset of pathology, and used to obtain DNA and RNA for analysis. Results indicate that there were transgenerational changes in gene expression, noncoding RNA expression, and DNA methylation in both cell types. Our results suggest that ancestral exposure to vinclozolin at a critical period of gestation induces the epigenetic transgenerational inheritance of prostate stromal and epithelial cell changes in both the epigenome and transcriptome that ultimately lead to prostate disease susceptibility and may serve as a source of the increased incidence of prostate pathology observed in recent years.
Collapse
Affiliation(s)
- Rachel Klukovich
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV, 89557, USA
| | - Eric Nilsson
- Center for Reproductive Biology, School of Biological Sciences, Washington State University, Pullman, WA, 99164-4236, USA
| | - Ingrid Sadler-Riggleman
- Center for Reproductive Biology, School of Biological Sciences, Washington State University, Pullman, WA, 99164-4236, USA
| | - Daniel Beck
- Center for Reproductive Biology, School of Biological Sciences, Washington State University, Pullman, WA, 99164-4236, USA
| | - Yeming Xie
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV, 89557, USA
| | - Wei Yan
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV, 89557, USA.
| | - Michael K Skinner
- Center for Reproductive Biology, School of Biological Sciences, Washington State University, Pullman, WA, 99164-4236, USA.
| |
Collapse
|
14
|
Richards Z, McCray T, Marsili J, Zenner ML, Manlucu JT, Garcia J, Kajdacsy-Balla A, Murray M, Voisine C, Murphy AB, Abdulkadir SA, Prins GS, Nonn L. Prostate Stroma Increases the Viability and Maintains the Branching Phenotype of Human Prostate Organoids. iScience 2019; 12:304-317. [PMID: 30735898 PMCID: PMC6365938 DOI: 10.1016/j.isci.2019.01.028] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 06/06/2018] [Accepted: 01/18/2019] [Indexed: 12/29/2022] Open
Abstract
The fibromuscular stroma of the prostate regulates normal epithelial differentiation and contributes to carcinogenesis in vivo. We developed and characterized a human 3D prostate organoid co-culture model that incorporates prostate stroma. Primary prostate stromal cells increased organoid formation and directed organoid morphology into a branched acini structure similar to what is observed in vivo. Organoid branching occurred distal to physical contact with stromal cells, demonstrating non-random branching. Stroma-induced phenotypes were similar in all patients examined, yet they maintained inter-patient heterogeneity in the degree of response. Stromal cells expressed growth factors involved in epithelial differentiation, which was not observed in non-prostatic fibroblasts. Organoids derived from areas of prostate cancer maintained differential expression of alpha-methylacyl-CoA racemase and showed increased viability and passaging when co-cultured with stroma. The addition of stroma to epithelial cells in vitro improves the ability of organoids to recapitulate features of the tissue and enhances the viability of organoids. Co-culture with human primary prostate stroma improves epithelial organoid viability Stromal cell contact in co-culture directs epithelial organoid branching Prostate stromal cells express morphogenic factors unique from non-prostate fibroblasts Co-culture with stroma maintains AMACR and increases survival of cancer derived-organoids
Collapse
Affiliation(s)
- Zachary Richards
- Department of Pathology, University of Illinois at Chicago, 840 S Wood St., Chicago, IL 60612, USA
| | - Tara McCray
- Department of Pathology, University of Illinois at Chicago, 840 S Wood St., Chicago, IL 60612, USA
| | - Joseph Marsili
- Department of Pathology, University of Illinois at Chicago, 840 S Wood St., Chicago, IL 60612, USA; Department of Biology, Northeastern Illinois University, Chicago, IL 60625, USA
| | - Morgan L Zenner
- Department of Pathology, University of Illinois at Chicago, 840 S Wood St., Chicago, IL 60612, USA
| | - Jacob T Manlucu
- Department of Biology, Northeastern Illinois University, Chicago, IL 60625, USA
| | - Jason Garcia
- Department of Pathology, University of Illinois at Chicago, 840 S Wood St., Chicago, IL 60612, USA
| | - Andre Kajdacsy-Balla
- Department of Pathology, University of Illinois at Chicago, 840 S Wood St., Chicago, IL 60612, USA; University of Illinois Cancer Center, Chicago, IL 60612, USA
| | | | - Cindy Voisine
- Department of Biology, Northeastern Illinois University, Chicago, IL 60625, USA
| | - Adam B Murphy
- Department of Urology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Sarki A Abdulkadir
- Department of Urology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Gail S Prins
- Department of Pathology, University of Illinois at Chicago, 840 S Wood St., Chicago, IL 60612, USA; Departments of Urology, Physiology, and Biophysics, University of Illinois at Chicago, Chicago, IL 60612, USA; University of Illinois Cancer Center, Chicago, IL 60612, USA
| | - Larisa Nonn
- Department of Pathology, University of Illinois at Chicago, 840 S Wood St., Chicago, IL 60612, USA; University of Illinois Cancer Center, Chicago, IL 60612, USA.
| |
Collapse
|
15
|
The Importance of Time to Prostate-Specific Antigen (PSA) Nadir after Primary Androgen Deprivation Therapy in Hormone-Naïve Prostate Cancer Patients. J Clin Med 2018; 7:jcm7120565. [PMID: 30567361 PMCID: PMC6306761 DOI: 10.3390/jcm7120565] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 12/08/2018] [Accepted: 12/18/2018] [Indexed: 11/18/2022] Open
Abstract
Prostate-specific antigen (PSA) is currently the most useful biomarker for detection of prostate cancer (PCa). The ability to measure serum PSA levels has affected all aspects of PCa management over the past two decades. The standard initial systemic therapy for advanced PCa is androgen-deprivation therapy (ADT). Although PCa patients with metastatic disease initially respond well to ADT, they often progress to castration-resistant prostate cancer (CRPC), which has a high mortality rate. We have demonstrated that time to PSA nadir (TTN) after primary ADT is an important early predictor of overall survival and progression-free survival for advanced PCa patients. In in vivo experiments, we demonstrated that the presence of fibroblasts in the PCa tumor microenvironment can prolong the period for serum PSA decline after ADT, and enhance the efficacy of ADT. Clarification of the mechanisms that affect TTN after ADT could be useful to guide selection of optimal PCa treatment strategies. In this review, we discuss recent in vitro and in vivo findings concerning the involvement of stromal–epithelial interactions in the biological mechanism of TTN after ADT to support the novel concept of “tumor regulating fibroblasts”.
Collapse
|
16
|
Linxweiler J, Hammer M, Muhs S, Kohn M, Pryalukhin A, Veith C, Bohle RM, Stöckle M, Junker K, Saar M. Patient-derived, three-dimensional spheroid cultures provide a versatile translational model for the study of organ-confined prostate cancer. J Cancer Res Clin Oncol 2018; 145:551-559. [PMID: 30474758 DOI: 10.1007/s00432-018-2803-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 11/19/2018] [Indexed: 10/27/2022]
Abstract
PURPOSE To generate and characterize 3D spheroid suspension cultures from radical prostatectomy (RP) specimens as a versatile model system for organ-confined prostate cancer (PCa). METHODS Cancerous tissue samples from RP specimens were excised by a uropathologist. Preparation of 3D spheroids was done by mechanical disintegration and limited enzymatic digestion followed by serial filtration through 100 μm- and 40 μm-cell strainers. Thereafter, spheroids were cultured in a modified stem cell medium and characterized by a live/dead assay, whole-spheroid immunohistochemistry (IHC; CK5, CK8, AMACR, PSA, Ki67, AR, αSMA, Vimentin, E-Cadherin) and PSA-measurements in culture medium. Furthermore, their response to pharmaceutical treatment with docetaxel, bicalutamide, enzalutamide and abiraterone was tested. RESULTS 173 RP cases were included. The median preoperative PSA-level was 16.12 ng/ml [range 0.99;345], the median Gleason score was 7b [6;10]. 64 cases were excluded due to low tumor content in frozen sections (43) or to insufficient spheroid formation (21). In the remaining 109 cases, spheroids formed successfully and stayed viable for up to several months. IHC analysis revealed AR-, CK8-, and AMACR-positivity in nearly all cases, while CK5-positive cells were detectable only occasionally as were α-SMA and Vimentin. E-Cadherin was positive in most cases. Furthermore, spheroids proved to be amenable to cryopreservation. While abiraterone had no effect and docetaxel only a moderate effect, spheroid viability was markedly reduced upon bicalutamide and enzalutamide treatment. CONCLUSIONS Multicellular 3D spheroids can be generated from patient-derived RP tissue samples and serve as an innovative in vitro model of organ-confined PCa.
Collapse
Affiliation(s)
| | - Markus Hammer
- Department of Urology, Saarland University, Homburg, Saar, Germany
| | - Stefanie Muhs
- Department of Urology, Saarland University, Homburg, Saar, Germany
| | - Moritz Kohn
- Department of Urology, Saarland University, Homburg, Saar, Germany
| | - Alexej Pryalukhin
- Department of General and Surgical Pathology, Saarland University, Homburg, Saar, Germany
| | - Christian Veith
- Department of General and Surgical Pathology, Saarland University, Homburg, Saar, Germany
| | - Rainer M Bohle
- Department of General and Surgical Pathology, Saarland University, Homburg, Saar, Germany
| | - Michael Stöckle
- Department of Urology, Saarland University, Homburg, Saar, Germany
| | - Kerstin Junker
- Department of Urology, Saarland University, Homburg, Saar, Germany
| | - Matthias Saar
- Department of Urology, Saarland University, Homburg, Saar, Germany.
| |
Collapse
|
17
|
Gillard M, Javier R, Ji Y, Zheng SL, Xu J, Brendler CB, Crawford SE, Pierce BL, Griend DJV, Franco OE. Elevation of Stromal-Derived Mediators of Inflammation Promote Prostate Cancer Progression in African-American Men. Cancer Res 2018; 78:6134-6145. [PMID: 30181178 DOI: 10.1158/0008-5472.can-17-3810] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 04/23/2018] [Accepted: 08/29/2018] [Indexed: 11/16/2022]
Abstract
Progress in prostate cancer racial disparity research has been hampered by a lack of appropriate research tools and better understanding of the tumor biology. Recent gene expression studies suggest that the tumor microenvironment (TME) may contribute to racially disparate clinical outcomes in prostate cancer. Analysis of the prostate TME has shown increased reactive stroma associated with chronic inflammatory infiltrates in African-American (AA) compared with European-American (EA) patients with prostate cancer. To better understand stromal drivers of changes in TME, we isolated prostate fibroblasts (PrF) from AA (PrF-AA) and EA (PrF-EA) prostate cancer tissues and studied their functional characteristics. PrF-AA showed increased growth response to androgens FGF2 and platelet-derived growth factor. Compared with PrF-EA, conditioned media from PrF-AA significantly enhanced the proliferation and motility of prostate cancer cell lines. Expression of markers associated with myofibroblast activation (αSMA, vimentin, and tenascin-C) was elevated in PrF-AA In vivo tumorigenicity of an AA patient-derived prostatic epithelial cell line E006AA was significantly increased in the presence of PrF-AA compared with PrF-EA, and RNA-seq data and cytokine array analysis identified a panel of potential proinflammatory paracrine mediators (BDNF, CHI3L1, DPPIV, FGF7, IL18BP, IL6, and VEGF) to be enriched in PrF-AA E006AA cell lines showed increased responsiveness to BDNF ligand compared with EA-derived LNCaP and C4-2B cells. Addition of a TrkB-specific antagonist significantly reduced the protumorigenic effects induced by PrF-AA compared with PrF-EA These findings suggest that fibroblasts in the TME of AA patients may contribute to the health disparity observed in the incidence and progression of prostate cancer tumors.Significance: These findings suggest that stromal cells in the tumor microenvironment of African-American men promote progression of prostate cancer by increasing levels of a specific set of pro-inflammatory molecules compared with European-American men.Graphical Abstract: http://cancerres.aacrjournals.org/content/canres/78/21/6134/F1.large.jpg Cancer Res; 78(21); 6134-45. ©2018 AACR.
Collapse
Affiliation(s)
- Marc Gillard
- Department of Surgery, Section of Urology, The University of Chicago, Chicago, Illinois
| | - Rodrigo Javier
- Department of Surgery, NorthShore University HealthSystem Research Institute, Evanston, Illinois
| | - Yuan Ji
- Department of Surgery, NorthShore University HealthSystem Research Institute, Evanston, Illinois
| | - S Lilly Zheng
- Department of Surgery, NorthShore University HealthSystem Research Institute, Evanston, Illinois
| | - Jianfeng Xu
- Department of Surgery, NorthShore University HealthSystem Research Institute, Evanston, Illinois
| | - Charles B Brendler
- Department of Surgery, NorthShore University HealthSystem Research Institute, Evanston, Illinois
| | - Susan E Crawford
- Department of Surgery, NorthShore University HealthSystem Research Institute, Evanston, Illinois
| | - Brandon L Pierce
- Department of Public Health Sciences, The University of Chicago, Chicago, Illinois
| | | | - Omar E Franco
- Department of Surgery, NorthShore University HealthSystem Research Institute, Evanston, Illinois.
| |
Collapse
|
18
|
Qi H, Wen B, Wu Q, Cheng W, Lou J, Wei J, Huang J, Yao X, Weng G. Long noncoding RNA SNHG7 accelerates prostate cancer proliferation and cycle progression through cyclin D1 by sponging miR-503. Biomed Pharmacother 2018; 102:326-332. [DOI: 10.1016/j.biopha.2018.03.011] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 03/01/2018] [Accepted: 03/05/2018] [Indexed: 10/17/2022] Open
|
19
|
Bae S, Brumbaugh J, Bonavida B. Exosomes derived from cancerous and non-cancerous cells regulate the anti-tumor response in the tumor microenvironment. Genes Cancer 2018; 9:87-100. [PMID: 30108680 PMCID: PMC6086005 DOI: 10.18632/genesandcancer.172] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 05/27/2018] [Indexed: 02/06/2023] Open
Abstract
The tumor microenvironment (TME) is a unique platform of cancer biology that considers the local cellular environment in which a tumor exists. Increasing evidence points to the TME as crucial for either promoting immune tumor rejection or protecting the tumor. The TME includes surrounding blood vessels, the extracellular matrix (ECM), a variety of immune and regulatory cells, and signaling factors. Exosomes have emerged to be molecular contributors in cancer biology, and to modulate and affect the constituents of the TME. Exosomes are small (40-150 nm) membrane vesicles that are derived from an endocytic nature and are later excreted by cells. Depending on the cells from which they originate, exosomes can play a role in tumor suppression or tumor progression. Tumor-derived exosomes (TDEs) have their own unique phenotypic functions. Evidence points to TDEs as key players involved in tumor growth, tumorigenesis, angiogenesis, dysregulation of immune cells and immune escape, metastasis, and resistance to therapies, as well as in promoting anti-tumor response. General exosomes, TDEs, and their influence on the TME are an area of promising research that may provide potential biomarkers for therapy, potentiation of anti-tumor response, development of exosome-based vaccines, and exosome-derived nanocarriers for drugs.
Collapse
Affiliation(s)
- Susan Bae
- Department of Oral Biology, UCLA School of Dentistry, University of California, Los Angeles, CA, USA
| | - Jeffrey Brumbaugh
- Department of Oral Biology, UCLA School of Dentistry, University of California, Los Angeles, CA, USA
| | - Benjamin Bonavida
- Department of Microbiology, Immunology & Molecular Genetics, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| |
Collapse
|
20
|
Cunha GR. Use of immune-deficient hosts to study human development and pathogenesis. Differentiation 2017; 98:A1-A3. [PMID: 29229161 DOI: 10.1016/j.diff.2017.11.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 11/24/2017] [Accepted: 11/28/2017] [Indexed: 10/18/2022]
Affiliation(s)
- Gerald R Cunha
- Department of Urology, University of California, 400 Parnassus Avenue, San Francisco, CA 94143, United States.
| |
Collapse
|