1
|
Sengupta S, Yan X, Hoyt TL, Drake G, Gunderman A, Chen Y. Minimal artifact actively shimmed metallic needles in MRI. Magn Reson Med 2021; 87:541-550. [PMID: 34411348 DOI: 10.1002/mrm.28977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 07/02/2021] [Accepted: 07/29/2021] [Indexed: 11/12/2022]
Abstract
PURPOSE Signal voids caused by metallic needles pose visualization and monitoring challenges in many MRI applications. In this work, we explore a solution to this problem in the form of an active shim insert that fits inside a needle and corrects the field disturbance (ΔB0 ) caused by the needle outside of it. METHODS The ΔB0 induced by a 4 mm outside-diameter titanium needle at 3T is modeled and a two-coil orthogonal shim set is designed and fabricated to shim the ΔB0 . Signal recovery around the needle is assessed in multiple orientations in a water phantom with four different pulse sequences. Phase stability around the needle is assessed in an ex-vivo porcine tissue dynamic gradient echo experiment with and without shimming. Additionally, heating of the shim insert is assessed under 8 min of continuous operation with 1A current and concurrent imaging. RESULTS An average recovery of ~63% of lost signal around the needle across orientations is shown with active shimming with a maximum current of 1.172 A. Signal recovery and correction of the underlying ΔB0 is shown to be independent of imaging sequence. Needle-induced phase gradients outside the perceptible signal void are also minimized with active shimming. Temperature rise of up to 0.9° Celsius is noted over 8 min of continuous 1A active shimming operation. CONCLUSION A sequence independent method for minimization of metallic needle induced signal loss using an active shim insert is presented. The method has potential benefits in a range of qualitative and quantitative interventional MRI applications.
Collapse
Affiliation(s)
- Saikat Sengupta
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, Tennessee, USA.,Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Xinqiang Yan
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, Tennessee, USA.,Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Tamarya L Hoyt
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Gary Drake
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Anthony Gunderman
- Department of Mechanical Engineering, University of Arkansas, Fayetteville, Arkansas, USA
| | - Yue Chen
- Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, Georgia, USA
| |
Collapse
|
2
|
Meucci R, Pistolese CA, Perretta T, Luciani ML, Beninati E, Di Tosto F, D'Alfonso V, Buonomo OC. Primary Extranodal Follicular T-Cell Lymphoma and Ductal Breast Carcinoma Diagnosed by a Magnetic Resonance Imaging-Guided Vacuum-Assisted Biopsy: A Case Report. AMERICAN JOURNAL OF CASE REPORTS 2021; 22:e929309. [PMID: 34226439 PMCID: PMC8272939 DOI: 10.12659/ajcr.929309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
BACKGROUND Extranodal non-Hodgkin lymphomas (NHL) are low-grade B-cell lymphomas and the breast is not a common site for this condition. This case report describes a 62-year-old woman with a primary NHL and ductal carcinoma in situ (DCIS) of the left breast diagnosed by a magnetic resonance imaging (MRI)-guided vacuum-assisted breast biopsy. The simultaneous diagnosis of breast cancer and NHL is rare, with few cases described in the literature. Primary breast lymphomas account only for 0.04% to 0.5% of breast malignancies. CASE REPORT In November 2016, a 62-year-old woman was treated for a peripheral T-cell lymphoma (follicular helper T-cell phenotype) of the left upper central breast; later she underwent periodic breast imaging follow-ups. In October 2018, MRI revealed a focal 33-mm non-mass contrast enhancement (according to the Breast Imaging Reporting and Data System -MRI lexicon of the American College of Radiology) in the lower external quadrant of the left breast. Neither mammography nor ultrasonography demonstrated any suspicious features. The multidisciplinary medical team performed an MRI-guided vacuum-assisted breast biopsy and the histological analysis confirmed the diagnosis of a DCIS. Subsequently, she underwent surgery resulting in eradication of the disease and has had regular follow-ups, including mammography, ultrasonography, and MRI. CONCLUSIONS This is a rare case of both a primary NHL of the breast and DCIS, which was detected only by MRI. It highlights the role of an MRI-guided vacuum-assisted breast biopsy, which allows an accurate and economic diagnosis in case of suspicious findings on MRI. We recommend the use of MRI in follow-ups for patients with previous breast lymphomas (high-risk patients).
Collapse
Affiliation(s)
- Rosaria Meucci
- UOC of Diagnostic Imaging, Policlinico Tor Vergata (PTV) University, Rome, Italy.,UOSD Breast Unit, Department of Surgical Science, Policlinico Tor Vergata (PTV) University, Rome, Italy
| | | | - Tommaso Perretta
- UOC of Diagnostic Imaging, Policlinico Tor Vergata (PTV) University, Rome, Italy
| | | | - Emanuela Beninati
- UOC of Diagnostic Imaging, Policlinico Tor Vergata (PTV) University, Rome, Italy
| | - Federica Di Tosto
- UOC of Diagnostic Imaging, Policlinico Tor Vergata (PTV) University, Rome, Italy
| | | | - Oreste Claudio Buonomo
- UOSD Breast Unit, Department of Surgical Science, Policlinico Tor Vergata (PTV) University, Rome, Italy
| |
Collapse
|
4
|
Mesurolle B, Sun S, Zhang M. Utilization of breast MRI and breast MRI-guided biopsy in clinical practice: results of a survey in Québec and France. Insights Imaging 2020; 11:81. [PMID: 32613348 PMCID: PMC7329973 DOI: 10.1186/s13244-020-00886-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Accepted: 05/29/2020] [Indexed: 11/12/2022] Open
Abstract
Background To investigate the practice regarding breast MRI exams and breast MRI-guided biopsies in two countries with different health care systems, France and Québec. A 12-item questionnaire was distributed online among radiologists from France and Québec, attempting to determine: demographic characteristics and breast MRI diagnostic and MRI-guided practices (indications, workload, availability, and waiting time assessment). Results One hundred and seventy radiologists (France, 132 respondents (28.5%); Quebec, 38 respondents (35.2%)) participated in the survey, most of them based in non-academic centers. Thirty-eight percent of Quebec and 2.3% of French radiologists did not perform breast MRI in their daily practice. Nearly 50% of French and Quebec respondents interpreted 1–10 breast MRI exams per week. Decision-making factors of preoperative MRI were similar in both countries (pathology, age, and breast density), with a heavier emphasis placed on the surgeon’s opinion in Quebec (47.8% versus 21.8% (p = 0.009)). Quebec demonstrated a higher waiting time than France (1–2 weeks in 40% versus less than 1 week in 40%). MRI-guided breast biopsies (less than 5 MRI-guided biopsies per week) were being performed by a minority of the respondents (36% in France and 43% in Québec). Conclusion Most of radiologists performing breast MRIs work in non-academic institutions in both countries. Waiting time is higher in Quebec, but most of preoperative breast MRIs are performed within 3 weeks in both countries. The surgeon plays an important role in recommending preoperative MRI in Quebec. MRI-guided breast biopsies are not widely available in both countries.
Collapse
Affiliation(s)
- Benoît Mesurolle
- Centre République, ELSAN, 99 avenue de la République, BP 304, 63023, Clermont-Ferrand Cedex 2, France.
| | - Simon Sun
- Breast Clinic, McGill University Health Center, Royal Victoria Hospital, 1001 Decarie Boulevard, Montreal, QC, H4A 3 J1, Canada
| | - Michelle Zhang
- Breast Clinic, McGill University Health Center, Royal Victoria Hospital, 1001 Decarie Boulevard, Montreal, QC, H4A 3 J1, Canada
| |
Collapse
|
5
|
Gao P, Kong X, Song Y, Song Y, Fang Y, Ouyang H, Wang J. Recent Progress for the Techniques of MRI-Guided Breast Interventions and their applications on Surgical Strategy. J Cancer 2020; 11:4671-4682. [PMID: 32626513 PMCID: PMC7330700 DOI: 10.7150/jca.46329] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 05/09/2020] [Indexed: 01/20/2023] Open
Abstract
With a high sensitivity of breast lesions, MRI can detect suspicious lesions which are occult in traditional breast examination equipment. However, the lower and variable specificity of MRI makes the MRI-guided intervention, including biopsies and localizations, necessary before surgery, especially for patients who need the treatment of breast-conserving surgery (BCS). MRI techniques and patient preparation should be first carefully considered before the intervention to avoid lengthening the procedure time and compromising targeting accuracy. Doctors and radiologists need to reconfirm the target of the lesion and be very familiar with the process approach and equipment techniques involving the computer-aided diagnosis (CAD) tools and the biopsy system and follow a correct way. The basic steps of MRI-guided biopsy and localization are nearly the same regardless of the vendor or platform, and this article systematically introduces detailed methods and techniques of MRI-guided intervention. The two interventions both face different challenging situations during procedures with solutions given in the article. Post-operative statistics show that the complications of MRI-guided intervention are infrequent and mild, and MRI-guided biopsy provides the pathological information for the subsequent surgical decisions and MRI-guided localization fully prepared for follow-up surgical biopsy. New techniques for MRI-guided intervention are also elaborated in the article, which leads to future development. In a word, MRI-guided intervention is a safe, accurate, and effective technique with a low complication rate and successful MRI-guided intervention is truly teamwork with efforts from patients to surgeons, radiologists, MRI technologists, and nurses.
Collapse
Affiliation(s)
- Peng Gao
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Xiangyi Kong
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Ying Song
- Department of Diagnostic Radiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Yan Song
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Yi Fang
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Han Ouyang
- Department of Diagnostic Radiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Jing Wang
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| |
Collapse
|
6
|
Bick U, Trimboli RM, Athanasiou A, Balleyguier C, Baltzer PAT, Bernathova M, Borbély K, Brkljacic B, Carbonaro LA, Clauser P, Cassano E, Colin C, Esen G, Evans A, Fallenberg EM, Fuchsjaeger MH, Gilbert FJ, Helbich TH, Heywang-Köbrunner SH, Herranz M, Kinkel K, Kilburn-Toppin F, Kuhl CK, Lesaru M, Lobbes MBI, Mann RM, Martincich L, Panizza P, Pediconi F, Pijnappel RM, Pinker K, Schiaffino S, Sella T, Thomassin-Naggara I, Tardivon A, Ongeval CV, Wallis MG, Zackrisson S, Forrai G, Herrero JC, Sardanelli F. Image-guided breast biopsy and localisation: recommendations for information to women and referring physicians by the European Society of Breast Imaging. Insights Imaging 2020; 11:12. [PMID: 32025985 PMCID: PMC7002629 DOI: 10.1186/s13244-019-0803-x] [Citation(s) in RCA: 85] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 10/10/2019] [Indexed: 12/13/2022] Open
Abstract
We summarise here the information to be provided to women and referring physicians about percutaneous breast biopsy and lesion localisation under imaging guidance. After explaining why a preoperative diagnosis with a percutaneous biopsy is preferred to surgical biopsy, we illustrate the criteria used by radiologists for choosing the most appropriate combination of device type for sampling and imaging technique for guidance. Then, we describe the commonly used devices, from fine-needle sampling to tissue biopsy with larger needles, namely core needle biopsy and vacuum-assisted biopsy, and how mammography, digital breast tomosynthesis, ultrasound, or magnetic resonance imaging work for targeting the lesion for sampling or localisation. The differences among the techniques available for localisation (carbon marking, metallic wire, radiotracer injection, radioactive seed, and magnetic seed localisation) are illustrated. Type and rate of possible complications are described and the issue of concomitant antiplatelet or anticoagulant therapy is also addressed. The importance of pathological-radiological correlation is highlighted: when evaluating the results of any needle sampling, the radiologist must check the concordance between the cytology/pathology report of the sample and the radiological appearance of the biopsied lesion. We recommend that special attention is paid to a proper and tactful approach when communicating to the woman the need for tissue sampling as well as the possibility of cancer diagnosis, repeat tissue sampling, and or even surgery when tissue sampling shows a lesion with uncertain malignant potential (also referred to as "high-risk" or B3 lesions). Finally, seven frequently asked questions are answered.
Collapse
Affiliation(s)
- Ulrich Bick
- Clinic of Radiology, Charité Universitätsmedizin Berlin, 10117, Berlin, Germany
| | - Rubina M Trimboli
- PhD Course in Integrative Biomedical Research, Department of Biomedical Science for Health, Università degli Studi di Milano, Via Mangiagalli, 31, 20133, Milan, Italy
| | - Alexandra Athanasiou
- Breast Imaging Department, MITERA Hospital, 6, Erithrou Stavrou Str. 151 23 Marousi, Athens, Greece
| | - Corinne Balleyguier
- Department of Radiology, Gustave-Roussy Cancer Campus, 114 Rue Edouard Vaillant, 94800, Villejuif, France
| | - Pascal A T Baltzer
- Department of Biomedical Imaging and Image-guided Therapy, Division of Molecular and Gender Imaging, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Wien, Austria
| | - Maria Bernathova
- Department of Biomedical Imaging and Image-guided Therapy, Division of Molecular and Gender Imaging, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Wien, Austria
| | | | - Boris Brkljacic
- Department of Diagnostic and Interventional Radiology, University Hospital Dubrava, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Luca A Carbonaro
- Unit of Radiology, IRCCS Policlinico San Donato, San Donato Milanese, Milan, Italy
| | - Paola Clauser
- Department of Biomedical Imaging and Image-guided Therapy, Division of Molecular and Gender Imaging, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Wien, Austria
| | - Enrico Cassano
- Breast Imaging Division, European Institute of Oncology, Milan, Italy
| | - Catherine Colin
- Radiology Unit, Hospices Civils de Lyon, Centre Hospitalo-Universitaire Femme Mère Enfant, 59 Boulevard Pinel, 69 677, Bron Cedex, France
| | - Gul Esen
- School of Medicine, Department of Radiology, Acıbadem Mehmet Ali Aydınlar University, Istanbul, Turkey
| | - Andrew Evans
- Dundee Cancer Centre, Clinical Research Centre, Ninewells Hospital and Medical School, Tom McDonald Avenue, Dundee, UK
| | - Eva M Fallenberg
- Diagnostic and Interventional Breast Imaging, Department of Radiology, University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany
| | - Michael H Fuchsjaeger
- Division of General Radiology, Department of Radiology, Medical University Graz, Auenbruggerplatz 9, 8036, Graz, Austria
| | - Fiona J Gilbert
- Department of Radiology, University of Cambridge, Cambridge Biomedical Campus, Hills road, Cambridge, CB2 0QQ, UK
| | - Thomas H Helbich
- Department of Biomedical Imaging and Image-guided Therapy, Division of Molecular and Gender Imaging, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Wien, Austria
| | | | - Michel Herranz
- CyclotronUnit, GALARIA-SERGAS, Nuclear Medicine Department and Molecular ImagingGroup, Instituto de Investigación Sanitaria (IDIS), Santiago de Compostela, Spain
| | - Karen Kinkel
- Institut de Radiologie, Clinique des Grangettes, Chemin des Grangettes 7, 1224 Chêne-Bougeries, Genève, Switzerland
| | - Fleur Kilburn-Toppin
- Department of Radiology, University of Cambridge, Cambridge Biomedical Campus, Hills road, Cambridge, CB2 0QQ, UK
| | - Christiane K Kuhl
- University Hospital of Aachen, Rheinisch-Westfälische Technische Hochschule, Pauwelsstraße 30, 52074, Aachen, Germany
| | - Mihai Lesaru
- Radiology and Imaging Laboratory, Fundeni Institute, Bucharest, Romania
| | - Marc B I Lobbes
- Department of Radiology, Zuyderland Medical Center, Dr. H. van der Hoffplein 1, PO Box 5500, 6130 MB, Sittard-Geleen, The Netherlands
| | - Ritse M Mann
- Department of Radiology, Radboud University Nijmegen Medical Centre, Geert Grooteplein Zuid 10, 6525 GA, Nijmegen, The Netherlands
| | - Laura Martincich
- Unit of Radiodiagnostics ASL AT, Via Conte Verde 125, 14100, Asti, Italy
| | - Pietro Panizza
- Breast Imaging Unit, Scientific Institute (IRCCS) Ospedale San Raffaele, Via Olgettina, 60, 20132, Milan, Italy
| | - Federica Pediconi
- Department of Radiological, Oncological and Pathological Sciences, Sapienza University of Rome, Viale Regina Elena, 324, 00161, Rome, Italy
| | - Ruud M Pijnappel
- Department of Imaging, University Medical Centre Utrecht, Utrecht University, Heidelberglaan 100, 3584 CX, Utrecht, The Netherlands
| | - Katja Pinker
- Department of Biomedical Imaging and Image-guided Therapy, Division of Molecular and Gender Imaging, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Wien, Austria.,Department of Radiology, Breast Imaging Service, Memorial Sloan Kettering Cancer Center, 300 E 66th Street, New York, NY, 10065, USA
| | - Simone Schiaffino
- Unit of Radiology, IRCCS Policlinico San Donato, San Donato Milanese, Milan, Italy
| | - Tamar Sella
- Department of Diagnostic Imaging, Hadassah Hebrew University Medical Center, Jerusalem, Israel
| | - Isabelle Thomassin-Naggara
- Department of Radiology, Sorbonne Université, APHP, Hôpital Tenon, 4, rue de la Chine, 75020, Paris, France
| | - Anne Tardivon
- Department of Radiology, Institut Curie, Paris, France
| | - Chantal Van Ongeval
- Department of Radiology, University Hospitals Leuven, Herestraat 49, 3000, Leuven, Belgium
| | - Matthew G Wallis
- Cambridge Breast Unit and NIHR Biomedical Research Unit, Box 97, Cambridge University Hospitals NHS Foundation Trust, Cambridge Biomedical Campus, Hills Road, Cambridge, CB2 0QQ, UK
| | - Sophia Zackrisson
- Diagnostic Radiology, Department of Translational Medicine, Faculty of Medicine, Lund University, Skåne University Hospital Malmö, SE-205 02, Malmö, Sweden
| | - Gabor Forrai
- Department of Radiology, Duna Medical Center, Budapest, Hungary
| | | | - Francesco Sardanelli
- Unit of Radiology, IRCCS Policlinico San Donato, San Donato Milanese, Milan, Italy. .,Department of Biomedical Sciences for Health, Università degli Studi di Milano, Via Morandi 30, 20097 San Donato Milanese, Milan, Italy.
| | | |
Collapse
|