1
|
Francisco AJ. Helicobacter Pylori Infection Induces Intestinal Dysbiosis That Could Be Related to the Onset of Atherosclerosis. BIOMED RESEARCH INTERNATIONAL 2022; 2022:9943158. [PMID: 36317116 PMCID: PMC9617700 DOI: 10.1155/2022/9943158] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 10/05/2022] [Accepted: 10/06/2022] [Indexed: 11/17/2022]
Abstract
Cardiovascular diseases represent one of the first causes of death around the world, and atherosclerosis is one of the first steps in the development of them. Although these problems occur mainly in elderly, the incidence in younger people is being reported, and an undetermined portion of patients without the classic risk factors develop subclinical atherosclerosis at earlier stages of life. Recently, both the H. pylori infection and the intestinal microbiota have been linked to atherosclerosis. The mechanisms behind those associations are poorly understood, but some of the proposed explanations are (a) the effect of the chronic systemic inflammation induced by H. pylori, (b) a direct action over the endothelial cells by the cytotoxin associated gene A protein, and (c) alterations of the lipid metabolism and endothelial dysfunction induced by H. pylori infection. Regarding the microbiota, several studies show that induction of atherosclerosis is related to high levels of Trimethylamine N-oxide. In this review, we present the information published about the effects of H. pylori over the intestinal microbiota and their relationship with atherosclerosis and propose a hypothesis to explain the nature of these associations. If H. pylori contributes to atherosclerosis, then interventions for eradication and restoration of the gut microbiota at early stages could represent a way to prevent disease progression.
Collapse
Affiliation(s)
- Avilés-Jiménez Francisco
- Unidad de Investigación Médica en Enfermedades Infecciosas y Parasitarias, UMAE Pediatría. Centro Médico Nacional Siglo XXI. IMSS, Ciudad de México, Mexico
| |
Collapse
|
2
|
Overstreet AMC, Grayson BE, Boger A, Bakke D, Carmody EM, Bales CE, Paski SC, Murphy SF, Dethlefs CR, Shannon KJ, Adlaka KR, Wolford CE, Campiti VJ, Raghunandan CV, Seeley RJ, Boone DL. Gastrokine-1, an anti-amyloidogenic protein secreted by the stomach, regulates diet-induced obesity. Sci Rep 2021; 11:9477. [PMID: 33947892 PMCID: PMC8096951 DOI: 10.1038/s41598-021-88928-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 04/19/2021] [Indexed: 12/27/2022] Open
Abstract
Obesity and its sequelae have a major impact on human health. The stomach contributes to obesity in ways that extend beyond its role in digestion, including through effects on the microbiome. Gastrokine-1 (GKN1) is an anti-amyloidogenic protein abundantly and specifically secreted into the stomach lumen. We examined whether GKN1 plays a role in the development of obesity and regulation of the gut microbiome. Gkn1-/- mice were resistant to diet-induced obesity and hepatic steatosis (high fat diet (HFD) fat mass (g) = 10.4 ± 3.0 (WT) versus 2.9 ± 2.3 (Gkn1-/-) p < 0.005; HFD liver mass (g) = 1.3 ± 0.11 (WT) versus 1.1 ± 0.07 (Gkn1-/-) p < 0.05). Gkn1-/- mice also exhibited increased expression of the lipid-regulating hormone ANGPTL4 in the small bowel. The microbiome of Gkn1-/- mice exhibited reduced populations of microbes implicated in obesity, namely Firmicutes of the class Erysipelotrichia. Altered metabolism consistent with use of fat as an energy source was evident in Gkn1-/- mice during the sleep period. GKN1 may contribute to the effects of the stomach on the microbiome and obesity. Inhibition of GKN1 may be a means to prevent obesity.
Collapse
Affiliation(s)
- Anne-Marie C Overstreet
- Department of Microbiology and Immunology, Indiana University School of Medicine-South Bend, RCH122, 1234 N. Notre Dame Ave., South Bend, IN, 46617, USA
| | - Bernadette E Grayson
- Division of Endocrinology, Diabetes and Metabolism, Department of Internal Medicine, University of Cincinnati, Cincinnati, OH, USA
- Department of Neurobiology and Anatomical Sciences, University of Mississippi Medical Center, Jackson, MS, USA
| | - Antonia Boger
- Department of Microbiology and Immunology, Indiana University School of Medicine-South Bend, RCH122, 1234 N. Notre Dame Ave., South Bend, IN, 46617, USA
| | - Danika Bakke
- Department of Microbiology and Immunology, Indiana University School of Medicine-South Bend, RCH122, 1234 N. Notre Dame Ave., South Bend, IN, 46617, USA
| | - Erin M Carmody
- Department of Biology, University of Notre Dame, South Bend, IN, USA
| | - Cayla E Bales
- Department of Biology, University of Notre Dame, South Bend, IN, USA
| | | | - Stephen F Murphy
- Department of Urology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | | | - Kara J Shannon
- Department of Biology, University of Notre Dame, South Bend, IN, USA
| | - Katie R Adlaka
- Department of Biology, University of Notre Dame, South Bend, IN, USA
| | - Claire E Wolford
- Department of Biology, University of Notre Dame, South Bend, IN, USA
| | - Vincent J Campiti
- Department of Microbiology and Immunology, Indiana University School of Medicine-South Bend, RCH122, 1234 N. Notre Dame Ave., South Bend, IN, 46617, USA
| | - Christina V Raghunandan
- Department of Microbiology and Immunology, Indiana University School of Medicine-South Bend, RCH122, 1234 N. Notre Dame Ave., South Bend, IN, 46617, USA
| | - Randy J Seeley
- Division of Endocrinology, Diabetes and Metabolism, Department of Internal Medicine, University of Cincinnati, Cincinnati, OH, USA
- Department of Surgery, University of Michigan Health System, Ann Arbor, MI, USA
| | - David L Boone
- Department of Microbiology and Immunology, Indiana University School of Medicine-South Bend, RCH122, 1234 N. Notre Dame Ave., South Bend, IN, 46617, USA.
- Department of Biology, University of Notre Dame, South Bend, IN, USA.
| |
Collapse
|
3
|
Women with chronic follicular gastritis positive for Helicobacter pylori express lower levels of GKN1. Gastric Cancer 2020; 23:754-759. [PMID: 32086651 DOI: 10.1007/s10120-020-01049-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Accepted: 02/09/2020] [Indexed: 02/07/2023]
Abstract
In women, serum levels of CTSB, GKN2, LIPF, LIPFG, AZGP1, TOP2A and PGA4 are proposed as predictive markers of gastric cancer. It is unknown whether GKN1 expression varies with the sex of patients with chronic gastritis or gastric cancer. We studied 36 patients with histopathological diagnosis of chronic gastritis from the state of Guerrero, Mexico. PCR was performed for H. pylori detection and GKN1 expression was determined by RT-qPCR and western blot. GKN1 mRNA expression was significantly lower in patients with chronic follicular gastritis than in those with chronic chemical gastritis (p = 0.00071). The mRNA and protein level of expression of GKN1 were significantly lower in women with chronic follicular gastritis than in men with the same condition (p = 0.0279 and p = 0.0014, respectively); the lowest levels of GKN1 were detected in women with H. pylori-positive follicular gastritis (p = 0.0175 and p = 0.0111, respectively). Through a bioinformatic analysis, estrogen response elements were identified in the GKN1 promoter.
Collapse
|
4
|
Stella di Stadio C, Faraonio R, Federico A, Altieri F, Rippa E, Arcari P. GKN1 expression in gastric cancer cells is negatively regulated by miR-544a. Biochimie 2019; 167:42-48. [PMID: 31509760 DOI: 10.1016/j.biochi.2019.09.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 09/06/2019] [Indexed: 12/13/2022]
Abstract
Gastrokine1 (GKN1), important for maintaining the physiological function of the gastric mucosa, is highly expressed in the stomach of healthy individuals but is down-regulated or absent in gastric tumor tissues and derived cell lines. The mechanisms underlying GKN1 gene inactivation are still unknown. We previously showed that GKN1 downregulation in gastric tumors is likely associated with an epigenetic transcriptional complex that negatively regulates GKN1 expression. In addition, TSA-mediated inhibition of HDACs leads to GKN1 restoration at the transcriptional level, but no at the translational level. These findings led to hypothesize the activation of a second regulatory mechanism microRNAs-mediated, thus resulting in translational repression and gene silencing. Bioinformatic analyses performed with 5 different algorithms highlighted that 4 miRNAs contained a seed sequence for the 3'UTR of GKN1 mRNA. Among these, only two miRNAs, hsa-miR-544a and miR-1245b-3p directly target the GKN1-3'UTR as evaluated by luciferase reporter assays. TaqMan miRNA assay performed on gastric cancer cell lines after TSA treatment showed a stronger increase of miR-544a expression than that of miR-1245b-3p. Finally, co-transfection of AGS cells with GKN1-3'UTR and premiR-544a showed compared to controls, a strong reduction of GKN1 expression both at translational and transcriptional levels. The up-regulation of miR-544a could be crucially involved in the GKN1 translational repression, thus suggesting its potential role as a biomarker and therapeutic target in GC patients. These findings indicate that epigenetic mechanisms leading to the inactivation of GKN1 play a key role in the multi-step process of gastric carcinogenesis and would provide an essential starting point for the development of new therapeutic strategies based on epigenetic targets for alternatives gene.
Collapse
Affiliation(s)
- Chiara Stella di Stadio
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| | - Raffaella Faraonio
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| | - Antonella Federico
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| | - Filomena Altieri
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| | - Emilia Rippa
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy.
| | - Paolo Arcari
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy; CEINGE, Advanced Biotechnology Scarl, Via Gaetano Salvatore 486, I-80145, Naples, Italy.
| |
Collapse
|
5
|
Alarcón-Millán J, Martínez-Carrillo DN, Peralta-Zaragoza O, Fernández-Tilapa G. Regulation of GKN1 expression in gastric carcinogenesis: A problem to resolve (Review). Int J Oncol 2019; 55:555-569. [PMID: 31322194 DOI: 10.3892/ijo.2019.4843] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 07/04/2019] [Indexed: 11/05/2022] Open
Abstract
Gastrokine 1 (GKN1) is a protein expressed on the surface mucosa cells of the gastric antrum and fundus, which contributes to maintaining gastric homeostasis, inhibits inflammation and is a tumor suppressor. The expression of GKN1 decreases in mucosa that are either inflamed or infected by Helicobacter pylori, and is absent in gastric cancer. The measurement of circulating GKN1 concentration, the protein itself, or the mRNA in gastric tissue may be of use for the early diagnosis of cancer. The mechanisms that modulate the deregulation or silencing of GKN1 expression have not been completely described. The modification of histones, methylation of the GKN1 promoter, or proteasomal degradation of the protein have been detected in some patients; however, these mechanisms do not completely explain the absence of GKN1 or the reduction in GKN1 levels. Only NKX6.3 transcription factor has been shown to be a positive modulator of GKN1 transcription, although others also have an affinity with sequences in the promoter of this gene. While microRNAs (miRNAs) are able to directly or indirectly regulate the expression of genes at the post‑transcriptional level, the involvement of miRNAs in the regulation of GKN1 has not been reported. The present review analyzes the information reported on the determination of GKN1 expression and the regulation of its expression at the transcriptional, post‑transcriptional and post‑translational levels; it proposes an integrated model that incorporates the regulation of GKN1 expression via transcription factors and miRNAs in H. pylori infection.
Collapse
Affiliation(s)
- Judit Alarcón-Millán
- Clinical Research Laboratory, Faculty of Biological Chemical Sciences, Guerrero Autonomous University, Chilpancingo, Guerrero 39070, México
| | - Dinorah Nashely Martínez-Carrillo
- Clinical Research Laboratory, Faculty of Biological Chemical Sciences, Guerrero Autonomous University, Chilpancingo, Guerrero 39070, México
| | - Oscar Peralta-Zaragoza
- Direction of Chronic Infections and Cancer, Research Center in Infection Diseases, National Institute of Public Health, Cuernavaca, Morelos 62100, México
| | - Gloria Fernández-Tilapa
- Clinical Research Laboratory, Faculty of Biological Chemical Sciences, Guerrero Autonomous University, Chilpancingo, Guerrero 39070, México
| |
Collapse
|
6
|
Koper-Lenkiewicz OM, Kamińska J, Gawrońska B, Matowicka-Karna J. The role and diagnostic potential of gastrokine 1 in gastric cancer. Cancer Manag Res 2019; 11:1921-1931. [PMID: 30881118 PMCID: PMC6402446 DOI: 10.2147/cmar.s194949] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Introduction Gene for gastrokine 1 (GKN1) was identified as one of the most significant in gastric cancer and indicated as a potential therapeutic target. Aim The aim was a review of literature reports concerning the role and diagnostic potential of GKN1 in gastric cancer. Materials and methods PubMED database was searched for sources using the following keywords: gastrokine 1/GKN1/AMP-18 and gastric cancer, Helicobacter pylori, aspirin, nonsteroidal anti-inflammatory drugs. Preference was given to the sources which were published within the past 10 years. Conclusion GKN1 is a stomach-specific protein, and its role consists of maintaining mucosal integrity as well as the replenishment of the surface lumen epithelial cells layer. The evaluation of GKN1 expression seems to be a useful indicator of the presence of neoplastic or inflammatory lesions in the gastric mucosa. GKN1 expression is decreased in gastric tumor tissues and derived cell lines and its upregulation in cell lines of gastric cancer induces cells apoptosis. The mechanism by which GKN1 is inactivated in gastric cancer cells is still not fully understood. The future diagnostic capabilities of gastric cancer concern the assessment of serum GKN1 concentration by means of ELISA method. Serum GKN1 concentration is not related to patients’ sex. Moreover, the measurement of GKN1 concentration is possible only after the incubation of samples at 70°C for 10 minutes. Nevertheless, the aspect of quantitative serum GKN1 evaluation is new in the context of available literature and requires further studies.
Collapse
Affiliation(s)
- Olga M Koper-Lenkiewicz
- Department of Clinical Laboratory Diagnostics, Medical University of Bialystok, Białystok, Poland,
| | - Joanna Kamińska
- Department of Clinical Laboratory Diagnostics, Medical University of Bialystok, Białystok, Poland,
| | - Beata Gawrońska
- Department of Clinical Laboratory Diagnostics, Medical University of Bialystok, Białystok, Poland,
| | - Joanna Matowicka-Karna
- Department of Clinical Laboratory Diagnostics, Medical University of Bialystok, Białystok, Poland,
| |
Collapse
|
7
|
Differentially expressed genes between intestinal- and diffuse-type gastric cancers. Mol Cell Toxicol 2018. [DOI: 10.1007/s13273-018-0033-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
8
|
Sharman M, Bacci B, Santos L, Mansfield C. Gastrokine mRNA expression in gastric tissue from dogs with helicobacter colonisation but without inflammatory change during treatment. Vet Immunol Immunopathol 2017; 187:28-34. [DOI: 10.1016/j.vetimm.2017.03.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Revised: 02/14/2017] [Accepted: 03/23/2017] [Indexed: 02/06/2023]
|
9
|
Altieri F, Di Stadio CS, Federico A, Miselli G, De Palma M, Rippa E, Arcari P. Epigenetic alterations of gastrokine 1 gene expression in gastric cancer. Oncotarget 2017; 8:16899-16911. [PMID: 28129645 PMCID: PMC5370009 DOI: 10.18632/oncotarget.14817] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Accepted: 11/05/2016] [Indexed: 12/12/2022] Open
Abstract
The gastrokine 1 (GKN1) protein is important for maintaining the physiological function of the gastric mucosa. GKN1 is down-regulated in gastric tumor tissues and derived cell lines and its over-expression in gastric cancer cells induces apoptosis, suggesting a possible role for the protein as a tumor suppressor. However, the mechanism by which GKN1 is inactivated in gastric cancer remains unknown. Here, we investigated the causes of GKN1 silencing to determine if epigenetic mechanisms such as histonic modification could contribute to its down-regulation. To this end, chromatin immunoprecipitation assays for the trimethylation of histone 3 at lysine 9 (H3K9triMe) and its specific histone-lysine N-methyltransferase (SUV39H1) were performed on biopsies of normal and cancerous human gastric tissues. GKN1 down-regulation in gastric cancer tissues was shown to be associated with high levels of H3K9triMe and with the recruitment of SUV39H1 to the GKN1 promoter, suggesting the presence of an epigenetic transcriptional complex that negatively regulates GKN1 expression in gastric tumors. The inhibition of histone deacetylases with trichostatin A was also shown to increase GKN1 mRNA levels. Collectively, our results indicate that complex epigenetic machinery regulates GKN1 expression at the transcriptional level, and likely at the translational level.
Collapse
Affiliation(s)
- Filomena Altieri
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| | - Chiara Stella Di Stadio
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| | - Antonella Federico
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| | - Giuseppina Miselli
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| | | | - Emilia Rippa
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| | - Paolo Arcari
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
- CEINGE, Advanced Biotechnology Scarl, Naples, Italy
| |
Collapse
|
10
|
Kim O, Yoon JH, Choi WS, Ashktorab H, Smoot DT, Nam SW, Lee JY, Park WS. Gastrokine 1 inhibits gastrin-induced cell proliferation. Gastric Cancer 2016; 19:381-391. [PMID: 25752269 PMCID: PMC5297461 DOI: 10.1007/s10120-015-0483-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2014] [Accepted: 02/24/2015] [Indexed: 02/07/2023]
Abstract
BACKGROUND Gastrokine 1 (GKN1) acts as a gastric tumor suppressor. Here, we investigated whether GKN1 contributes to the maintenance of gastric mucosal homeostasis by regulating gastrin-induced gastric epithelial cell growth. METHODS We assessed the effects of gastrin and GKN1 on cell proliferation in stable AGS(GKN1) and MKN1(GKN1) gastric cancer cell lines and HFE-145 nonneoplastic epithelial cells. Cell viability and proliferation were analyzed by MTT and BrdU incorporation assays, respectively. Cell cycle and expression of growth factor receptors were examined by flow cytometry and Western blot analyses. RESULTS Gastrin treatment stimulated a significant time-dependent increase in cell viability and proliferation in AGS(mock) and MKN1(mock), but not in HFE-145, AGS(GKN1), and MKN1(GKN1), cells, which stably expressed GKN1. Additionally, gastrin markedly increased the S-phase cell population, whereas GKN1 significantly inhibited the effect of gastrin by regulating the expression of G1/S cell-cycle regulators. Furthermore, gastrin induced activation of the NF-kB and β-catenin signaling pathways and increased the expression of CCKBR, EGFR, and c-Met in AGS and MKN1 cells. However, GKN1 completely suppressed these effects of gastrin via downregulation of gastrin/CCKBR/growth factor receptor expression. Moreover, GKN1 reduced gastrin and CCKBR mRNA expression in AGS and MKN1 cells, and there was an inverse correlation between GKN1 and gastrin, as well as between GKN1 and CCKBR mRNA expression in noncancerous gastric mucosae. CONCLUSION These data suggest that GKN1 may contribute to the maintenance of gastric epithelial homeostasis and inhibit gastric carcinogenesis by downregulating the gastrin-CCKBR signaling pathway.
Collapse
Affiliation(s)
- Olga Kim
- Department of Pathology, College of Medicine, The Catholic University of Korea, 505 Banpo-dong, Seocho-gu, Seoul, 137-701, Korea
| | - Jung Hwan Yoon
- Department of Pathology, College of Medicine, The Catholic University of Korea, 505 Banpo-dong, Seocho-gu, Seoul, 137-701, Korea
| | - Won Suk Choi
- Department of Pathology, College of Medicine, The Catholic University of Korea, 505 Banpo-dong, Seocho-gu, Seoul, 137-701, Korea
| | - Hassan Ashktorab
- Department of Medicine, Howard University, Washington, DC, 20060, USA
| | - Duane T Smoot
- Department of Medicine, Howard University, Washington, DC, 20060, USA
| | - Suk Woo Nam
- Department of Pathology, College of Medicine, The Catholic University of Korea, 505 Banpo-dong, Seocho-gu, Seoul, 137-701, Korea
| | - Jung Young Lee
- Department of Pathology, College of Medicine, The Catholic University of Korea, 505 Banpo-dong, Seocho-gu, Seoul, 137-701, Korea
| | - Won Sang Park
- Department of Pathology, College of Medicine, The Catholic University of Korea, 505 Banpo-dong, Seocho-gu, Seoul, 137-701, Korea.
| |
Collapse
|
11
|
Di Stadio CS, Altieri F, Miselli G, Elce A, Severino V, Chambery A, Quagliariello V, Villano V, de Dominicis G, Rippa E, Arcari P. AMP18 interacts with the anion exchanger SLC26A3 and enhances its expression in gastric cancer cells. Biochimie 2015; 121:151-60. [PMID: 26700142 DOI: 10.1016/j.biochi.2015.12.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Accepted: 12/01/2015] [Indexed: 01/05/2023]
Abstract
AMP18 is a stomach-specific secreted protein expressed in normal gastric mucosa but absent in gastric cancer. AMP18 plays a major role in maintaining gastric mucosa integrity and is characterized by the presence of a BRICHOS domain consisting of about 100 amino acids, present also in several unrelated proteins, and probably endowed with a chaperon-like activity. In this work, we exploited a functional proteomic strategy to identify potential AMP18 interactors with the aim to add knowledge on its functional role within gastric cell lines and tissues. To this purpose, recombinant biotinylated AMP18 was purified and incubated with protein extract from human normal gastric mucosa by applying an affinity chromatography strategy. The interacting proteins were identified by peptide mass fingerprinting using MALDI-TOF mass spectrometry. The pool of interacting proteins contained SLC26A3, a protein expressed in the apical membrane of intestinal epithelial cells, supposed to play a critical role in Cl(-) absorption and fluid homeostasis. The interaction was also confirmed by Western blot with anti-SLC26A3 on transfected AGS cell extract following AMP18 pull-down. Furthermore, the interaction between AMP18 and SLC26A3 was also validated by confocal microscopy that showed a co-localization of both proteins at plasma membrane level. More importantly, for the first time, we showed that SLC26A3 is down-regulated in gastric cancer and that the overexpression of AMP18 in AMP-transfected gastric cancer cells up-regulated the expression of SLC26A3 both at transcriptional and translational level, the latter probably through the activation of the MAP kinases pathway. These findings strongly suggest that AMP18 might play an anti-inflammatory role in maintaining mucosal integrity also by regulating SLC26A3 level.
Collapse
Affiliation(s)
- Chiara Stella Di Stadio
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| | - Filomena Altieri
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| | - Giuseppina Miselli
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| | - Ausilia Elce
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| | - Valeria Severino
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, Second University of Naples, Caserta, Italy
| | - Angela Chambery
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, Second University of Naples, Caserta, Italy; IRCCS Multimedica, Milan, Italy
| | - Vincenzo Quagliariello
- Laboratory of Biotechnology, Department of Anesthesia, Surgical and Emergency Sciences, Second University of Naples, Via Costantinopoli 16, I-80138, Naples, Italy
| | - Valentina Villano
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| | | | - Emilia Rippa
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy.
| | - Paolo Arcari
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy; CEINGE, Advanced Biotechnology Scarl, Via Gaetano Salvatore 486, I-80145, Naples, Italy.
| |
Collapse
|
12
|
Rippa E, Altieri F, Di Stadio CS, Miselli G, Lamberti A, Federico A, Quagliariello V, Papale F, Guerra G, Arcari P. Ectopic expression of gastrokine 1 in gastric cancer cells up-regulates tight and adherens junction proteins network. Pathol Res Pract 2015; 211:577-83. [PMID: 26008777 DOI: 10.1016/j.prp.2015.04.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Revised: 03/30/2015] [Accepted: 04/17/2015] [Indexed: 01/02/2023]
Abstract
Gastrokine 1 (GKN1) is a stomach-specific protein important in the replenishment of the surface lumen epithelial cell layer and in maintaining mucosal integrity. A role in cell proliferation and differentiation has also been hypothesized. Despite these findings, the function(s) as well as the cellular localization of GKN1 in the cellular machinery are currently not clarified. The investigation of subcellular localization of GKN1 in gastric cancer cells can provide insights into its potential cellular roles. Subcellular fractions of gastric cancer cells (AGS) transfected with full-length GKN1 (flGKN1) or incubated with recombinant GKN1 (rGKN1) lacking the first 20 amino acids at N-terminal were analyzed by Western blot and confocal microscopy and compared with those from normal gastric tissue. Wild type GKN1 (wtGKN1) and flGKN1 were revealed in the cytoplasm and in the membrane fractions of gastric cells, whereas rGKN1 was revealed in the cytoplasmic fractions, but a high amount was detected in the membrane pellet of the AGS lysate. The cellular distribution of GKN1 was also confirmed by confocal microscopy. The purified protein was also used to highlight its possible association with actin through confocal microscopy, pelleting assay, and size-exclusion chromatography. GKN1 co-localizes with actin in normal gastric tissue, but no direct interaction was observed between the two proteins in vitro. Most likely, GKN1 indirectly participates in actin stabilization since its overexpression in gastric cancer cells strongly increases the expression of tight and adherens junction proteins.
Collapse
Affiliation(s)
- Emilia Rippa
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| | - Filomena Altieri
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| | - Chiara Stella Di Stadio
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| | - Giuseppina Miselli
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| | - Annalisa Lamberti
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| | - Antonella Federico
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy; CNR, Institute of Experimental Endocrinology and Oncology G. Salvatore, Naples, Italy
| | - Vincenzo Quagliariello
- Department of Anesthesia, Surgical and Emergency Sciences, Second University of Naples, Naples, Italy
| | - Ferdinando Papale
- Department of Anesthesia, Surgical and Emergency Sciences, Second University of Naples, Naples, Italy
| | - Germano Guerra
- Department of Medicine and Health Science, University of Molise, Isernia, Italy
| | - Paolo Arcari
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy; CEINGE, Advanced Biotechnology Scarl, Naples, Italy.
| |
Collapse
|
13
|
Altieri F, Di Stadio CS, Severino V, Sandomenico A, Minopoli G, Miselli G, Di Maro A, Ruvo M, Chambery A, Quagliariello V, Masullo M, Rippa E, Arcari P. Anti-amyloidogenic property of human gastrokine 1. Biochimie 2014; 106:91-100. [DOI: 10.1016/j.biochi.2014.08.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Accepted: 08/10/2014] [Indexed: 10/24/2022]
|
14
|
Yoon JH, Choi WS, Kim O, Park WS. The role of gastrokine 1 in gastric cancer. J Gastric Cancer 2014; 14:147-55. [PMID: 25328759 PMCID: PMC4199881 DOI: 10.5230/jgc.2014.14.3.147] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Revised: 09/12/2014] [Accepted: 09/13/2014] [Indexed: 12/18/2022] Open
Abstract
Homeostatic imbalance between cell proliferation and death in gastric mucosal epithelia may lead to gastritis and gastric cancer. Despite abundant gastrokine 1 (GKN1) expression in the normal stomach, the loss of GKN1 expression is frequently detected in gastric mucosa infected with Helicobacter pylori, as well as in intestinal metaplasia and gastric cancer tissues, suggesting that GKN1 plays an important role in gastric mucosal defense, and the gene functions as a gastric tumor suppressor. In the stomach, GKN1 is involved in gastric mucosal inflammation by regulating cytokine production, the nuclear factor-κB signaling pathway, and cyclooxygenase-2 expression. GKN1 also inhibits the carcinogenic potential of H. pylori protein CagA by binding to it, and up-regulates antioxidant enzymes. In addition, GKN1 reduces cell viability, proliferation, and colony formation by inhibiting cell cycle progression and epigenetic modification by down-regulating the expression levels of DNMT1 and EZH2, and DNMT1 activity, and inducing apoptosis through the death receptor-dependent pathway. Furthermore, GKN1 also inhibits gastric cancer cell invasion and metastasis via coordinated regulation of epithelial mesenchymal transition-related protein expression, reactive oxygen species production, and PI3K/Akt signaling pathway activation. Although the modes of action of GKN1 have not been clearly described, recent limited evidence suggests that GKN1 acts as a gastric-specific tumor suppressor. This review aims to discuss, comment, and summarize the recent progress in the understanding of the role of GKN1 in gastric cancer development and progression.
Collapse
Affiliation(s)
- Jung Hwan Yoon
- Department of Pathology, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Won Suk Choi
- Department of Pathology, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Olga Kim
- Department of Pathology, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Won Sang Park
- Department of Pathology, College of Medicine, The Catholic University of Korea, Seoul, Korea
| |
Collapse
|
15
|
Yoon JH, Seo HS, Choi SS, Chae HS, Choi WS, Kim O, Ashktorab H, Smoot DT, Nam SW, Lee JY, Park WS. Gastrokine 1 inhibits the carcinogenic potentials of Helicobacter pylori CagA. Carcinogenesis 2014; 35:2619-29. [PMID: 25239641 DOI: 10.1093/carcin/bgu199] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Helicobacter pylori CagA directly injected by the bacterium into epithelial cells via a type IV secretion system, leads to cellular changes such as morphology, apoptosis, proliferation and cell motility, and stimulates gastric carcinogenesis. We investigated the effects of cytotoxin-associated gene A (CagA) and gastrokine 1 (GKN1) on cell proliferation, apoptosis, reactive oxygen species (ROS) production, epithelial-mesenchymal transition (EMT) and cell migration in CagA- or GKN1-transfected gastric epithelial cells and mucosal tissues from humans and mice infected with H.pylori. On the molecular level, H.pylori CagA induced increased cell proliferation, ROS production, antiapoptotic activity, cell migration and invasion. Moreover, CagA induced activation of NF-κB and PI3K/Akt signaling pathways and EMT-related proteins. In addition, H.pylori CagA reduced GKN1 gene copy number and expression in gastric cells and mucosal tissues of humans and mice. However, GKN1 overexpression successfully suppressed the carcinogenic effects of CagA through binding to CagA. These results suggest that GKN1 might be a target to inhibit the effects from H.pylori CagA.
Collapse
Affiliation(s)
| | - Ho Suk Seo
- Department of General Surgery, College of Medicine, The Catholic University of Korea, 505 Banpo-dong, Seocho-gu, Seoul 137-701, South Korea
| | - Sung Sook Choi
- College of Pharmacy, Sahmyook University, Hwarangro 815, Nowon-gu, Seoul 139-742, South Korea
| | - Hyun Suk Chae
- Department of Internal Medicine, College of Medicine, The Catholic University of Korea, 505 Banpo-dong, Seocho-gu, Seoul 137-701, South Korea
| | | | | | - Hassan Ashktorab
- Department of Medicine, Howard University, Washington, DC 20060, USA
| | - Duane T Smoot
- Department of Internal Medicine, Meharry Medical College, Nashville, TN 37208, USA and
| | - Suk Woo Nam
- Department of Pathology and Functional RNomics Research Center, College of Medicine, The Catholic University of Korea, 505 Banpo-dong, Seocho-gu, Seoul 137-701, South Korea
| | - Jung Young Lee
- Department of Pathology and Functional RNomics Research Center, College of Medicine, The Catholic University of Korea, 505 Banpo-dong, Seocho-gu, Seoul 137-701, South Korea
| | - Won Sang Park
- Department of Pathology and Functional RNomics Research Center, College of Medicine, The Catholic University of Korea, 505 Banpo-dong, Seocho-gu, Seoul 137-701, South Korea
| |
Collapse
|
16
|
Kim O, Yoon JH, Choi WS, Ashktorab H, Smoot DT, Nam SW, Lee JY, Park WS. GKN2 contributes to the homeostasis of gastric mucosa by inhibiting GKN1 activity. J Cell Physiol 2014; 229:762-71. [PMID: 24151046 DOI: 10.1002/jcp.24496] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2013] [Accepted: 10/16/2013] [Indexed: 12/19/2022]
Abstract
Gastrokine 1 (GKN1) plays an important role in maintaining gastric mucosa integrity. Here, we investigated whether gastrokine 2 (GKN2) contributes to the homeostasis of gastric epithelial cells by regulating GKN1 activity. We analyzed cell viability, proliferation, and death in AGS cells transfected with GKN1, GKN2, GKN1 plus GKN2 using MTT, BrdU incorporation, and apoptosis assays, respectively. In addition, the expression levels of the cell cycle- and apoptosis-related proteins, miR-185, DNMT1, and EZH2 were determined. We also compared the expression of GKN1, GKN2, and CagA in 50 non-neoplastic gastric mucosae and measured GKN2 expression in 169 gastric cancers by immunohistochemistry. GKN2 inhibited anti-proliferative and pro-apoptotic activities, miR-185 induction, and anti-epigenetic modifications of GKN1. There was a positive correlation between GKN1 and GKN2 expression (P = 0.0074), and the expression of GKN1, but not GKN2, was significantly lower in Helicobacter pylori CagA-positive gastric mucosa (P = 0.0013). Interestingly, ectopic GKN1 expression in AGS cells increased GKN2 mRNA and protein expression in a time-dependent manner (P = 0.01). Loss of GKN2 expression was detected in 126 (74.6%) of 169 gastric cancers by immunohistochemical staining and was closely associated with GKN1 expression and differentiation of gastric cancer cells (P = 0.0002 and P = 0.0114, respectively). Overall, our data demonstrate that in the presence of GKN2, GKN1 loses its ability to decrease cell proliferation, induce apoptosis, and inhibit epigenetic alterations in gastric cancer cells. Thus, we conclude that GKN2 may contribute to the homeostasis of gastric epithelial cells by inhibiting GKN1 activity.
Collapse
Affiliation(s)
- Olga Kim
- Department of Pathology, College of Medicine, The Catholic University of Korea, Seocho-gu, Seoul, South Korea
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Dai J, Zhang N, Wang J, Chen M, Chen J. Gastrokine-2 is downregulated in gastric cancer and its restoration suppresses gastric tumorigenesis and cancer metastasis. Tumour Biol 2014; 35:4199-207. [DOI: 10.1007/s13277-013-1550-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2013] [Accepted: 12/13/2013] [Indexed: 12/22/2022] Open
|
18
|
Yoon JH, Cho ML, Choi YJ, Back JY, Park MK, Lee SW, Choi BJ, Ashktorab H, Smoot DT, Nam SW, Lee JY, Park WS. Gastrokine 1 regulates NF-κB signaling pathway and cytokine expression in gastric cancers. J Cell Biochem 2013; 114:1800-9. [PMID: 23444260 DOI: 10.1002/jcb.24524] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Accepted: 02/13/2013] [Indexed: 12/16/2022]
Abstract
Gastrokine 1 (GKN1) plays an important role in the gastric mucosal defense mechanism and also acts as a functional gastric tumor suppressor. In this study, we examined the effect of GKN1 on the expression of inflammatory mediators, including NF-κB, COX-2, and cytokines in GKN1-transfected AGS cells and shGKN1-transfected HFE-145 cells. Lymphocyte migration and cell viability were also analyzed after treatment with GKN1 and inflammatory cytokines in AGS cells by transwell chemotaxis and an MTT assay, respectively. In GKN1-transfected AGS cells, we observed inactivation and reduced expression of NF-κB and COX-2, whereas shGKN1-transfected HFE-145 cells showed activation and increased expression of NF-κB and COX-2. GKN1 expression induced production of inflammatory cytokines including IL-8 and -17A, but decreased expression of IL-6 and -10. We also found IL-17A expression in 9 (13.6%) out of 166 gastric cancer tissues and its expression was closely associated with GKN1 expression. GKN1 also acted as a chemoattractant for the migration of Jurkat T cells and peripheral B lymphocytes in the transwell assay. In addition, GKN1 significantly reduced cell viability in both AGS and HFE-145 cells. These data suggest that the GKN1 gene may inhibit progression of gastric epithelial cells to cancer cells by regulating NF-κB signaling pathway and cytokine expression.
Collapse
Affiliation(s)
- Jung Hwan Yoon
- Department of Pathology, College of Medicine, The Catholic University of Korea, 505 Banpo-dong, Seocho-gu, Seoul 137-701, Korea
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Park JS, Lee SJ, Kim TH, Yeom J, Park ES, Seo JH, Jun JS, Lim JY, Park CH, Woo HO, Youn HS, Ko GH, Kang HL, Baik SC, Lee WK, Cho MJ, Rhee KH. Gastric autoantigenic proteins in Helicobacter pylori infection. Yonsei Med J 2013; 54:1342-52. [PMID: 24142637 PMCID: PMC3809852 DOI: 10.3349/ymj.2013.54.6.1342] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
PURPOSE This study tried to identify novel gastric autoimmune antigens that might be involved in aggravating the atrophic gastritis among patients with Helicobacter pylori infection using two-dimensional immunoblotting analysis. MATERIALS AND METHODS Proteins from gastric mucosal antrectomy specimens and AGS cells (gastric adenocarcinoma cell lines derived from a Caucasian patient who had received no prior therapy) were 2-dimensionally immunoblotted separately with a pool of 300 sera from H. pylroi-infected patients at Gyeongsang National University Hospital. RESULTS Thirty-eight autoantigenic proteins including alcohol dehydrogenase [NADP+], alpha enolase, gastrokine-1, gastric triacylglycerol lipase, heat shock 70 kDa protein 1, and peroxiredoxin-2 were identified in the gastric mucosal tissue. Fourteen autoantigenic proteins including programmed cell death 6-interacting protein, serum albumin and T-complex protein 1 subunit gamma were identified in the AGS cells. Albumin, alpha-enolase, annexin A3, cytoplasmic actin 1, heat shock cognate 71 kDa protein and leukocyte elastase inhibitor were commonly observed autoantigenic proteins in both gastric mucosal tissue and AGS cells. Alpha-enolase, glutathione S-transferase P, heat shock cognate 71 kDa protein, heat shock 70 kDa protein 1, human mitochondrial adenosine triphosphate synthase (ATP) subunit beta, mitochondrial 60 kDa heat shock protein, peroxiredoxin-2, 78 kDa glucose-regulated protein precursor, tyrosine-protein phosphatase non-receptor type 11 and Tryptophan-Aspartic acid (WD) repeat-containing protein 1 showed 60% or higher amino acid positivity. CONCLUSION These newly identified gastric autoimmune antigens might be useful in the control and prevention of gastroduodenal disorders, and might be valuable in breaking the vicious circle that exists in gastroduodenal disorders if their pathophysiological roles could be understood in the progress of chronic atrophic gastritis, gastroduodenal ulcers, intestinal metaplasia, and gastric carcinogenesis.
Collapse
Affiliation(s)
- Ji Sook Park
- Department of Pediatrics, Gyeongsang National University School of Medicine, 79 Gangnam-ro, Jinju 660-702, Korea.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Yoon JH, Choi YJ, Choi WS, Nam SW, Lee JY, Park WS. Functional analysis of the NH2-terminal hydrophobic region and BRICHOS domain of GKN1. Biochem Biophys Res Commun 2013; 440:689-95. [PMID: 24099765 DOI: 10.1016/j.bbrc.2013.09.123] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2013] [Accepted: 09/27/2013] [Indexed: 10/26/2022]
Abstract
Gastrokine 1 (GKN1) protects the gastric antral mucosa and promotes healing by facilitating restitution and proliferation after injury. GKN1 is down-regulated in Helicobacter pylori-infected gastric epithelial cells and loss of GKN1 expression is tightly associated with gastric carcinogenesis. However, the underlying mechanisms as a tumor suppressor are largely unknown. Presently, the hydrophobic region and BRICHOS domain of GKN1, pGKN1(D13N), pGKN1(Δ68-199), and pGKN1(Δ1-67,165-199) were shown to suppress gastric cancer cell growth and recapitulate GKN1 functions. As well, the hydrophobic region and BRICHOS domain of GKN1 had a synergistic anti-cancer effect with 5-FU on tumor cell growth, implying that the NH2-terminal hydrophobic region and BRICHOS domain of GKN1 are sufficient for tumor suppression, thereby suggesting a therapeutic intervention for gastric cancer. Also, its domain inducing endogenous miR-185 directly targeted the epigenetic effectors DNMT1 and EZH2 in gastric cancer cells. Our results suggest that the NH2-terminal hydrophobic region and BRICHOS domain of GKN1 are sufficient for its tumor suppressor activities.
Collapse
Affiliation(s)
- Jung Hwan Yoon
- Department of Pathology, College of Medicine, The Catholic University of Korea, 505 Banpo-dong, Seocho-gu, Seoul 137-701, South Korea
| | | | | | | | | | | |
Collapse
|
21
|
GKN1 and miR-185 are associated with CpG island methylator phenotype in gastric cancers. Mol Cell Toxicol 2013. [DOI: 10.1007/s13273-013-0029-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
22
|
Yoon JH, Choi YJ, Choi WS, Ashktorab H, Smoot DT, Nam SW, Lee JY, Park WS. GKN1-miR-185-DNMT1 axis suppresses gastric carcinogenesis through regulation of epigenetic alteration and cell cycle. Clin Cancer Res 2013; 19:4599-610. [PMID: 23846337 DOI: 10.1158/1078-0432.ccr-12-3675] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
PURPOSE Gastrokine 1 (GKN1) functions to protect the gastric antral mucosa and promotes healing by facilitating restoration and proliferation after injury. GKN1 is downregulated in Helicobacter pylori-infected gastric epithelial cells and loss of GKN1 expression is closely associated with gastric carcinogenesis, but underlying mechanisms of the tumor-suppressing effects of GKN1 remain largely unknown. EXPERIMENTAL DESIGN AGS, MKN1, MKN28 gastric cancer cells and HFE-145 immortalized non-neoplastic gastric mucosal cells were transfected with GKN1 or shGKN1. We conducted molecular and functional studies of GKN1 and miR-185 and investigated the mechanisms of alteration. We also analyzed epigenetic alterations in 80 gastric cancer tissues. RESULTS Restoration of GKN1 protein suppressed gastric cancer cell growth by inducing endogenous miR-185 that directly targets epigenetic effectors DNMT1 and EZH2 in gastric cancer cells. In addition, ectopic expression of GKN1 upregulated Tip60 and downregulated HDAC1 in an miR-185-independent manner, thereby inducing cell-cycle arrest by regulating cell-cycle proteins in gastric cancer cells. Notably, GKN1 expression was inversely correlated with DNMT1 and EZH2 expression in a subset of 80 gastric cancer tissues and various gastric cancer cell lines. Interestingly, it was found that GKN1 exerted a synergistic anti-cancerous effect with 5-fluorouracil on tumor cell growth, which suggests a possible therapeutic intervention method for gastric cancer. CONCLUSION Our results show that GKN1 has an miR-185-dependent and -independent mechanism for chromatic and DNA epigenetic modification, thereby regulating the cell cycle. Thus, the loss of GKN1 function contributes to malignant transformation and proliferation of gastric epithelial cells in gastric carcinogenesis.
Collapse
Affiliation(s)
- Jung Hwan Yoon
- Department of Pathology, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Menheniott TR, Kurklu B, Giraud AS. Gastrokines: stomach-specific proteins with putative homeostatic and tumor suppressor roles. Am J Physiol Gastrointest Liver Physiol 2013; 304:G109-21. [PMID: 23154977 DOI: 10.1152/ajpgi.00374.2012] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
During the past decade, a new family of stomach-specific proteins has been recognized. Known as "gastrokines" (GKNs), these secreted proteins are products of gastric mucus-producing cell lineages. GKNs are highly conserved in physical structure, and emerging data point to convergent functions in the modulation of gastric mucosal homeostasis and inflammation. While GKNs are highly prevalent in the normal stomach, frequent loss of GKN expression in gastric cancers, coupled with established antiproliferative activity, suggests putative tumor suppressor roles. Conversely, ectopic expression of GKNs in reparative lesions of Crohn's disease alludes to additional activity in epithelial wound healing and/or repair. Modes of action remain unsolved, but the recent demonstration of a GKN2-trefoil factor 1 heterodimer implicates functional interplay with trefoil factors. This review aims to provide a historical account of GKN biology and encapsulate the rapidly accumulating evidence supporting roles in gastric epithelial homeostasis and tumor suppression.
Collapse
Affiliation(s)
- Trevelyan R Menheniott
- Murdoch Childrens Research Institute, Royal Children's Hospital, Flemington Rd., Parkville, Melbourne, VIC 3052, Australia.
| | | | | |
Collapse
|
24
|
Pavone LM, Del Vecchio P, Mallardo P, Altieri F, De Pasquale V, Rea S, Martucci NM, Di Stadio CS, Pucci P, Flagiello A, Masullo M, Arcari P, Rippa E. Structural characterization and biological properties of human gastrokine 1. MOLECULAR BIOSYSTEMS 2013; 9:412-21. [PMID: 23319233 DOI: 10.1039/c2mb25308a] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Gastrokine-1 (GKN1), a protein expressed in normal gastric tissue, but absent in gastric cancer tissues and derived cell lines, has recently emerged as a potential biomarker for gastric cancer. To better establish the molecular properties of GKN1, the first protocol for the production of mature human GKN1 in the expression system of Pichia pastoris was settled. The recombinant protein showed anti-proliferative properties specifically on gastric cancer cell lines thus indicating that it was properly folded. Characterization of structural and biochemical properties of recombinant GKN1 was achieved by limited proteolysis analysis, circular dichroism and fluorescence spectroscopy. The analysis of GKN1 primary structure coupled to proteolytic experiments highlighted that GKN1 was essentially resistant to proteolytic enzymes and showed the presence of at least a disulphide bond between Cys61 and one of the other three Cys (Cys122, Cys145 and Cys159) of the molecule. The secondary structure analysis revealed a prevailing β-structure. Spectroscopic and calorimetric investigations on GKN1 thermal denaturation pointed out its high thermal stability and suggested a more complex than a two-state unfolding process. The resulting protein was endowed with a globular structure characterized by domains showing different stabilities toward chemical and physical denaturants. These results are in agreement with the prediction of GKN1 secondary structure and a three-dimensional structure model. Our findings provide the basis for the development of new pharmaceutical compounds of potential use for gastric cancer therapy.
Collapse
Affiliation(s)
- Luigi Michele Pavone
- Department of Biochemistry and Medical Biotechnology, University of Naples Federico II, Via S. Pansini 5, 80131 Naples, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Mao W, Chen J, Peng TL, Yin XF, Chen LZ, Chen MH. Downregulation of gastrokine-1 in gastric cancer tissues and restoration of its expression induced gastric cancer cells to apoptosis. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2012; 31:49. [PMID: 22621392 PMCID: PMC3511871 DOI: 10.1186/1756-9966-31-49] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2012] [Accepted: 05/17/2012] [Indexed: 12/15/2022]
Abstract
Background Gastrokine-1 (GKN1), a secreted protein, is specifically expressed in gastric mucosa to protect and maintain the integrity of gastric epithelium. The present study investigated differential expression of GKN1 in normal, precancerous, and cancerous gastric tissues, and explored the biological functions of GKN1 protein in gastric cancer cells. Methods RT-PCR, Western blot, and immunohistochemistry were performed to detect GKN1 expression in normal, precancerous, cancerous gastric tissues and seven gastric cancer cell lines. Gene transfection was used to restore GKN1 expression in gastric cancer AGS cells. Phenotypic changes (i.e., cell viability, apoptosis, cell cycle modulation, and sensitivity of gastric cancer cells to fluorouracil (5-FU)) were assayed in the transfected cells. DNA microarrays were used to analyze expression changes of apoptosis-related genes. Results Significant downregulation or absence of GKN1 expression in seven gastric cancer cell lines were detected and progressive decrease of GKN1 expression from normal mucosa, precancerous tissue, to cancer tissues was observed. Moreover, restoration of GKN1 expression suppressed gastric cancer cell viability and induced the cells to undergo apoptosis. GKN1 expression also enhanced tumor cell sensitivity to 5-FU treatment. Moreover, it was found that GKN1 expression in AGS cells modulated expression of 19 apoptosis-related genes. Conclusions Expression of GKN1 is progressively lost from normal mucosa, precancerous to cancerous gastric tissues, while restoration of GKN1 expression induces gastric cancer cells to undergo apoptosis, and enhances sensitivity of gastric cancer cells to 5-FU-induced apoptosis.
Collapse
Affiliation(s)
- Wei Mao
- Department of Gastroenterology, the First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | | | | | | | | | | |
Collapse
|
26
|
Rippa E, La Monica G, Allocca R, Romano MF, De Palma M, Arcari P. Overexpression of gastrokine 1 in gastric cancer cells induces Fas-mediated apoptosis. J Cell Physiol 2011; 226:2571-8. [PMID: 21792914 DOI: 10.1002/jcp.22601] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Gastrokine 1 (GKN1) is involved in the replenishment of the surface lumen epithelial cell layer, in maintaining the mucosal integrity, and could play a role in cell proliferation and differentiation. In fact, after injury of the gastric mucosa, restoration may occur very rapidly in the presence of GKN1. In contrast, if the protein is downregulated, the repair process may be hampered; however, application of GKN1 to gastrointestinal cells promoted epithelial restoration. Because GKN1 possesses some mitogenic effects on intestinal epithelial cells (IEC-6) whereas this protein was also capable of inhibiting proliferation in gastric cancer cells (MKN28), we decided to study its involvement in apoptosis to understand the role of GKN1 in the modulation of inflammatory damage or tumorigenesis in gastric mucosa. We found by cytofluorimetry, Western blot and RT-PCR that the overexpression of GKN1 in gastric cancer cell lines (AGS and MKN28) stimulated the expression of Fas receptor. Moreover, compared to control cells, a significant increase of apoptosis, evaluated by TUNEL, was observed when GKN1 transfected cells were treated with a monoclonal antibody (IgM) anti-Fas. The activation of Fas expression was also observed by the overexpression of GKN1 in other cancer cell lines. Moreover, in GKN1-overexpressing gastric cancer cells exposed to FasL, the activation of caspase-3 was also observed by Western blot and fluorescence assays. Our data represent the first report for GKN1 as modulator of apoptotic signals and suggest that GKN1 might play an important role for tissue repair during the early stages of neoplastic transformation.
Collapse
Affiliation(s)
- Emilia Rippa
- Department of Biochemistry and Medical Biotechnologies, University of Naples Federico II, Naples, Italy
| | | | | | | | | | | |
Collapse
|
27
|
Yoon JH, Kang YH, Choi YJ, Park IS, Nam SW, Lee JY, Lee YS, Park WS. Gastrokine 1 functions as a tumor suppressor by inhibition of epithelial-mesenchymal transition in gastric cancers. J Cancer Res Clin Oncol 2011; 137:1697-704. [PMID: 21898090 DOI: 10.1007/s00432-011-1051-8] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2011] [Accepted: 08/23/2011] [Indexed: 12/22/2022]
Abstract
PURPOSE Gastrokine 1 (GKN1) plays an important role in the gastric mucosal defense mechanism and also acts as a functional gastric tumor suppressor. The specific aim of this study was to determine the molecular mechanisms underlying GKN1 tumor suppressor activity in the progression of gastric cancers. METHODS We examined the effect of GKN1 on epithelial-mesenchymal transition (EMT) and cell migration in GKN1-transfected and recombinant GKN1-treated AGS gastric cancer cells using in vitro wound healing, microchemotaxis, and invasion assays. RESULTS In GKN1-transfected AGS cells, we observed inhibition of cell migration and invasion in wound healing, transwell and Matrigel assay. Also, GKN1-transfected and recombinant GKN1-treated AGS cells showed decreased levels of ROS and expression of phosphatidylinositol 3-kinase (PI3K)/Akt pathway proteins, concomitant with re-expression of E-cadherin and decreased expression of cytoplasmic and nuclear expression of β-catenin, slug, snail, fibronectin, and vimentin. CONCLUSIONS These data suggest that the GKN1 gene may play an important role in the progression of sporadic gastric cancers via inhibition of EMT and cancer cell migration.
Collapse
Affiliation(s)
- Jung Hwan Yoon
- Department of Pathology, College of Medicine, The Catholic University of Korea, 505 Banpo-dong, Seocho-gu, Seoul 137-701, South Korea
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Yan GR, Xu SH, Tan ZL, Yin XF, He QY. Proteomics characterization of gastrokine 1-induced growth inhibition of gastric cancer cells. Proteomics 2011; 11:3657-64. [DOI: 10.1002/pmic.201100215] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2011] [Revised: 05/27/2011] [Accepted: 06/12/2011] [Indexed: 12/21/2022]
|
29
|
Chen P, Lingen M, Sonis ST, Walsh-Reitz MM, Toback FG. Role of AMP-18 in oral mucositis. Oral Oncol 2011; 47:831-9. [PMID: 21737340 DOI: 10.1016/j.oraloncology.2011.06.012] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2011] [Revised: 05/27/2011] [Accepted: 06/10/2011] [Indexed: 12/30/2022]
Abstract
Oral mucositis (OM) is a devasting toxicity associated with cytotoxic cancer therapy. Antrum mucosal protein (AMP)-18 and a synthetic peptide surrogate, exhibit cell protective and mitogenic properties in in vitro and in vivo models of gastrointestinal epithelial cell injury. The mucosal barrier-protective effects may be mediated by AMP-18's capacity to increase accumulation of specific tight junction (TJ) and adherens junction proteins, and also protect against their loss after injury. Here we asked if AMP peptide could protect the oral mucosa and speed healing from radiation-induced injury. We found AMP peptide prevented radiation-induced OM in a murine model. The peptide also stimulated HaCaT cell growth used to model the oral mucosa. Binding of recombinant human (rh) AMP-18 to the plasma membrane of keratinocytes in normal human oral mucosal tissue suggested that its effects may be receptor mediated. Using an immobilized His-tagged rhAMP-18 fusion protein the receptor was identified as the cholecystokinin-B/gastrin receptor (CCKBR) by affinity purification and mass spectrometry analysis. CCKBR was expressed and co-immunoprecipitated with exogenous rhAMP-18 in diverse epithelial cell lines. Immunofluorescence staining revealed that rhAMP-18 colocalized with CCKBR on the surface of CCKBR-transfected cells. Furthermore, rhAMP-18-stimulated signaling pathways were blocked by a CCKBR-specific antagonist, YM022. rhAMP-18 enhanced viability and growth of CCKBR-transfected, but not empty vector-transfected cells. These results suggest the importance of epithelial junctional integrity in the pathogenesis of OM and demonstrate that AMP-18, by targeting TJ proteins through the activation of CCKBR, could provide a novel strategy for the prevention and treatment of OM.
Collapse
Affiliation(s)
- Peili Chen
- Department of Medicine, University of Chicago, Chicago, IL 60637, United States
| | | | | | | | | |
Collapse
|
30
|
Tsao DA, Tseng WC, Chang HR. The expression of RKIP, RhoGDI, galectin, c-Myc and p53 in gastrointestinal system of Cr(VI)-exposed rats. J Appl Toxicol 2011; 31:730-40. [DOI: 10.1002/jat.1621] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2010] [Revised: 10/20/2010] [Accepted: 10/20/2010] [Indexed: 11/11/2022]
Affiliation(s)
- Der-An Tsao
- Department of Medical Technology; Fooyin University; Taiwan
| | | | - Huoy-Rou Chang
- Department of Biomedical Engineering; I-Shou University; Kaohsiung; Taiwan
| |
Collapse
|
31
|
Yoon JH, Song JH, Zhang C, Jin M, Kang YH, Nam SW, Lee JY, Park WS. Inactivation of the Gastrokine 1 gene in gastric adenomas and carcinomas. J Pathol 2011; 223:618-25. [PMID: 21341273 DOI: 10.1002/path.2838] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2010] [Revised: 11/24/2010] [Accepted: 11/30/2010] [Indexed: 01/25/2023]
Abstract
Gastrokine 1 (GKN1) plays a role in the gastric mucosal defence mechanism and may be a gastric tumour suppressor. We have investigated whether inactivation of the GKN1 gene is involved in the development and/or progression of gastric cancers. GKN1 protein expression was examined in gastric adenomas and cancer and we also analysed GKN1 mutation and epigenetic alteration, DNA copy number change and mRNA transcript expression. The effect of GKN1 on cell proliferation and death was examined in wild-type GKN1-transfected AGS gastric cancer cells. Reduced or loss of GKN1 expression was detected in 36 (90%) and 170 (89.5%) of 40 adenomas and 190 gastric cancers, respectively. Statistically, there was no significant relationship between altered expression of GKN1 protein and clinicopathological parameters, including depth of invasion, location and lymph node metastasis (χ(2) test, p > 0.05). In western blot analysis, absence or reduced expression was found in 21 (84.0%) of 25 gastric carcinomas. No mutation was detected in gastric tumours, and hypermethylation of GKN1 gene was found in two tumours. DNA copy number and mRNA transcript of GKN1 were significantly decreased in gastric cancers. In functional analysis, AGS gastric cancer cells transfected with GKN1 wild-type showed marked inhibition of cell proliferation and induction of cell death. These data suggest that inactivation of the GKN1 gene may play an important role in the development of sporadic gastric cancers, as an early event.
Collapse
Affiliation(s)
- Jung Hwan Yoon
- Department of Pathology, College of Medicine, The Catholic University of Korea, 505 Banpo-dong, Seocho-gu, Seoul, Korea
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Menheniott TR, Peterson AJ, O'Connor L, Lee KS, Kalantzis A, Kondova I, Bontrop RE, Bell KM, Giraud AS. A novel gastrokine, Gkn3, marks gastric atrophy and shows evidence of adaptive gene loss in humans. Gastroenterology 2010; 138:1823-35. [PMID: 20138039 DOI: 10.1053/j.gastro.2010.01.050] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2009] [Revised: 01/19/2010] [Accepted: 01/27/2010] [Indexed: 02/02/2023]
Abstract
BACKGROUND & AIMS Gastrokines are stomach mucus cell-secreted proteins; 2 gastrokines are known, GKN1 and GKN2. Gastrokine expression is lost in gastric cancer, indicating a possible function in tumor suppression. We have identified a third gastrokine gene in mammals. METHODS Gkn3 was characterized by studies of molecular structure, evolutionary conservation, and tissue expression as well as transcriptional/translational outcome in mouse genetic models of gastric pathology. The functional consequences of Gkn3 overexpression were evaluated in transfected cell lines. RESULTS Gkn3 encodes a secreted (approximately 19 kilodalton) protein that is co-expressed with trefoil factor (Tff)2 in the distal stomach and discriminates a Griffinia simplicifolia lectin (GS)-II-positive mucus neck cell (MNC) subpopulation in the proximal stomach. In humans, widespread homozygosity for a premature stop codon polymorphism, W59X, has likely rendered GKN3 non-functional. Population genetic analysis revealed an ancestral GKN3 read-through allele that predominates in Africans and indicates the rapid expansion of W59X among non-Africans during recent evolution. Mouse Gkn3 expression is strongly up-regulated in (Tff2-deficient) gastric atrophy, a pre-cancerous state that is typically associated with Helicobacter pylori and marks a non-proliferative, GS-II positive lineage with features of spasmolytic polypeptide-expressing metaplasia (SPEM). Gkn3 overexpression inhibits proliferation in gastric epithelial cell lines, independently of incubation with recombinant human TFF2 or apoptosis. CONCLUSIONS Gkn3 encodes a novel, functionally distinct gastrokine that is overexpressed and might restrain epithelial cell proliferation in gastric atrophy. Spread of the human GKN3 stop allele W59X might have been selected for among non-Africans because of its effects on pre-neoplastic outcomes in the stomach.
Collapse
Affiliation(s)
- Trevelyan R Menheniott
- Murdoch Children's Research Institute, Royal Children's Hospital, Parkville, Victoria, Australia
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Huang Q, Ye J, Huang Q, Chen W, Wang L, Lin W, Lin J, Lin X. Heat shock protein 27 is over-expressed in tumor tissues and increased in sera of patients with gastric adenocarcinoma. Clin Chem Lab Med 2010; 48:263-9. [PMID: 19961396 DOI: 10.1515/cclm.2010.043] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND In a previous study, we found that heat shock protein 27 (HSP27) was over-expressed in gastric adenocarcinoma (GA) tissue. In this study, our goal was to further verify the expression profile of HSP27 in patients with GA. METHODS Western blot and immunohistochemistry were employed to determine HSP27 expression in 50 paired tumor and adjacent normal tissue. ELISA was used to quantify serum HSP27 concentrations in the same 50 GA patients and 50 healthy individuals. RESULTS Compared to adjacent normal tissues, HSP27 was over-expressed in 25 (50%, p=0.000) and 24 (48%, p=0.000) cases of GA tissue by Western blot and immunohistochemistry, respectively. ELISA revealed significantly higher serum concentrations of HSP27 in patients with GA patients (mean=986 pg/mL) compared to healthy individuals (mean=573 pg/mL) (p=0.003). In addition, infection with Helicobacter pylori (HP) in healthy individuals was associated with increased expression of HSP27 in both gastric mucosa and serum. CONCLUSIONS These data suggest that HSP27 is over-expressed in GA tissue and serum concentrations of HSP27 are increased in patients with GA. Over-expression of HSP27 may indicate a gastric malignant/infectious process. The detection of serum HSP27 concentrations by ELISA may be useful for screening for GA.
Collapse
Affiliation(s)
- Qiaojia Huang
- Key Laboratory of Infection and Oncology, Research Center of Molecular Medicine, Fujian Medical University, Fuzhou, PR China
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Hnia K, Notarnicola C, de Santa Barbara P, Hugon G, Rivier F, Laoudj-Chenivesse D, Mornet D. Biochemical properties of gastrokine-1 purified from chicken gizzard smooth muscle. PLoS One 2008; 3:e3854. [PMID: 19057650 PMCID: PMC2588339 DOI: 10.1371/journal.pone.0003854] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2008] [Accepted: 11/03/2008] [Indexed: 12/11/2022] Open
Abstract
The potential role and function of gastrokine-1 (GNK1) in smooth muscle cells is investigated in this work by first establishing a preparative protocol to obtain this native protein from freshly dissected chicken gizzard. Some unexpected biochemical properties of gastrokine-1 were deduced by producing specific polyclonal antibody against the purified protein. We focused on the F-actin interaction with gastrokine-1 and the potential role and function in smooth muscle contractile properties. Background GNK1 is thought to provide mucosal protection in the superficial gastric epithelium. However, the actual role of gastrokine-1 with regards to its known decreased expression in gastric cancer is still unknown. Recently, trefoil factors (TFF) were reported to have important roles in gastric epithelial regeneration and cell turnover, and could be involved in GNK1 interactions. The aim of this study was to evaluate the role and function of GNK1 in smooth muscle cells. Methodology/Principal Findings From fresh chicken gizzard smooth muscle, an original purification procedure was used to purify a heat soluble 20 kDa protein that was sequenced and found to correspond to the gastrokine-1 protein sequence containing one BRICHOS domain and at least two or possibly three transmembrane regions. The purified protein was used to produce polyclonal antibody and highlighted the smooth muscle cell distribution and F-actin association of GNK1 through a few different methods. Conclusion/Significance Altogether our data illustrate a broader distribution of gastrokine-1 in smooth muscle than only in the gastrointestinal epithelium, and the specific interaction with F-actin highlights and suggests a new role and function of GNK1 within smooth muscle cells. A potential role via TFF interaction in cell-cell adhesion and assembly of actin stress fibres is discussed.
Collapse
Affiliation(s)
- Karim Hnia
- INSERM ERI 25 “Muscle et Pathologies”, Université Montpellier 1, EA 4202, CHU Arnaud de Villeneuve, Montpellier, France
| | - Cécile Notarnicola
- INSERM ERI 25 “Muscle et Pathologies”, Université Montpellier 1, EA 4202, CHU Arnaud de Villeneuve, Montpellier, France
| | - Pascal de Santa Barbara
- INSERM ERI 25 “Muscle et Pathologies”, Université Montpellier 1, EA 4202, CHU Arnaud de Villeneuve, Montpellier, France
| | - Gérald Hugon
- INSERM ERI 25 “Muscle et Pathologies”, Université Montpellier 1, EA 4202, CHU Arnaud de Villeneuve, Montpellier, France
| | - François Rivier
- INSERM ERI 25 “Muscle et Pathologies”, Université Montpellier 1, EA 4202, CHU Arnaud de Villeneuve, Montpellier, France
| | - Dalila Laoudj-Chenivesse
- INSERM ERI 25 “Muscle et Pathologies”, Université Montpellier 1, EA 4202, CHU Arnaud de Villeneuve, Montpellier, France
| | - Dominique Mornet
- INSERM ERI 25 “Muscle et Pathologies”, Université Montpellier 1, EA 4202, CHU Arnaud de Villeneuve, Montpellier, France
- * E-mail:
| |
Collapse
|
35
|
Martin G, Wex T, Treiber G, Malfertheiner P, Nardone G. Low-dose aspirin reduces the gene expression of gastrokine-1 in the antral mucosa of healthy subjects. Aliment Pharmacol Ther 2008; 28:782-8. [PMID: 19145733 DOI: 10.1111/j.1365-2036.2008.03793.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
BACKGROUND Gastrokine 1 (GKN1), one of the most abundant transcripts in normal stomach, is down-regulated by Helicobacter pylori infection. Aspirin (ASA), which is often used for secondary prevention of cardiovascular events, can damage gastric-duodenal mucosa within 1 or 2 h of ingestion. AIM To study the gastric mucosal expression of GKN1 during acute low-dose ASA consumption. METHODS Ten H. pylori-negative human volunteers took 100 mg ASA per day for 1 week, and underwent multiple upper GI endoscopies. GKN1 expression was analysed in antral and corpus mucosa by quantitative reverse-transcriptase polymerase chain reaction, western blot and immunohistochemistry (IHC). Gastric mucosal damage was detected endoscopically and histologically. RESULTS Gastrokine 1 was similarly expressed in both antral and corpus mucosa. The use of low-dose ASA led to a significant decrease (3.07 a.u. vs. 0.23 a.u., P < 0.001) in antrum at day 7, while GKN1 transcript levels in corpus mucosa were slightly elevated (twofold, P < 0.005). Western blot and IHC confirmed these changes at the protein level. Furthermore, IHC revealed a vesicular staining pattern in the cytoplasm for GKN1 that was confirmed by transfected human gastric adenocarcinoma cell line expressing GKN1. CONCLUSION Our data demonstrated that low-dose ASA downregulates GKN1 expression specifically in antral mucosa.
Collapse
Affiliation(s)
- G Martin
- Department of Gastroenterology, Hepatology and Infectious Diseases, Otto-von-Guericke University, Magdeburg, Germany
| | | | | | | | | |
Collapse
|
36
|
The trefoil factor interacting protein TFIZ1 binds the trefoil protein TFF1 preferentially in normal gastric mucosal cells but the co-expression of these proteins is deregulated in gastric cancer. Int J Biochem Cell Biol 2008; 41:632-40. [PMID: 18722547 PMCID: PMC2632736 DOI: 10.1016/j.biocel.2008.07.015] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2008] [Revised: 07/17/2008] [Accepted: 07/18/2008] [Indexed: 01/15/2023]
Abstract
The gastric tumour suppressor trefoil protein TFF1 is present as a covalently bound heterodimer with a previously uncharacterised protein, TFIZ1, in normal human gastric mucosa. The purpose of this research was firstly to examine the molecular forms of TFIZ1 present, secondly to determine if TFIZ1 binds other proteins apart form TFF1 in vivo, thirdly to investigate if TFIZ1 and TFF1 are co-regulated in normal gastric mucosa and fourthly to determine if their co-regulation is maintained or disrupted in gastric cancer. We demonstrate that almost all human TFIZ1 is present as a heterodimer with TFF1 and that TFIZ1 is not bound to either of the other two trefoil proteins, TFF2 and TFF3. TFIZ1 and TFF1 are co-expressed by the surface mucus secretory cells throughout the stomach and the molecular forms of each protein are affected by the relative abundance of the other. TFIZ1 expression is lost consistently, early and permanently in gastric tumour cells. In contrast, TFF1 is sometimes expressed in the absence of TFIZ1 in gastric cancer cells and this expression is associated with metastasis (lymph node involvement: p = 0.007). In conclusion, formation of the heterodimer between TFIZ1 and TFF1 is a specific interaction that occurs uniquely in the mucus secretory cells of the stomach, co-expression of the two proteins is disrupted in gastric cancer and expression of TFF1 in the absence of TFIZ1 is associated with a more invasive and metastatic phenotype. This indicates that TFF1 expression in the absence of TFIZ1 expression has potentially deleterious consequences in gastric cancer.
Collapse
|
37
|
Moss SF, Lee JW, Sabo E, Rubin AK, Rommel J, Westley BR, May FEB, Gao J, Meitner PA, Tavares R, Resnick MB. Decreased expression of gastrokine 1 and the trefoil factor interacting protein TFIZ1/GKN2 in gastric cancer: influence of tumor histology and relationship to prognosis. Clin Cancer Res 2008; 14:4161-7. [PMID: 18593995 DOI: 10.1158/1078-0432.ccr-07-4381] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
PURPOSE Transcriptional profiling showed decreased expression of gastrokine 1 (GKN1) and the related trefoil factor interacting protein (TFIZ1/GKN2) in Helicobacter pylori infection. Decreased GKN1 and GKN2 mRNA expression has been reported in gastric adenocarcinoma. We have examined GKN1 and GKN2 protein expression in a large gastric cancer series, correlated expression with tumor subtype, and evaluated their utility as prognostic biomarkers. EXPERIMENTAL DESIGN GKN1, GKN2, and the trefoil factors TFF1 and TFF3 were examined in tissue microarrays from 155 distal gastric adenocarcinomas. Immunohistochemical expression was correlated with clinical outcome. GKN1 and GKN2 expression was measured by real-time PCR and Western analysis in samples of gastric cancer and adjacent nonneoplastic mucosa. RESULTS GKN1 was lost in 78% of diffuse and 42% of intestinal cancers (P < 0.0001, diffuse versus intestinal). GKN2 expression was lost in 85% of diffuse and 54% of intestinal type cancers (P < 0.002). GKN1 and GKN2 down-regulation were confirmed by Western and real-time PCR analysis. Loss of either protein was associated with significantly worse outcome in intestinal-type tumors by univariate analysis; and GKN2 loss remained a predictor of poor outcome in multivariate analysis (P < 0.033). TFF1 was lost in >70%, and TFF3 was expressed in approximately 50% of gastric cancers. CONCLUSIONS Loss of GKN1 and GKN2 expression occurs frequently in gastric adenocarcinomas, especially in the diffuse subtype. GKN1 and GKN2 loss are associated with shorter overall survival in the intestinal subtype.
Collapse
Affiliation(s)
- Steven F Moss
- Department of Medicine, Gastroenterology Division, Rhode Island Hospital, 593 Eddy Street, APC 414, Providence, RI 02903, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|