1
|
Orabi MAA, Abouelela ME, Darwish FMM, Abdelkader MSA, Elsadek BEM, Al Awadh AA, Alshahrani MM, Alhasaniah AH, Aldabaan N, Abdelhamid RA. Ceiba pentandra ethyl acetate extract improves doxorubicin antitumor outcomes against chemically induced liver cancer in rat model: a study supported by UHPLC-Q-TOF-MS/MS identification of the bioactive phytomolecules. Front Pharmacol 2024; 15:1337910. [PMID: 38370475 PMCID: PMC10871037 DOI: 10.3389/fphar.2024.1337910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 01/19/2024] [Indexed: 02/20/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is a prevalent cancer worldwide. Late-stage detection, ineffective treatments, and tumor recurrence contribute to the low survival rate of the HCC. Conventional chemotherapeutic drugs, like doxorubicin (DOX), are associated with severe side effects, limited effectiveness, and tumor resistance. To improve therapeutic outcomes and minimize these drawbacks, combination therapy with natural drugs is being researched. Herein, we assessed the antitumor efficacy of Ceiba pentandra ethyl acetate extract alone and in combination with DOX against diethylnitrosamine (DENA)-induced HCC in rats. Our in vivo study significantly revealed improvement in the liver-function biochemical markers (ALT, AST, GGT, and ALP), the tumor marker (AFP-L3), and the histopathological features of the treated groups. A UHPLC-Q-TOF-MS/MS analysis of the Ceiba pentandra ethyl acetate extract enabled the identification of fifty phytomolecules. Among these are the dietary flavonoids known to have anticancer, anti-inflammatory, and antioxidant qualities: protocatechuic acid, procyanidin B2, epicatechin, rutin, quercitrin, quercetin, kaempferol, naringenin, and apigenin. Our findings highlight C. pentandra as an affordable source of phytochemicals with possible chemosensitizing effects, which could be an intriguing candidate for the development of liver cancer therapy, particularly in combination with chemotherapeutic drugs.
Collapse
Affiliation(s)
- Mohamed A. A. Orabi
- Department of Pharmacognosy, College of Pharmacy, Najran University, Najran, Saudi Arabia
| | - Mohamed E. Abouelela
- Department of Pharmacognosy, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt
| | - Faten M. M. Darwish
- Department of Pharmacognosy, Faculty of Pharmacy, Assiut University, Assiut, Egypt
| | | | - Bakheet E. M. Elsadek
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Al-Azhar University, Assiut, Egypt
| | - Ahmed Abdullah Al Awadh
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Najran University, Najran, Saudi Arabia
| | - Mohammed Merae Alshahrani
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Najran University, Najran, Saudi Arabia
| | - Abdulaziz Hassan Alhasaniah
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Najran University, Najran, Saudi Arabia
| | - Nayef Aldabaan
- Department of Pharmacology, College of Pharmacy, Najran University, Najran, Saudi Arabia
| | - Reda A. Abdelhamid
- Department of Pharmacognosy, Faculty of Pharmacy, Al-Azhar University, Assiut, Egypt
| |
Collapse
|
2
|
Dinesen A, Winther A, Wall A, Märcher A, Palmfeldt J, Chudasama V, Wengel J, Gothelf KV, Baker JR, Howard KA. Albumin Biomolecular Drug Designs Stabilized through Improved Thiol Conjugation and a Modular Locked Nucleic Acid Functionalized Assembly. Bioconjug Chem 2022; 33:333-342. [PMID: 35129956 DOI: 10.1021/acs.bioconjchem.1c00561] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Albumin-nucleic acid biomolecular drug designs offer modular multifunctionalization and extended circulatory half-life. However, stability issues associated with conventional DNA nucleotides and maleimide bioconjugation chemistries limit the clinical potential. This work aims to improve the stability of this thiol conjugation and nucleic acid assembly by employing a fast-hydrolyzing monobromomaleimide (MBM) linker and nuclease-resistant nucleotide analogues, respectively. The biomolecular constructs were formed by site-selective conjugation of a 12-mer oligonucleotide to cysteine 34 (Cys34) of recombinant human albumin (rHA), followed by annealing of functionalized complementary strands bearing either a fluorophore or the cytotoxic drug monomethyl auristatin E (MMAE). Formation of conjugates and assemblies was confirmed by gel shift analysis and mass spectrometry, followed by investigation of serum stability, neonatal Fc receptor (FcRn)-mediated cellular recycling, and cancer cell killing. The MBM linker afforded rapid conjugation to rHA and remained stable during hydrolysis. The albumin-nucleic acid biomolecular assembly composed of stabilized oligonucleotides exhibited high serum stability and retained FcRn engagement mediating FcRn-mediated cellular recycling. The MMAE-containing assembly exhibited cytotoxicity in the human MIA PaCa-2 pancreatic cancer cell line with an IC50 of 342 nM, triggered by drug release from breakdown of an acid-labile linker. In summary, this work presents rHA-nucleic acid module-based assemblies with improved stability and retained module functionality that further promotes the drug delivery potential of this biomolecular platform.
Collapse
Affiliation(s)
- Anders Dinesen
- Interdisciplinary Nanoscience Center (iNANO) and Department of Molecular Biology and Genetics, Aarhus University, DK-8000 Aarhus C, Denmark
| | - Alexander Winther
- Interdisciplinary Nanoscience Center (iNANO) and Department of Molecular Biology and Genetics, Aarhus University, DK-8000 Aarhus C, Denmark
| | - Archie Wall
- Department of Chemistry, University College London, London WC1H 0AJ, U.K
| | - Anders Märcher
- Interdisciplinary Nanoscience Center (iNANO) and Department of Chemistry, Aarhus University, DK-8000 Aarhus C, Denmark
| | - Johan Palmfeldt
- Research Unit for Molecular Medicine, Department of Clinical Medicine, Aarhus University, DK-8200 Aarhus N, Denmark
| | - Vijay Chudasama
- Department of Chemistry, University College London, London WC1H 0AJ, U.K
| | - Jesper Wengel
- Nucleic Acid Center, Department of Physics, Chemistry, and Pharmacy, University of Southern Denmark, DK-5230 Odense M, Denmark
| | - Kurt V Gothelf
- Interdisciplinary Nanoscience Center (iNANO) and Department of Chemistry, Aarhus University, DK-8000 Aarhus C, Denmark
| | - James R Baker
- Department of Chemistry, University College London, London WC1H 0AJ, U.K
| | - Kenneth A Howard
- Interdisciplinary Nanoscience Center (iNANO) and Department of Molecular Biology and Genetics, Aarhus University, DK-8000 Aarhus C, Denmark
| |
Collapse
|
3
|
Dayani L, Dehghani M, Aghaei M, Taymouri S, Taheri A. Preparation and evaluation of targeted albumin lipid nanoparticles with lactobionic acid for targeted drug delivery of sorafenib in hepatocellular carcinoma. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
4
|
Noninvasive Imaging for Assessment of the Efficacy of Therapeutic Agents for Hepatocellular Carcinoma. Mol Imaging Biol 2021; 22:1455-1468. [PMID: 31834570 DOI: 10.1007/s11307-019-01431-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Morphological imaging techniques are typically used in the anti-cancer drug efficacy evaluation process. However, these techniques can evaluate the therapeutic efficacy only when the tumor shows anatomic changes-usually at later stages, when the therapeutic effects are poor. In contrast, molecular imaging allows noninvasive monitoring of tumor growth, assessment of drug metabolism, and evaluation of therapeutic efficacy at the molecular and cellular levels. Multimodality molecular imaging, which combines the advantages of various imaging modalities, provides even more comprehensive therapeutic efficacy assessment in preclinical and clinical studies. This review provides an overview of molecular imaging evaluation of therapeutic efficacy of the anti-tumor drugs in hepatocellular carcinoma (HCC) both in preclinical and clinical research, which holds great promise in guiding HCC treatment into the era of precision medicine.
Collapse
|
5
|
The development of human serum albumin-based drugs and relevant fusion proteins for cancer therapy. Int J Biol Macromol 2021; 187:24-34. [PMID: 34284054 DOI: 10.1016/j.ijbiomac.2021.07.080] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 07/06/2021] [Accepted: 07/12/2021] [Indexed: 01/28/2023]
Abstract
Human serum albumin (HSA)-based therapeutics have attracted tremendous attention in the development of anticancer agents. The versatile properties of HSA make HSA-based therapeutics possess improved pharmacokinetics, extended circulation half-life, enhanced efficacy, reduced toxicity, etc. Generally, the HSA-based therapeutics systems can be divided into four categories, i.e. HSA-drug nanoparticles, HSA-drug conjugates, HSA-binding prodrugs, and HSA-based recombinant fusion proteins: the latter mainly include antibody (domain)- and cytokine- fusion proteins. Advances in this area revealed the advantages of HSA-based systems in the development of tumor site-oriented therapeutics, partly referring to the enhanced penetration and retention (EPR) effect and the intensive macropinocytosis. Accordingly, a variety of technical platforms for the design and preparation of HSA-based therapeutics have been reported. Major strategies and directions for the drug development were discussed; those include (1) Tumor-site oriented drug delivery and enhanced drug retention, (2) Tumor-site prodrug release and activation, (3) Cancer cell bound intensive drug internalization, and (4) Tumor microenvironment (TME) directed immunomodulation. Notably, the multimodal HSA-based approach is promising for the development of tumor-oriented therapeutics for cancer therapy.
Collapse
|
6
|
Vong K, Yamamoto T, Tanaka K. Artificial Glycoproteins as a Scaffold for Targeted Drug Therapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e1906890. [PMID: 32068952 DOI: 10.1002/smll.201906890] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 12/24/2019] [Indexed: 06/10/2023]
Abstract
Akin to a cellular "fingerprint," the glycocalyx is a glycan-enriched cellular coating that plays a crucial role in mediating cell-to-cell interactions. To gain a better understanding of the factors that govern in vivo recognition, artificial glycoproteins were initially created to probe changes made to the accumulation and biodistribution of specific glycan assemblies through biomimicry. As a result, the organ-specific accumulation for a variety of glycoproteins decorated with simple and/or complex glycans was identified. Additionally, binding trends with regard to cancer cell selectivity were also investigated. To exploit the knowledge gained from these studies, numerous groups thus became engaged in developing targeted drug methodologies based on the use of artificial glycoproteins. This has either been done through adopting the glycoprotein scaffold as a drug carrier, or to directly glycosylate therapeutic proteins/enzymes to localize their biological activity. The principle aim of this Review is to present the foundational research that has driven artificial glycoprotein-based targeting and subsequent adaptations with potential therapeutic applications.
Collapse
Affiliation(s)
- Kenward Vong
- Biofunctional Synthetic Chemistry Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako-shi, Saitama, 351-0198, Japan
| | - Tomoya Yamamoto
- Biofunctional Synthetic Chemistry Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako-shi, Saitama, 351-0198, Japan
| | - Katsunori Tanaka
- Biofunctional Synthetic Chemistry Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako-shi, Saitama, 351-0198, Japan
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 2-12-1 O-okayama, Meguro-ku, Tokyo, 152-8552, Japan
- Biofunctional Chemistry Laboratory, A. Butlerov Institute of Chemistry, Kazan Federal University, 18 Kremlyovskaya Street, Kazan, 420008, Russian Federation
- GlycoTargeting Research Laboratory, RIKEN Baton Zone Program, 2-1 Hirosawa, Wako-shi, Saitama, 351-0198, Japan
| |
Collapse
|
7
|
Van de Sande L, Cosyns S, Willaert W, Ceelen W. Albumin-based cancer therapeutics for intraperitoneal drug delivery: a review. Drug Deliv 2020; 27:40-53. [PMID: 31858848 PMCID: PMC6968566 DOI: 10.1080/10717544.2019.1704945] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Albumin is a remarkable carrier protein with multiple cellular receptor and ligand binding sites, which are able to bind and transport numerous endogenous and exogenous compounds. The development of albumin-bound drugs is gaining increased importance in the targeted delivery of cancer therapy. Intraperitoneal (IP) drug delivery represents an attractive strategy for the local treatment of peritoneal metastasis (PM). PM is characterized by the presence of widespread metastatic tumor nodules on the peritoneum, mostly originating from gastro-intestinal or gynaecological cancers. Albumin as a carrier for chemotherapy holds considerable promise for IP delivery in patients with PM. Data from recent (pre)clinical trials suggest that IP albumin-bound chemotherapy may result in superior efficacy in the treatment of PM compared to standard chemotherapy formulations. Here, we review the evidence on albumin-bound chemotherapy with a focus on IP administration and its efficacy in PM.
Collapse
Affiliation(s)
- Leen Van de Sande
- Laboratory of Experimental Surgery, Department of Human Structure and Repair, Ghent University, Ghent, Belgium.,Cancer Research Institute Ghent (CRIG), Ghent University, Ghent, Belgium
| | - Sarah Cosyns
- Laboratory of Experimental Surgery, Department of Human Structure and Repair, Ghent University, Ghent, Belgium.,Cancer Research Institute Ghent (CRIG), Ghent University, Ghent, Belgium
| | - Wouter Willaert
- Laboratory of Experimental Surgery, Department of Human Structure and Repair, Ghent University, Ghent, Belgium.,Cancer Research Institute Ghent (CRIG), Ghent University, Ghent, Belgium
| | - Wim Ceelen
- Laboratory of Experimental Surgery, Department of Human Structure and Repair, Ghent University, Ghent, Belgium.,Cancer Research Institute Ghent (CRIG), Ghent University, Ghent, Belgium
| |
Collapse
|
8
|
Mo'men YS, Hussein RM, Kandeil MA. A novel chemoprotective effect of tiopronin against diethylnitrosamine-induced hepatocellular carcinoma in rats: Role of ASK1/P38 MAPK-P53 signalling cascade. Clin Exp Pharmacol Physiol 2019; 47:322-332. [PMID: 31663622 DOI: 10.1111/1440-1681.13204] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 10/18/2019] [Accepted: 10/28/2019] [Indexed: 12/16/2022]
Abstract
Hepatocellular carcinoma (HCC) is the second leading cause of cancer-related death worldwide. Oxidative stress contributes significantly to HCC pathogenesis. In this study, we investigated the possible chemoprotective effect of the thiol group-containing compound, tiopronin, against HCC induced chemically by diethylnitrosamine (DENA) in rats. In addition, we elucidated the possible underlying molecular mechanism. Adult male Wistar rats were divided into: Control group, DENA-treated group and tiopronin + DENA-treated group. Liver function tests (ALT, AST, ALP, albumin, total and direct bilirubin) as well as alpha fetoprotein (AFP) concentration were measured in the sera of samples. Oxidative stress biomarkers such as malondialdehyde, nitric oxide, catalase and glutathione peroxidase were measured in the liver tissue homogenates. Determination of the phosphorylated apoptosis signal-regulating kinase 1 (phospho-ASK1), phospho-P38 and phospho-P53 proteins by western blotting, caspase 3 by immunofluorescence in addition to histopathological examination of the liver tissues were performed. Our results showed that tiopronin prevented the DENA-induced elevation of the liver function enzymes and AFP. It also preserved the activities of antioxidant enzymes as well as providing protection from the appearance of HCC histopathological features. Interestingly, tiopronin significantly decreased the expression level of phospho-ASK1, phospho-P38 and phospho-P53, caspase 3 in the liver tissues. These novel findings suggested that tiopronin is an antioxidant drug with a chemoprotective effect against DENA-induced HCC through maintaining the normal activity of ASK1/ P38 MAPK/ P53 signalling pathway.
Collapse
Affiliation(s)
- Yomna S Mo'men
- Department of Biochemistry, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| | - Rasha M Hussein
- Department of Biochemistry, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt.,Department of Pharmaceutics and Pharmaceutical Technology, College of Pharmacy, Mutah University, Al-Karak, Jordan
| | - Mohamed A Kandeil
- Department of Biochemistry, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef, Egypt
| |
Collapse
|
9
|
Elsayed MMA, Mostafa ME, Alaaeldin E, Sarhan HAA, Shaykoon MS, Allam S, Ahmed ARH, Elsadek BEM. Design And Characterisation Of Novel Sorafenib-Loaded Carbon Nanotubes With Distinct Tumour-Suppressive Activity In Hepatocellular Carcinoma. Int J Nanomedicine 2019; 14:8445-8467. [PMID: 31754301 PMCID: PMC6825507 DOI: 10.2147/ijn.s223920] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Accepted: 10/05/2019] [Indexed: 12/18/2022] Open
Abstract
PURPOSE Over the past 30 years, no consistent survival benefits have been recorded for anticancer agents of advanced hepatocellular carcinoma (HCC), except for the multikinase inhibitor sorafenib (Nexavar®), which clinically achieves only ~3 months overall survival benefit. This modest benefit is attributed to limited aqueous solubility, slow dissolution rate and, consequently, limited absorption from the gastrointestinal tract. Thus, novel formulation modalities are in demand to improve the bioavailability of the drug to attack HCC in a more efficient manner. In the current study, we aimed to design a novel sorafenib-loaded carbon nanotubes (CNTs) formula that is able to improve the therapeutic efficacy of carried cargo against HCC and subsequently investigate the antitumour activity of this formula. MATERIALS AND METHODS Sorafenib was loaded on functionalized CNTs through physical adsorption, and an alginate-based method was subsequently applied to microcapsulate the drug-loaded CNTs (CNTs-SFN). The therapeutic efficacy of the new formula was estimated and compared to that of conventional sorafenib, both in vitro (against HepG2 cells) and in vivo (in a DENA-induced HCC rat model). RESULTS The in vitro MTT anti-proliferative assay revealed that the drug-loaded CNTs formula was at least two-fold more cytotoxic towards HepG2 cells than was sorafenib itself. Moreover, the in vivo animal experiments proved that our innovative formula was superior to conventional sorafenib at all assessed end points. Circulating AFP-L3% was significantly decreased in the CNTs-SFN-MCs-treated group (14.0%) in comparison to that of the DENA (40.3%) and sorafenib (38.8%) groups. This superiority was further confirmed by Western blot analysis and immunofluorescence assessment of some HCC-relevant biomarkers. CONCLUSION Our results firmly suggest the distinctive cancer-suppressive nature of CNTs-SFN-MCs, both against HepG2 cells in vitro and in a DENA-induced HCC rat model in vivo, with a preferential superiority over conventional sorafenib.
Collapse
Affiliation(s)
- Mahmoud MA Elsayed
- Department of Pharmaceutics and Clinical Pharmacy, Faculty of Pharmacy, Sohag University, Sohag, Egypt
| | - Mahmoud E Mostafa
- Department of Pharmaceutics, Faculty of Pharmacy, Minia University, Minia, Egypt
| | - Eman Alaaeldin
- Department of Pharmaceutics, Faculty of Pharmacy, Minia University, Minia, Egypt
- Department of Clinical Pharmacy, Deraya University, Minia, Egypt
| | - Hatem AA Sarhan
- Department of Pharmaceutics, Faculty of Pharmacy, Minia University, Minia, Egypt
| | - Montaser ShA Shaykoon
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut, Egypt
| | - Shady Allam
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, Egypt
| | - Ahmed RH Ahmed
- Department of Pathology, Faculty of Medicine, Sohag University, Sohag, Egypt
| | - Bakheet EM Elsadek
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut, Egypt
| |
Collapse
|
10
|
Hoogenboezem EN, Duvall CL. Harnessing albumin as a carrier for cancer therapies. Adv Drug Deliv Rev 2018; 130:73-89. [PMID: 30012492 PMCID: PMC6200408 DOI: 10.1016/j.addr.2018.07.011] [Citation(s) in RCA: 338] [Impact Index Per Article: 56.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 07/10/2018] [Accepted: 07/10/2018] [Indexed: 12/20/2022]
Abstract
Serum albumin, a natural ligand carrier that is highly concentrated and long-circulating in the blood, has shown remarkable promise as a carrier for anti-cancer agents. Albumin is able to prolong the circulation half-life of otherwise rapidly cleared drugs and, importantly, promote their accumulation within tumors. The applications for using albumin as a cancer drug carrier are broad and include both traditional cancer chemotherapeutics and new classes of biologics. Strategies for leveraging albumin for drug delivery can be classified broadly into exogenous and in situ binding formulations that utilize covalent attachment, non-covalent association, or encapsulation in albumin-based nanoparticles. These methods have shown remarkable preclinical and clinical successes that are examined in this review.
Collapse
Affiliation(s)
| | - Craig L Duvall
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN.
| |
Collapse
|
11
|
The antitumor activity of a lactosaminated albumin conjugate of doxorubicin in a chemically induced hepatocellular carcinoma rat model compared to sorafenib. Dig Liver Dis 2017; 49:213-222. [PMID: 27825923 DOI: 10.1016/j.dld.2016.10.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Revised: 09/22/2016] [Accepted: 10/03/2016] [Indexed: 12/11/2022]
Abstract
BACKGROUND Worldwide, consistent survival benefit for chemotherapy in hepatocellular carcinoma (HCC) is a golden goal for concerned researchers. Nexavar® (sorafenib) is the only approved agent that achieved touchable successes in this regard. Thus, there is a pressing medical need for new promising drugs to improve HCC therapy. AIMS our designed lactosaminated albumin conjugate of doxorubicin (L-HSA-DOXO) that rapidly and preferentially accumulates in the liver is compared, for the first time at its MTD, with doxorubicin and sorafenib, not only for antitumor efficacy but also for overall survival. METHODS HCC was induced in male Wistar rats with N-nitrosodiethylamine added to drinking water (100mg/L) for 8 weeks. Endpoints were antitumor efficacy, tolerability and overall survival. RESULTS L-HSA-DOXO proved to be superior at least over doxorubicin in the majority of assessed endpoints. Circulating AFP-L3% was diminished in L-HSA-DOXO (14.5%) and sorafenib (18.4%) groups compared to DENA (31.1%) and doxorubicin (29.5%) groups. This superiority was further confirmed by Western blot analyses of some novel HCC biomarkers. Survival study reinforced consistent benefits of both L-HSA-DOXO and sorafenib. CONCLUSIONS L-HSA-DOXO shows at least comparable activity to sorafenib which clinically achieves only ∼3 months overall survival benefit. Combination of these two agents could act beneficially or synergistically via two different modes of action to fight HCC.
Collapse
|
12
|
Hassan HFH, Mansour AM, Abo-Youssef AMH, Elsadek BEM, Messiha BAS. Zinc oxide nanoparticles as a novel anticancer approach; in vitro and in vivo evidence. Clin Exp Pharmacol Physiol 2017; 44:235-243. [DOI: 10.1111/1440-1681.12681] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Revised: 09/23/2016] [Accepted: 10/04/2016] [Indexed: 12/23/2022]
Affiliation(s)
| | - Ahmed Mohamed Mansour
- Department of Pharmacology and Toxicology; Faculty of Pharmacy; Al-Azhar University; Cairo Egypt
| | | | - Bakheet E M Elsadek
- Department of Biochemistry; Faculty of Pharmacy; Al-Azhar University; Assuit Egypt
| | | |
Collapse
|
13
|
Fiume L, Manerba M, Di Stefano G. Albumin-drug conjugates in the treatment of hepatic disorders. Expert Opin Drug Deliv 2014; 11:1203-17. [PMID: 24773257 DOI: 10.1517/17425247.2014.913567] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
INTRODUCTION This review deals with the use of serum albumin (SA) as a carrier for the selective delivery of drugs to liver cells. AREAS COVERED The synthesis and properties of the SA conjugates prepared to enhance the performance of the drugs used in the treatment of viral hepatitis, hepatocellular carcinoma (HCC), liver micrometastases and hepatic fibrosis are reported. EXPERT OPINION Studies in humans and laboratory animals demonstrated the capacity of SA conjugates to accomplish a liver targeting of the drugs, but at the same time underscored their limits and drawbacks, which can explain why to date these complexes did not reach a practical application. The major drawback is the need of administration by intravenous route, which prevents long-term daily treatments as required by some liver pathologies, such as chronic virus hepatitis and fibrosis. At present, only a conjugate carrying doxorubicin and addressed to the treatment of HCC showed in laboratory animals a solid potentiality to improve the value of the coupled drug. In the future, conjugation to SA could remain a successful strategy to permit the administration of drugs with rapid resolutive effects inside liver cells without causing severe extrahepatic adverse reactions.
Collapse
Affiliation(s)
- Luigi Fiume
- University of Bologna, Department of Experimental, Diagnostic and Specialty Medicine , via San Giacomo 14 - 20126 Bologna , Italy +39 0512094700 ; +39 0512094746 ;
| | | | | |
Collapse
|
14
|
Soudy R, Chen C, Kaur K. Novel peptide-doxorubucin conjugates for targeting breast cancer cells including the multidrug resistant cells. J Med Chem 2013; 56:7564-73. [PMID: 24028446 DOI: 10.1021/jm400647r] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The efficacy of chemotherapeutic doxorubucin (Dox) in cancer treatment is limited by two main factors, nonspecific toxicity and the emergence of tumor resistance. To overcome these hurdles, in this study peptide-Dox conjugates were prepared. A decapeptide 18-4a (NH₂-WxEAAYQkFL-CONH₂) [corrected] with high specificity for breast cancer cells and improved proteolytic stability was conjugated to Dox to give peptide-Dox ester (1) and amide (2) conjugates. Cell uptake studies showed that the conjugates were 6-10 times selective for breast cancerous cells (MCF-7 and MDA-MB-435) over noncancerous cells (HUVECs and MCF-10A). Conjugate 1 displayed similar toxicity as free Dox toward the breast cancerous cells and was about 40 times less toxic toward the noncancerous cells and 4-fold more toxic toward the Dox resistant MDA-MB-435-MDR cells than the free Dox. These data suggest that conjugate 1 can be used as a potential prodrug for improving the therapeutic index of Dox and potentially many other cytotoxic drugs.
Collapse
Affiliation(s)
- Rania Soudy
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta , Edmonton, Alberta, T6G 2E1, Canada
| | | | | |
Collapse
|
15
|
Kratz F, Warnecke A. Finding the optimal balance: Challenges of improving conventional cancer chemotherapy using suitable combinations with nano-sized drug delivery systems. J Control Release 2012; 164:221-35. [DOI: 10.1016/j.jconrel.2012.05.045] [Citation(s) in RCA: 90] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2012] [Revised: 05/08/2012] [Accepted: 05/26/2012] [Indexed: 10/28/2022]
|
16
|
Chen JY, Chen HL, Wu SH, Tsai TC, Lin MF, Yen CC, Hsu WH, Chen W, Chen CM. Application of high-frequency ultrasound for the detection of surgical anatomy in the rodent abdomen. Vet J 2011; 191:246-52. [PMID: 21295505 DOI: 10.1016/j.tvjl.2010.12.024] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2010] [Revised: 12/07/2010] [Accepted: 12/19/2010] [Indexed: 10/18/2022]
Abstract
Rats are used extensively in abdominal disease research. To monitor disease progress in vivo, high-frequency ultrasound (HFU) can be a powerful tool for obtaining high-resolution images of biological tissues. However, there is a paucity of data regarding the correlation between rat anatomy and corresponding HFU images. Twenty-four adult male Sprague-Dawley (SD) rats underwent abdominal scans using HFU (40 MHz) surgical procedures to identify abdominal organs and major vessels as well as in situ scanning to confirm the imaging results. The results were compared with those of human abdominal organs in ultrasonographic scans. The rat liver, paired kidneys, stomach, intestines, and major blood vessels were identified by HFU and the ultrasonic morphologies of the liver and kidneys showed clear differences between rats and humans. Clinically relevant anatomical structures were identified using HFU imaging of the rat abdomen, and these structures were compared with the corresponding structures in humans. Increased knowledge with regard to identifying the anatomy of rat abdominal organs by ultrasound will allow scientists to conduct more detailed intra-abdominal research in rodents.
Collapse
Affiliation(s)
- J Y Chen
- Department of Life Sciences, National Chung Hsing University, Taichung 402, Taiwan
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Fiume L, Di Stefano G. Lactosaminated human albumin, a hepatotropic carrier of drugs. Eur J Pharm Sci 2010; 40:253-62. [PMID: 20403430 DOI: 10.1016/j.ejps.2010.04.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2010] [Revised: 04/07/2010] [Accepted: 04/10/2010] [Indexed: 12/29/2022]
Abstract
A selective delivery of drugs to liver can be obtained by conjugation with galactosyl terminating macromolecules. The conjugates selectively enter hepatocytes after interaction of the carrier galactose residues with the asialoglycoprotein receptor (ASGP-R) present only on these cells. Within hepatocytes the conjugates are transported to lysosomes where the drug is set free from the carrier, becoming concentrated in liver cells. The present article reviews the liver targeting of drugs obtained with lactosaminated albumin (L-SA), a neoglycoprotein exposing galactosyl residues. We report: (1) experiments which demonstrate the antiviral efficacy of the L-H(human)SA-ara-AMP conjugate in laboratory animals and in humans with viral hepatitis; (2) the property of a L-HSA conjugate with fluorodeoxyuridine to produce concentrations of the drug higher in hepatic sinusoids than in systemic circulation, with the potential of accomplishing a loco-regional, noninvasive treatment of liver micrometastases; (3) the increased anticancer activity of doxorubicin (DOXO) when coupled to L-HSA on all the forms of chemically induced rat hepatocellular carcinomas including those which do not express the ASGP-R.
Collapse
Affiliation(s)
- Luigi Fiume
- Department of Experimental Pathology, University of Bologna, via San Giacomo 14, I-40126 Bologna, Italy.
| | | |
Collapse
|
18
|
Baglioni M, Fiume L, Bolondi L, Farina C, Kratz F, Di Stefano G. Binding of the doxorubicin-lactosaminated human albumin conjugate to HCC cells is mediated by the drug moieties. Dig Liver Dis 2008; 40:963-4. [PMID: 18606580 DOI: 10.1016/j.dld.2008.05.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2008] [Revised: 05/23/2008] [Accepted: 05/26/2008] [Indexed: 12/11/2022]
|
19
|
Fiume L, Baglioni M, Bolondi L, Farina C, Di Stefano G. Doxorubicin coupled to lactosaminated human albumin: a hepatocellular carcinoma targeted drug. Drug Discov Today 2008; 13:1002-9. [PMID: 18755287 DOI: 10.1016/j.drudis.2008.07.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2008] [Revised: 07/28/2008] [Accepted: 07/29/2008] [Indexed: 10/21/2022]
Abstract
Hepatocellular carcinoma (HCC) is the fifth most common malignancy worldwide. There is a substantial need for new chemotherapeutic drugs effective against this tumor. Doxorubicin (DOXO), used for chemoembolization of HCCs, is poorly efficacious when administered systemically at conventional doses; dose escalation is hindered by unacceptable toxicity. Here, we review preclinical experiments showing that the efficacy of DOXO against HCCs and its safety increased following conjugation to lactosaminated human albumin (L-HSA). L-HSA-DOXO was initially prepared to improve the anticancer activity of the drug on well-differentiated HCCs, which actively internalize L-HSA by means of the asialoglycoprotein receptor. Unexpectedly, it was found that the conjugate enhanced DOXO concentrations in all forms of HCCs, independently of their differentiation grade.
Collapse
Affiliation(s)
- Luigi Fiume
- Department of Experimental Pathology, University of Bologna, Italy.
| | | | | | | | | |
Collapse
|
20
|
Doxorubicin coupled to lactosaminated albumin: effect of heterogeneity in drug load on conjugate disposition and hepatocellular carcinoma uptake in rats. Eur J Pharm Sci 2007; 33:191-8. [PMID: 18201877 DOI: 10.1016/j.ejps.2007.11.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2007] [Revised: 11/26/2007] [Accepted: 11/28/2007] [Indexed: 11/24/2022]
Abstract
Coupling to lactosaminated human albumin (L-HSA) makes doxorubicin (DOXO) an effective drug against chemically induced rat hepatocellular carcinomas (HCCs). In the conjugate there is a large heterogeneity in the number of DOXO molecules bound to one L-HSA molecule. After lyophilization, the molecules with the higher DOXO load form large complexes (C-DOXOL), whereas those with low drug load (C-DOXOS) have the size of the carrier L-HSA. In the present experiments, we demonstrated that in C-DOXOL the molecules are not linked by covalent bonds, but are strongly aggregated probably because of mutual drug-drug interaction between the DOXO residues. In healthy rats and in animals with HCCs which received the same dose (1 microg/g) of DOXO injected in C-DOXOL or in C-DOXOS forms, penetration of the drug in tumors and in tissues was more rapid after administration of the former complex. Three hours after injection of both conjugate forms the intracellular release of DOXO from the carrier was completed. The AUCs from 0.5 to 4h of the levels of the released DOXO in HCCs, surrounding liver and bone marrow of animals injected with C-DOXOL were similar to those calculated in animals given C-DOXOS. This suggests that after administration of the dose of DOXO used in the present experiments the conjugate molecules with lower or higher drug load can exert comparable pharmacological and toxic effects.
Collapse
|