1
|
Abdul-Rahman T, Roy P, Herrera-Calderón RE, Khidri FF, Omotesho QA, Rumide TS, Fatima M, Roy S, Wireko AA, Atallah O, Roy S, Amekpor F, Ghosh S, Agyigra IA, Horbas V, Teslyk T, Bumeister V, Papadakis M, Alexiou A. Extracellular vesicle-mediated drug delivery in breast cancer theranostics. Discov Oncol 2024; 15:181. [PMID: 38780753 PMCID: PMC11116322 DOI: 10.1007/s12672-024-01007-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 05/03/2024] [Indexed: 05/25/2024] Open
Abstract
Breast cancer (BC) continues to be a significant global challenge due to drug resistance and severe side effects. The increasing prevalence is alarming, requiring new therapeutic approaches to address these challenges. At this point, Extracellular vesicles (EVs), specifically small endosome-released nanometer-sized EVs (SEVs) or exosomes, have been explored by literature as potential theranostics. Therefore, this review aims to highlight the therapeutic potential of exosomes in BC, focusing on their advantages in drug delivery and their ability to mitigate metastasis. Following the review, we identified exosomes' potential in combination therapies, serving as miRNA carriers and contributing to improved anti-tumor effects. This is evident in clinical trials investigating exosomes in BC, which have shown their ability to boost chemotherapy efficacy by delivering drugs like paclitaxel (PTX) and doxorubicin (DOX). However, the translation of EVs into BC therapy is hindered by various challenges. These challenges include the heterogeneity of EVs, the selection of the appropriate parent cell, the loading procedures, and determining the optimal administration routes. Despite the promising therapeutic potential of EVs, these obstacles must be addressed to realize their benefits in BC treatment.
Collapse
Affiliation(s)
| | - Poulami Roy
- Department of Medicine, North Bengal Medical College and Hospital, Siliguri, India
| | - Ranferi Eduardo Herrera-Calderón
- Center for Research in Health Sciences (CICSA), Faculty of Medicine, Anahuac University North Campus, 52786, Huixquilucan, Mexico
| | | | | | | | | | - Sakshi Roy
- School of Medicine, Queens University Belfast, Northern Ireland, UK
| | | | - Oday Atallah
- Department of Neurosurgery, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625, Hannover, Germany
| | - Subham Roy
- Hull York Medical School, University of York, York, UK
| | - Felix Amekpor
- Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | - Shankhaneel Ghosh
- Institute of Medical Sciences and SUM Hospital, Siksha 'O' Anusandhan, Bhubaneswar, India
| | | | | | | | | | - Marios Papadakis
- Department of Surgery II, University Hospital Witten-Herdecke, Heusnerstrasse 40, University of Witten-Herdecke, 42283, Wuppertal, Germany.
| | - Athanasios Alexiou
- University Centre for Research and Development, Chandigarh University, Chandigarh-Ludhiana Highway, Mohali, Punjab, India.
- Department of Research and Development, Funogen, 11741, Athens, Greece.
- Department of Research and Development, AFNP Med, 1030, Vienna, Austria.
- Department of Science and Engineering, Novel Global Community Educational Foundation, Hebersham, NSW, 2770, Australia.
| |
Collapse
|
2
|
Morimoto K, Ishitobi J, Noguchi K, Kira R, Kitayama Y, Goto Y, Fujiwara D, Michigami M, Harada A, Takatani-Nakase T, Fujii I, Futaki S, Kanada M, Nakase I. Extracellular Microvesicles Modified with Arginine-Rich Peptides for Active Macropinocytosis Induction and Delivery of Therapeutic Molecules. ACS APPLIED MATERIALS & INTERFACES 2024; 16:17069-17079. [PMID: 38563247 PMCID: PMC11011658 DOI: 10.1021/acsami.3c14592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 03/02/2024] [Accepted: 03/04/2024] [Indexed: 04/04/2024]
Abstract
Extracellular vesicles (EVs), including exosomes and microvesicles (MVs), transfer bioactive molecules from donor to recipient cells in various pathophysiological settings, thereby mediating intercellular communication. Despite their significant roles in extracellular signaling, the cellular uptake mechanisms of different EV subpopulations remain unknown. In particular, plasma membrane-derived MVs are larger vesicles (100 nm to 1 μm in diameter) and may serve as efficient molecular delivery systems due to their large capacity; however, because of size limitations, receptor-mediated endocytosis is considered an inefficient means for cellular MV uptake. This study demonstrated that macropinocytosis (lamellipodia formation and plasma membrane ruffling, causing the engulfment of large fluid volumes outside cells) can enhance cellular MV uptake. We developed experimental techniques to induce macropinocytosis-mediated MV uptake by modifying MV membranes with arginine-rich cell-penetrating peptides for the intracellular delivery of therapeutic molecules.
Collapse
Affiliation(s)
- Kenta Morimoto
- Department
of Biological Chemistry, Graduate School of Science, Osaka Metropolitan University, 1-1, Gakuen-cho, Naka-ku, Sakai 599-8531, Osaka, Japan
| | - Jojiro Ishitobi
- Department
of Biological Chemistry, Graduate School of Science, Osaka Metropolitan University, 1-1, Gakuen-cho, Naka-ku, Sakai 599-8531, Osaka, Japan
| | - Kosuke Noguchi
- Department
of Biological Chemistry, Graduate School of Science, Osaka Metropolitan University, 1-1, Gakuen-cho, Naka-ku, Sakai 599-8531, Osaka, Japan
| | - Ryoichi Kira
- Department
of Biological Chemistry, Graduate School of Science, Osaka Metropolitan University, 1-1, Gakuen-cho, Naka-ku, Sakai 599-8531, Osaka, Japan
| | - Yukiya Kitayama
- Department
of Applied Chemistry, Graduate School of
Engineering, Osaka Metropolitan University, 1-1 Gakuen-cho,
Naka-ku, Sakai 599-8531, Osaka, Japan
| | - Yuto Goto
- Department
of Applied Chemistry, Graduate School of
Engineering, Osaka Metropolitan University, 1-1 Gakuen-cho,
Naka-ku, Sakai 599-8531, Osaka, Japan
| | - Daisuke Fujiwara
- Department
of Biological Chemistry, Graduate School of Science, Osaka Metropolitan University, 1-1, Gakuen-cho, Naka-ku, Sakai 599-8531, Osaka, Japan
| | - Masataka Michigami
- Department
of Biological Chemistry, Graduate School of Science, Osaka Metropolitan University, 1-1, Gakuen-cho, Naka-ku, Sakai 599-8531, Osaka, Japan
| | - Atsushi Harada
- Department
of Applied Chemistry, Graduate School of
Engineering, Osaka Metropolitan University, 1-1 Gakuen-cho,
Naka-ku, Sakai 599-8531, Osaka, Japan
| | - Tomoka Takatani-Nakase
- Department
of Pharmaceutics, School of Pharmacy and Pharmaceutical Sciences, Mukogawa Women’s University, 11-68, Koshien Kyuban-cho, Nishinomiya 663-8179, Hyogo, Japan
- Institute
for Bioscience, Mukogawa Women’s University, 11-68, Koshien Kyuban-cho, Nishinomiya 663-8179, Hyogo, Japan
| | - Ikuo Fujii
- Department
of Biological Chemistry, Graduate School of Science, Osaka Metropolitan University, 1-1, Gakuen-cho, Naka-ku, Sakai 599-8531, Osaka, Japan
| | - Shiroh Futaki
- Institute
for Chemical Research, Kyoto University, Uji 611-0011, Kyoto, Japan
| | - Masamitsu Kanada
- Institute
for Quantitative Health Science and Engineering (IQ), Michigan State
University, East Lansing, Michigan 48824, United States
- Department of Pharmacology and Toxicology, College of Human Medicine, Michigan State University, East Lansing, Michigan 48824, United States
| | - Ikuhiko Nakase
- Department
of Biological Chemistry, Graduate School of Science, Osaka Metropolitan University, 1-1, Gakuen-cho, Naka-ku, Sakai 599-8531, Osaka, Japan
| |
Collapse
|
3
|
Omura M, Morimoto K, Araki Y, Hirose H, Kawaguchi Y, Kitayama Y, Goto Y, Harada A, Fujii I, Takatani-Nakase T, Futaki S, Nakase I. Inkjet-Based Intracellular Delivery System that Effectively Utilizes Cell-Penetrating Peptides for Cytosolic Introduction of Biomacromolecules through the Cell Membrane. ACS APPLIED MATERIALS & INTERFACES 2023; 15:47855-47865. [PMID: 37792057 PMCID: PMC10592309 DOI: 10.1021/acsami.3c01650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Accepted: 07/24/2023] [Indexed: 10/05/2023]
Abstract
In the drug delivery system, the cytosolic delivery of biofunctional molecules such as enzymes and genes must achieve sophisticated activities in cells, and microinjection and electroporation systems are typically used as experimental techniques. These methods are highly reliable, and they have high intracellular transduction efficacy. However, a high degree of proficiency is necessary, and induced cytotoxicity is considered as a technical problem. In this research, a new intracellular introduction technology was developed through the cell membrane using an inkjet device and cell-penetrating peptides (CPPs). Using the inkjet system, the droplet volume, droplet velocity, and dropping position can be accurately controlled, and minute samples (up to 30 pL/shot) can be carried out by direct administration. In addition, CPPs, which have excellent cell membrane penetration functions, can deliver high-molecular-weight drugs and nanoparticles that are difficult to penetrate through the cell membrane. By using the inkjet system, the CPPs with biofunctional cargo, including peptides, proteins such as antibodies, and exosomes, could be accurately delivered to cells, and efficient cytosolic transduction was confirmed.
Collapse
Affiliation(s)
- Mika Omura
- Department
of Biological Chemistry, Graduate School of Science, Osaka Metropolitan University, 1-1, Gakuen-cho, Naka-ku, Sakai 599-8531, Osaka, Japan
| | - Kenta Morimoto
- Department
of Biological Chemistry, Graduate School of Science, Osaka Metropolitan University, 1-1, Gakuen-cho, Naka-ku, Sakai 599-8531, Osaka, Japan
| | - Yurina Araki
- Department
of Biological Chemistry, Graduate School of Science, Osaka Metropolitan University, 1-1, Gakuen-cho, Naka-ku, Sakai 599-8531, Osaka, Japan
- Department
of Biological Chemistry, School of Science, Osaka Metropolitan University, 1-1, Gakuen-cho, Naka-ku, Sakai 599-8531, Osaka, Japan
| | - Hisaaki Hirose
- Institute
for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Yoshimasa Kawaguchi
- Institute
for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Yukiya Kitayama
- Department
of Applied Chemistry, Graduate School of Engineering, Osaka Metropolitan University, 1-1 Gakuen-cho, Naka-ku, Sakai 599-8531, Osaka, Japan
| | - Yuto Goto
- Department
of Applied Chemistry, Graduate School of Engineering, Osaka Metropolitan University, 1-1 Gakuen-cho, Naka-ku, Sakai 599-8531, Osaka, Japan
| | - Atsushi Harada
- Department
of Applied Chemistry, Graduate School of Engineering, Osaka Metropolitan University, 1-1 Gakuen-cho, Naka-ku, Sakai 599-8531, Osaka, Japan
| | - Ikuo Fujii
- Department
of Biological Chemistry, Graduate School of Science, Osaka Metropolitan University, 1-1, Gakuen-cho, Naka-ku, Sakai 599-8531, Osaka, Japan
- Department
of Biological Chemistry, School of Science, Osaka Metropolitan University, 1-1, Gakuen-cho, Naka-ku, Sakai 599-8531, Osaka, Japan
| | - Tomoka Takatani-Nakase
- Department
of Pharmaceutics, School of Pharmacy and Pharmaceutical Sciences, Mukogawa Women’s University, 11-68, Koshien Kyuban-cho, Nishinomiya 663-8179, Hyogo, Japan
- Institute
for Bioscience, Mukogawa Women’s
University, 11-68, Koshien
Kyuban-cho, Nishinomiya 663-8179, Hyogo, Japan
| | - Shiroh Futaki
- Institute
for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Ikuhiko Nakase
- Department
of Biological Chemistry, Graduate School of Science, Osaka Metropolitan University, 1-1, Gakuen-cho, Naka-ku, Sakai 599-8531, Osaka, Japan
- Department
of Biological Chemistry, School of Science, Osaka Metropolitan University, 1-1, Gakuen-cho, Naka-ku, Sakai 599-8531, Osaka, Japan
| |
Collapse
|
4
|
Sanchez VC, Craig‐Lucas A, Cataisson C, Carofino BL, Yuspa SH. Crosstalk between tumor and stroma modifies CLIC4 cargo in extracellular vesicles. JOURNAL OF EXTRACELLULAR BIOLOGY 2023; 2:e118. [PMID: 38264628 PMCID: PMC10803055 DOI: 10.1002/jex2.118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 09/08/2023] [Accepted: 09/11/2023] [Indexed: 01/25/2024]
Abstract
Mouse models of breast cancer have revealed that tumor-bearing hosts must express the oxidoreductase CLIC4 to develop lung metastases. In the absence of host CLIC4, primary tumors grow but the lung premetastatic niche is defective for metastatic seeding. Primary breast cancer cells release EVs that incorporate CLIC4 as cargo and circulate in plasma of wildtype tumor-bearing hosts. CLIC4-deficient breast cancer cells also form tumors in wildtype hosts and release EVs in plasma, but these EVs lack CLIC4, suggesting that the tumor is the source of the plasma-derived EVs that carry CLIC4 as cargo. Paradoxically, circulating EVs are also devoid of CLIC4 when CLIC4-expressing primary tumors are grown in CLIC4 knockout hosts. Thus, the incorporation of CLIC4 (and perhaps other factors) as EV cargo released from tumors involves specific signals from the surrounding stroma determined by its genetic composition. Since CLIC4 is also detected in circulating EVs from human breast cancer patients, future studies will address its association with disease.
Collapse
Affiliation(s)
- Vanesa C. Sanchez
- Center for Drug Evaluation and ResearchU.S. Food and Drug AdministrationSilver SpringMarylandUSA
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer InstituteNational Institutes of HealthBethesdaMarylandUSA
| | - Alayna Craig‐Lucas
- Department of SurgeryLehigh Valley Health NetworkAllentownPennsylvaniaUSA
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer InstituteNational Institutes of HealthBethesdaMarylandUSA
| | - Christophe Cataisson
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer InstituteNational Institutes of HealthBethesdaMarylandUSA
| | - Brandi L. Carofino
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer InstituteNational Institutes of HealthBethesdaMarylandUSA
| | - Stuart H. Yuspa
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer InstituteNational Institutes of HealthBethesdaMarylandUSA
| |
Collapse
|
5
|
Zhang X, Wang C, Yu J, Bu J, Ai F, Wang Y, Lin J, Zhu X. Extracellular vesicles in the treatment and diagnosis of breast cancer: a status update. Front Endocrinol (Lausanne) 2023; 14:1202493. [PMID: 37534210 PMCID: PMC10393036 DOI: 10.3389/fendo.2023.1202493] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 06/30/2023] [Indexed: 08/04/2023] Open
Abstract
Breast cancer is one of the leading causes of cancer-related death in women. Currently, the treatment of breast cancer is limited by the lack of effectively targeted therapy and patients often suffer from higher severity, metastasis, and resistance. Extracellular vesicles (EVs) consist of lipid bilayers that encapsulate a complex cargo, including proteins, nucleic acids, and metabolites. These bioactive cargoes have been found to play crucial roles in breast cancer initiation and progression. Moreover, EV cargoes play pivotal roles in converting mammary cells to carcinogenic cells and metastatic foci by extensively inducing proliferation, angiogenesis, pre-metastatic niche formation, migration, and chemoresistance. The present update review mainly discusses EVs cargoes released from breast cancer cells and tumor-derived EVs in the breast cancer microenvironment, focusing on proliferation, metastasis, chemoresistance, and their clinical potential as effective biomarkers.
Collapse
Affiliation(s)
- Xiaoying Zhang
- Department of General Surgery, Huangyan Hospital, Wenzhou Medical University, Taizhou, Zhejiang, China
| | - Caizheng Wang
- Department of General Surgery, Huangyan Hospital, Wenzhou Medical University, Taizhou, Zhejiang, China
| | - Jiahui Yu
- Department of Ultrasound, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Jiawen Bu
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Fulv Ai
- Department of General Surgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, Liaoning, China
| | - Yue Wang
- Department of General Surgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, Liaoning, China
| | - Jie Lin
- Department of General Surgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, Liaoning, China
| | - Xudong Zhu
- Department of General Surgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, Liaoning, China
| |
Collapse
|
6
|
Cheng W, Duan C, Chen Y, Li D, Hou Z, Yao Y, Jiao J, Xiang Y. Highly Sensitive Aptasensor for Detecting Cancerous Exosomes Based on Clover-like Gold Nanoclusters. Anal Chem 2023; 95:3606-3612. [PMID: 36565296 DOI: 10.1021/acs.analchem.2c04280] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Exosome-based liquid biopsy technologies play an increasingly prominent role in tumor diagnosis. However, the simple and sensitive method for counting exosomes still faces considerable challenges. In this work, the CD63 aptamer-modified DNA tetrahedrons on the gold electrode were used as recognition elements for the specific capture of exosomes. Partially complementary DNA probes act as bridges linking trapped exosomes and three AuNP-DNA signal probes. This clover-like structure can tackle the recognition and sensitivity issues arising from the undesired AuNP aggregation event. When cancerous exosomes are present in the system, the high accumulation of methylene blue molecules from DNA-AuNP nanocomposites on the surface of the electrode leads to an intense current signal. According to the results, the aptasensor responds to MCF-7 cell-derived exosomes in the concentration range from 1.0 × 103 to 1.0 × 108 particles·μL-1, with the detection limit of 158 particles·μL-1. Furthermore, the aptasensor has been extended to serum samples from breast cancer patients and exhibited excellent specificity. To sum it up, the aptasensor is sensitive, straightforward, less expensive, and fully capable of receiving widespread application in clinics for tumor monitoring.
Collapse
Affiliation(s)
- Wenting Cheng
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, P. R. China
| | - Chengjie Duan
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, P. R. China
| | - Yan Chen
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, P. R. China
| | - Dayong Li
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, P. R. China
| | - Zhiqiang Hou
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, P. R. China
| | - Yanheng Yao
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, P. R. China
| | - Jin Jiao
- School of Life Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, P. R. China
| | - Yang Xiang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, P. R. China.,State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100191, P. R. China
| |
Collapse
|
7
|
Molecular Docking and Intracellular Translocation of Extracellular Vesicles for Efficient Drug Delivery. Int J Mol Sci 2022; 23:ijms232112971. [PMID: 36361760 PMCID: PMC9659046 DOI: 10.3390/ijms232112971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 10/07/2022] [Accepted: 10/21/2022] [Indexed: 12/12/2022] Open
Abstract
Extracellular vesicles (EVs), including exosomes, mediate intercellular communication by delivering their contents, such as nucleic acids, proteins, and lipids, to distant target cells. EVs play a role in the progression of several diseases. In particular, programmed death-ligand 1 (PD-L1) levels in exosomes are associated with cancer progression. Furthermore, exosomes are being used for new drug-delivery systems by modifying their membrane peptides to promote their intracellular transduction via micropinocytosis. In this review, we aim to show that an efficient drug-delivery system and a useful therapeutic strategy can be established by controlling the molecular docking and intracellular translocation of exosomes. We summarise the mechanisms of molecular docking of exosomes, the biological effects of exosomes transmitted into target cells, and the current state of exosomes as drug delivery systems.
Collapse
|
8
|
Hu S, Liu Y, Guan S, Qiu Z, Liu D. Natural products exert anti-tumor effects by regulating exosomal ncRNA. Front Oncol 2022; 12:1006114. [PMID: 36203417 PMCID: PMC9530706 DOI: 10.3389/fonc.2022.1006114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 09/05/2022] [Indexed: 11/24/2022] Open
Abstract
Currently, more than 60% of the approved anti-cancer drugs come from or are related to natural products. Natural products and exosomal non-coding RNAs (ncRNAs) exert anti-cancer effects through various regulatory mechanisms, which are of great research significance. Exosomes are a form of intercellular communication and contain ncRNAs that can act as intercellular signaling molecules involved in the metabolism of tumor cells. This review exemplifies some examples of natural products whose active ingredients can play a role in cancer prevention and treatment by regulating exosomal ncRNAs, with the aim of illustrating the mechanism of action of exosomal ncRNAs in cancer prevention and treatment. Meanwhile, the application of exosomes as natural drug delivery systems and predictive disease biomarkers in cancer prevention and treatment is introduced, providing research ideas for the development of novel anti-tumor drugs.
Collapse
Affiliation(s)
| | | | | | | | - Da Liu
- *Correspondence: Zhidong Qiu, ; Da Liu,
| |
Collapse
|
9
|
Baldasici O, Pileczki V, Cruceriu D, Gavrilas LI, Tudoran O, Balacescu L, Vlase L, Balacescu O. Breast Cancer-Delivered Exosomal miRNA as Liquid Biopsy Biomarkers for Metastasis Prediction: A Focus on Translational Research with Clinical Applicability. Int J Mol Sci 2022; 23:ijms23169371. [PMID: 36012638 PMCID: PMC9408950 DOI: 10.3390/ijms23169371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/10/2022] [Accepted: 08/14/2022] [Indexed: 11/16/2022] Open
Abstract
Metastasis represents the most important cause of breast cancer-associated mortality. Even for early diagnosed stages, the risk of metastasis is significantly high and predicts a grim outcome for the patient. Nowadays, efforts are made for identifying blood-based biomarkers that could reliably distinguish patients with highly metastatic cancers in order to ensure a closer follow-up and a more personalized therapeutic method. Exosomes are nano vesicles secreted by cancer cells that can transport miRNAs, proteins, and other molecules and deliver them to recipient cells all over the body. Through this transfer, cancer cells modulate their microenvironment and facilitate the formation of the pre-metastatic niche, leading to sustained progression. Exosomal miRNAs have been extensively studied due to their promising potential as prognosis biomarkers for metastatic breast cancer. In this review, we tried to depict an overview of the existing literature regarding exosomal miRNAs that are already validated as potential biomarkers, and which could be immediately available for the clinic. Moreover, in the last section, we highlighted several miRNAs that have proven their function in preclinical studies and could be considered for clinical validation. Considering the lack of standard methods for evaluating exosomal miRNA, we also discussed the challenges and the technical aspects underlying this issue.
Collapse
Affiliation(s)
- Oana Baldasici
- The Oncology Institute “Prof. Dr. Ion Chiricuta”, Department of Genetics, Genomics and Experimental Pathology, 400015 Cluj-Napoca, Romania
- Department of Pharmaceutical Technology and Biopharmaceutics, “Iuliu Haţieganu” University of Medicine and Pharmacy, 400347 Cluj-Napoca, Romania
| | - Valentina Pileczki
- The Oncology Institute “Prof. Dr. Ion Chiricuta”, Department of Genetics, Genomics and Experimental Pathology, 400015 Cluj-Napoca, Romania
| | - Daniel Cruceriu
- The Oncology Institute “Prof. Dr. Ion Chiricuta”, Department of Genetics, Genomics and Experimental Pathology, 400015 Cluj-Napoca, Romania
- Department of Molecular Biology and Biotechnology, “Babes-Bolyai” University, 5–7 Clinicilor Street, 400006 Cluj-Napoca, Romania
| | - Laura Ioana Gavrilas
- Department of Bromatology, Hygiene, Nutrition, “Iuliu Hatieganu” University of Medicine and Pharmacy, 23 Marinescu Street, 400337 Cluj-Napoca, Romania
| | - Oana Tudoran
- The Oncology Institute “Prof. Dr. Ion Chiricuta”, Department of Genetics, Genomics and Experimental Pathology, 400015 Cluj-Napoca, Romania
| | - Loredana Balacescu
- The Oncology Institute “Prof. Dr. Ion Chiricuta”, Department of Genetics, Genomics and Experimental Pathology, 400015 Cluj-Napoca, Romania
| | - Laurian Vlase
- Department of Pharmaceutical Technology and Biopharmaceutics, “Iuliu Haţieganu” University of Medicine and Pharmacy, 400347 Cluj-Napoca, Romania
| | - Ovidiu Balacescu
- The Oncology Institute “Prof. Dr. Ion Chiricuta”, Department of Genetics, Genomics and Experimental Pathology, 400015 Cluj-Napoca, Romania
- Correspondence:
| |
Collapse
|
10
|
Liu H, Zhang L, Li M, Zhao F, Lu F, Zhang F, Chen S, Guo J, Zhang R, Yin H. Bone mesenchymal stem cell-derived extracellular vesicles inhibit DAPK1-mediated inflammation by delivering miR-191 to macrophages. Biochem Biophys Res Commun 2022; 598:32-39. [PMID: 35151201 DOI: 10.1016/j.bbrc.2022.02.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 02/03/2022] [Indexed: 12/14/2022]
Abstract
Alveolar macrophage activation and apoptosis are vital contributors to sepsis-associated acute lung injury (ALI). However, the mechanisms of alveolar macrophage activation are yet to be clarified. Death-associated protein kinase 1 (DAPK1) is one of the potential candidates that play crucial roles in regulating alveolar macrophage inflammation. Herein, we found that primary human bone mesenchymal stem cell (BMSC)-derived extracellular vesicles (EVs) antagonize LPS-induced inflammation in the THP-1 human macrophage-like cell line. Mechanistically, LPS stimulation elevates the expression of DAPK1 and the inflammation markers in THP-1 cells, while BMSC-derived EVs inhibit the expression of DAPK1 and inflammation through delivering miR-191, which can target the 3'-UTR of the DAPK1 mRNA and therefore suppress its translation. The importance of DAPK1 in the activation of THP-1 is also stressed in this study. Our findings provide evidence that BMSC-derived EVs regulate the alveolar macrophage inflammation and highlight BMSC-derived EVs as a potential vehicle to deliver biomacromolecules to macrophages.
Collapse
Affiliation(s)
- Hui Liu
- Department of Intensive Care Unit, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong Province, China; Department of Intensive Care Unit, Guangzhou Red Cross Hospital, Medical College, Jinan University, Guangzhou, Guangdong Province, China
| | - Luming Zhang
- Department of Intensive Care Unit, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong Province, China
| | - Meilian Li
- The First Clinical Medical College of Jinan University, Guangzhou, Guangdong Province, China
| | - Fengzhi Zhao
- Department of Intensive Care Unit, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong Province, China
| | - Fan Lu
- Department of Intensive Care Unit, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong Province, China
| | - Feng Zhang
- Department of Intensive Care Unit, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong Province, China
| | - Sida Chen
- Department of Intensive Care Unit, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong Province, China
| | - Juntao Guo
- Department of Intensive Care Unit, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong Province, China
| | - Rui Zhang
- Department of Intensive Care Unit, Guangzhou Red Cross Hospital, Medical College, Jinan University, Guangzhou, Guangdong Province, China.
| | - Hanyan Yin
- Department of Intensive Care Unit, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong Province, China.
| |
Collapse
|