1
|
Rutter LA, MacKay MJ, Cope H, Szewczyk NJ, Kim J, Overbey E, Tierney BT, Muratani M, Lamm B, Bezdan D, Paul AM, Schmidt MA, Church GM, Giacomello S, Mason CE. Protective alleles and precision healthcare in crewed spaceflight. Nat Commun 2024; 15:6158. [PMID: 39039045 PMCID: PMC11263583 DOI: 10.1038/s41467-024-49423-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 06/05/2024] [Indexed: 07/24/2024] Open
Abstract
Common and rare alleles are now being annotated across millions of human genomes, and omics technologies are increasingly being used to develop health and treatment recommendations. However, these alleles have not yet been systematically characterized relative to aerospace medicine. Here, we review published alleles naturally found in human cohorts that have a likely protective effect, which is linked to decreased cancer risk and improved bone, muscular, and cardiovascular health. Although some technical and ethical challenges remain, research into these protective mechanisms could translate into improved nutrition, exercise, and health recommendations for crew members during deep space missions.
Collapse
Affiliation(s)
- Lindsay A Rutter
- Transborder Medical Research Center, University of Tsukuba, Ibaraki, 305-8575, Japan
- Department of Genome Biology, Institute of Medicine, University of Tsukuba, Ibaraki, 305-8575, Japan
- School of Chemistry, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Matthew J MacKay
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, 10065, USA
- The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, 10021, USA
- The WorldQuant Initiative for Quantitative Prediction, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Henry Cope
- School of Medicine, University of Nottingham, Nottingham, DE22 3DT, UK
| | - Nathaniel J Szewczyk
- School of Medicine, University of Nottingham, Nottingham, DE22 3DT, UK
- Ohio Musculoskeletal and Neurological Institute (OMNI), Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, 45701, USA
| | - JangKeun Kim
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, 10065, USA
- The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Eliah Overbey
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, 10065, USA
- The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Braden T Tierney
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, 10065, USA
- The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Masafumi Muratani
- Transborder Medical Research Center, University of Tsukuba, Ibaraki, 305-8575, Japan
- Department of Genome Biology, Institute of Medicine, University of Tsukuba, Ibaraki, 305-8575, Japan
| | - Ben Lamm
- Colossal Biosciences, 1401 Lavaca St, Unit #155 Austin, Austin, TX, 78701, USA
| | - Daniela Bezdan
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
- NGS Competence Center Tübingen (NCCT), University of Tübingen, Tübingen, Germany
- Yuri GmbH, Meckenbeuren, Germany
| | - Amber M Paul
- Embry-Riddle Aeronautical University, Department of Human Factors and Behavioral Neurobiology, Daytona Beach, FL, 32114, USA
| | - Michael A Schmidt
- Sovaris Aerospace, Boulder, CO, 80302, USA.
- Advanced Pattern Analysis & Human Performance Group, Boulder, CO, 80302, USA.
| | - George M Church
- GC Therapeutics Inc, Cambridge, MA, 02139, USA.
- Department of Genetics, Harvard Medical School, Boston, MA, 02115, USA.
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA, 02115, USA.
| | | | - Christopher E Mason
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, 10065, USA.
- The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, 10021, USA.
- The WorldQuant Initiative for Quantitative Prediction, Weill Cornell Medicine, New York, NY, 10065, USA.
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA, 02115, USA.
- The Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, 10065, USA.
| |
Collapse
|
2
|
Cilli D, Mirasole C, Pennisi R, Pallotta V, D'Alessandro A, Antoccia A, Zolla L, Ascenzi P, di Masi A. Identification of the interactors of human nibrin (NBN) and of its 26 kDa and 70 kDa fragments arising from the NBN 657del5 founder mutation. PLoS One 2014; 9:e114651. [PMID: 25485873 PMCID: PMC4259352 DOI: 10.1371/journal.pone.0114651] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Accepted: 11/12/2014] [Indexed: 01/17/2023] Open
Abstract
Nibrin (also named NBN or NBS1) is a component of the MRE11/RAD50/NBN complex, which is involved in early steps of DNA double strand breaks sensing and repair. Mutations within the NBN gene are responsible for the Nijmegen breakage syndrome (NBS). The 90% of NBS patients are homozygous for the 657del5 mutation, which determines the synthesis of two truncated proteins of 26 kDa (p26) and 70 kDa (p70). Here, HEK293 cells have been exploited to transiently express either the full-length NBN protein or the p26 or p70 fragments, followed by affinity chromatography enrichment of the eluates. The application of an unsupervised proteomics approach, based upon SDS-PAGE separation and shotgun digestion of protein bands followed by MS/MS protein identification, indicates the occurrence of previously unreported protein interacting partners of the full-length NBN protein and the p26 fragment containing the FHA/BRCT1 domains, especially after cell irradiation. In particular, results obtained shed light on new possible roles of NBN and of the p26 fragment in ROS scavenging, in the DNA damage response, and in protein folding and degradation. In particular, here we show that p26 interacts with PARP1 after irradiation, and this interaction exerts an inhibitory effect on PARP1 activity as measured by NAD+ levels. Furthermore, the p26-PARP1 interaction seems to be responsible for the persistence of ROS, and in turn of DSBs, at 24 h from IR. Since some of the newly identified interactors of the p26 and p70 fragments have not been found to interact with the full-length NBN, these interactions may somehow contribute to the key biological phenomena underpinning NBS.
Collapse
Affiliation(s)
| | - Cristiana Mirasole
- Department of Ecological and Biological Sciences, University of Tuscia, Viterbo, Italy
| | - Rosa Pennisi
- Department of Science, Roma Tre University, Rome, Italy
| | - Valeria Pallotta
- Department of Ecological and Biological Sciences, University of Tuscia, Viterbo, Italy
| | - Angelo D'Alessandro
- Department of Ecological and Biological Sciences, University of Tuscia, Viterbo, Italy
| | - Antonio Antoccia
- Department of Science, Roma Tre University, Rome, Italy
- Istituto Nazionale Biostrutture e Biosistemi – Consorzio Interuniversitario, Rome, Italy
| | - Lello Zolla
- Department of Ecological and Biological Sciences, University of Tuscia, Viterbo, Italy
| | - Paolo Ascenzi
- Istituto Nazionale Biostrutture e Biosistemi – Consorzio Interuniversitario, Rome, Italy
- Interdepartmental Laboratory for Electron Microscopy, Roma Tre University, Rome, Italy
| | - Alessandra di Masi
- Department of Science, Roma Tre University, Rome, Italy
- Istituto Nazionale Biostrutture e Biosistemi – Consorzio Interuniversitario, Rome, Italy
- * E-mail:
| |
Collapse
|
3
|
Ponomarev AL, George K, Cucinotta FA. Generalized time-dependent model of radiation-induced chromosomal aberrations in normal and repair-deficient human cells. Radiat Res 2014; 181:284-92. [PMID: 24611656 DOI: 10.1667/rr13303.1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
We have developed a model that can simulate the yield of radiation-induced chromosomal aberrations (CAs) and unrejoined chromosome breaks in normal and repair-deficient cells. The model predicts the kinetics of chromosomal aberration formation after exposure in the G₀/G₁ phase of the cell cycle to either low- or high-LET radiation. A previously formulated model based on a stochastic Monte Carlo approach was updated to consider the time dependence of DNA double-strand break (DSB) repair (proper or improper), and different cell types were assigned different kinetics of DSB repair. The distribution of the DSB free ends was derived from a mechanistic model that takes into account the structure of chromatin and DSB clustering from high-LET radiation. The kinetics of chromosomal aberration formation were derived from experimental data on DSB repair kinetics in normal and repair-deficient cell lines. We assessed different types of chromosomal aberrations with the focus on simple and complex exchanges, and predicted the DSB rejoining kinetics and misrepair probabilities for different cell types. The results identify major cell-dependent factors, such as a greater yield of chromosome misrepair in ataxia telangiectasia (AT) cells and slower rejoining in Nijmegen (NBS) cells relative to the wild-type. The model's predictions suggest that two mechanisms could exist for the inefficiency of DSB repair in AT and NBS cells, one that depends on the overall speed of joining (either proper or improper) of DNA broken ends, and another that depends on geometric factors, such as the Euclidian distance between DNA broken ends, which influences the relative frequency of misrepair.
Collapse
Affiliation(s)
- Artem L Ponomarev
- a Division of Space Life Sciences, Universities Space Research Association, Houston, Texas 77058
| | | | | |
Collapse
|
4
|
Alsbeih G, Brock W, Story M. Misrepair of DNA double-strand breaks in patient with unidentified chromosomal fragility syndrome and family history of radiosensitivity. Int J Radiat Biol 2014; 90:53-9. [PMID: 24164476 DOI: 10.3109/09553002.2014.859764] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
PURPOSE To test the hypothesis that differences in DNA double-strand breaks (DSB) repair fidelity underlies differences in radiosensitivity. MATERIALS AND METHODS A primary fibroblast culture (C42) derived from a pediatric cancer patient treated with reduced radiation doses consequent to a family history of radiosensitivity reminiscent of chromosomal fragility syndrome, was compared to a normal control (C29). DNA DSB rejoining and repair fidelity were studied by Southern blotting and hybridization to specific fragments: Alu repetitive sequence representing the overall DSB rejoining capacity in the genome and a 3.2 Mbp NotI restriction fragment on chromosome 21 for DSB repair fidelity. RESULTS Although both assays showed statistically significant difference (p ≤ 0.05) between the two cell strains in residual misrepaired (un-or mis-rejoined) DSB (24 h after 30 or 80 Gy), the residual damage was lower in the Alu enriched genome assay compared to NotI assay (0.01-0.07 and 0.10-0.37, respectively). CONCLUSIONS These results suggest that, in comparison to classic DSB repair experiment, an assay of measuring DNA DSB repair fidelity can provide better resolution and a more accurate estimate of misrepair of radiation-induced DNA damage, which underlies genomic instability and increased radiosensitivity.
Collapse
Affiliation(s)
- Ghazi Alsbeih
- King Faisal Specialist Hospital & Research Centre , Riyadh , Saudi Arabia
| | | | | |
Collapse
|
5
|
The ATM-mediated DNA-damage response. Mol Oncol 2013. [DOI: 10.1017/cbo9781139046947.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
6
|
Thompson LH. Recognition, signaling, and repair of DNA double-strand breaks produced by ionizing radiation in mammalian cells: the molecular choreography. Mutat Res 2012; 751:158-246. [PMID: 22743550 DOI: 10.1016/j.mrrev.2012.06.002] [Citation(s) in RCA: 261] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2011] [Revised: 06/09/2012] [Accepted: 06/16/2012] [Indexed: 12/15/2022]
Abstract
The faithful maintenance of chromosome continuity in human cells during DNA replication and repair is critical for preventing the conversion of normal diploid cells to an oncogenic state. The evolution of higher eukaryotic cells endowed them with a large genetic investment in the molecular machinery that ensures chromosome stability. In mammalian and other vertebrate cells, the elimination of double-strand breaks with minimal nucleotide sequence change involves the spatiotemporal orchestration of a seemingly endless number of proteins ranging in their action from the nucleotide level to nucleosome organization and chromosome architecture. DNA DSBs trigger a myriad of post-translational modifications that alter catalytic activities and the specificity of protein interactions: phosphorylation, acetylation, methylation, ubiquitylation, and SUMOylation, followed by the reversal of these changes as repair is completed. "Superfluous" protein recruitment to damage sites, functional redundancy, and alternative pathways ensure that DSB repair is extremely efficient, both quantitatively and qualitatively. This review strives to integrate the information about the molecular mechanisms of DSB repair that has emerged over the last two decades with a focus on DSBs produced by the prototype agent ionizing radiation (IR). The exponential growth of molecular studies, heavily driven by RNA knockdown technology, now reveals an outline of how many key protein players in genome stability and cancer biology perform their interwoven tasks, e.g. ATM, ATR, DNA-PK, Chk1, Chk2, PARP1/2/3, 53BP1, BRCA1, BRCA2, BLM, RAD51, and the MRE11-RAD50-NBS1 complex. Thus, the nature of the intricate coordination of repair processes with cell cycle progression is becoming apparent. This review also links molecular abnormalities to cellular pathology as much a possible and provides a framework of temporal relationships.
Collapse
Affiliation(s)
- Larry H Thompson
- Biology & Biotechnology Division, L452, Lawrence Livermore National Laboratory, P.O. Box 808, Livermore, CA 94551-0808, United States.
| |
Collapse
|
7
|
Dzikiewicz-Krawczyk A, Mosor M, Januszkiewicz D, Nowak J. Impact of heterozygous c.657-661del, p.I171V and p.R215W mutations in NBN on nibrin functions. Mutagenesis 2011; 27:337-43. [PMID: 22131123 DOI: 10.1093/mutage/ger084] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Nibrin, product of the NBN gene, together with MRE11 and RAD50 is involved in DNA double-strand breaks (DSBs) sensing and repair, induction of apoptosis and cell cycle control. Biallelic NBN mutations cause the Nijmegen breakage syndrome, a chromosomal instability disorder characterised by, among other things, radiosensitivity, immunodeficiency and an increased cancer risk. Several studies have shown an association of heterozygous c.657-661del, p.I171V and p.R215W mutations in the NBN gene with a variety of malignancies but the data are controversial. Little is known, however, whether and to what extent do these mutations in heterozygous state affect nibrin functions. We examined frequency of chromatid breaks, DSB repair, defects in S-phase checkpoint and radiosensitivity in X-ray-irradiated cells from control individuals, NBS patients and heterozygous carriers of the c.657-661del, p.I171V and p.R215W mutations. While cells homozygous for c.657-661del displayed a significantly increased number of chromatid breaks and residual γ-H2AX foci, as well as abrogation of the intra-S-phase checkpoint following irradiation, which resulted in increased radiosensitivity, cells with heterozygous c.657-661del, p.I171V and p.R215W mutations behaved similarly to control cells. Significant differences in the frequency of spontaneous and ionising radiation-induced chromatid breaks and the level of persistent γ-H2AX foci were observed when comparing control and mutant cells heterozygous for c.657-661del. However, it is still possible that heterozygous NBN mutations may contribute to cancer development.
Collapse
|
8
|
Hada M, Huff JL, Patel ZS, Kawata T, Pluth JM, George KA, Cucinotta FA. AT cells are not radiosensitive for simple chromosomal exchanges at low dose. Mutat Res 2011; 716:76-83. [PMID: 21889946 DOI: 10.1016/j.mrfmmm.2011.08.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2011] [Revised: 08/15/2011] [Accepted: 08/19/2011] [Indexed: 05/31/2023]
Abstract
Cells deficient in ATM (product of the gene that is mutated in ataxia telangiectasia patients) or NBS (product of the gene mutated in the Nijmegen breakage syndrome) show increased yields of both simple and complex chromosomal aberrations after high doses (>0.5Gy) of ionizing radiation (X-rays or γ-rays), however less is known on how these cells respond at low dose. Previously we had shown that the increased chromosome aberrations in ATM and NBS defective lines was due to a significantly larger quadratic dose-response term compared to normal fibroblasts for both simple and complex exchanges. The linear dose-response term for simple exchanges was significantly higher in NBS cells compared to wild type cells, but not for AT cells. However, AT cells have a high background level of exchanges compared to wild type or NBS cells that confounds the understanding of low dose responses. To understand the sensitivity differences for high to low doses, chromosomal aberration analysis was first performed at low dose-rates (0.5Gy/d), and results provided further evidence for the lack of sensitivity for exchanges in AT cells below doses of 1Gy. Normal lung fibroblast cells treated with KU-55933, a specific ATM kinase inhibitor, showed increased numbers of exchanges at a dose of 1Gy and higher, but were similar to wild type cells at 0.5Gy or below. These results were confirmed using siRNA knockdown of ATM. The present study provides evidence that the increased radiation sensitivity of AT cells for chromosomal exchanges found at high dose does not occur at low dose.
Collapse
Affiliation(s)
- Megumi Hada
- USRA Division of Life Sciences, Houston, TX 77058, USA
| | | | | | | | | | | | | |
Collapse
|
9
|
George KA, Hada M, Jackson LJ, Elliott T, Kawata T, Pluth JM, Cucinotta FA. Dose response of gamma rays and iron nuclei for induction of chromosomal aberrations in normal and repair-deficient cell lines. Radiat Res 2009; 171:752-63. [PMID: 19580482 DOI: 10.1667/rr1680.1] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
We studied the effects of DNA double-strand break (DSB) repair deficiencies on chromosomal aberration frequency using low doses (<1 Gy) of gamma rays and high-energy iron ions (LET = 151 keV/microm). Chromosomal aberrations were measured using the fluorescence whole-chromosome painting technique. The cell lines included fibroblasts deficient in ATM (product of the gene that is mutated in ataxia telangiectasia patients) or NBS (product of the gene mutated in the Nijmegen breakage syndrome) and gliomablastoma cells proficient in or lacking DNA-dependent protein kinase (DNA-PK) activity. The yields of both simple and complex chromosomal aberrations were increased in DSB repair-defective cells compared to normal cells; the increase was more than twofold higher for gamma rays compared to iron nuclei. For gamma-ray-induced aberrations, the ATM- and NBS-defective lines were found to have significantly larger quadratic components compared to normal fibroblasts for both simple and complex aberrations, while the linear dose-response term was significantly higher only for the NBS cells. For simple and complex aberrations induced by iron nuclei, regression models preferred purely linear and quadratic dose responses, respectively, for each cell line studied. RBEs were reduced relative to normal cells for all of the DSB repair-defective lines, with the DNA-PK-deficient cells found to have RBEs near unity. The large increase in the quadratic dose-response terms in the DSB repair-deficient cell lines points to the importance of the functions of ATM and NBS in chromatin modifications to facilitate correct DSB repair and to minimize aberration formation. The differences found between AT and NBS cells at lower doses suggest important questions about the applicability of observations of radiation sensitivity at high doses to low-dose exposures.
Collapse
|
10
|
Mutational inactivation of the nijmegen breakage syndrome gene (NBS1) in glioblastomas is associated with multiple TP53 mutations. J Neuropathol Exp Neurol 2009; 68:210-5. [PMID: 19151620 DOI: 10.1097/nen.0b013e31819724c2] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Nijmegen breakage syndrome caused by NBS1 germline mutations is a rare autosomal recessive disease with clinical features that include microcephaly, increased radiosensitivity, and predisposition to cancer. NBS1 plays a key role in DNA double-strand break repair and the maintenance of genomic stability. We screened 87 glioblastomas for NBS1 mutations (all 16 exons). Single-strand conformation polymorphism followed by direct DNA sequencing revealed 12 NBS1 mutations (8 missense and 4 intronic mutations) in 9 (32%) of 28 primary (de novo) glioblastomas carrying 2 or more TP53 mutations. None of the NBS1 mutations has been previously reported as a germline mutation in Nijmegen breakage syndrome patients. NBS1 mutations were not detected in 19 primary glioblastomas with 1 TP53 mutation or in 21 primary glioblastomas without TP53 mutations. Secondary glioblastomas that developed through progression from low-grade or anaplastic astrocytoma had TP53 mutations in 16 (84%) of 19 cases, but none contained mutations of the NBS1 gene. These results suggest that multiple TP53 mutations in glioblastomas are due to deficient repair of DNA double-strand breaks caused by mutational inactivation of the NBS1 gene.
Collapse
|
11
|
Gładkowska-Dura M, Dzierzanowska-Fangrat K, Dura WT, van Krieken JHJM, Chrzanowska KH, van Dongen JJM, Langerak AW. Unique morphological spectrum of lymphomas in Nijmegen breakage syndrome (NBS) patients with high frequency of consecutive lymphoma formation. J Pathol 2008; 216:337-44. [PMID: 18788073 DOI: 10.1002/path.2418] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Nijmegen breakage syndrome (NBS) is an autosomal recessive disorder characterized by microcephaly, immunodeficiency, radiation hypersensitivity, chromosomal instability and increased incidence of malignancies. In Poland 105 NBS cases showing mutations in the NBS gene (nibrin, NBN), have been diagnosed, approximately 53% of which have developed cancer, mainly (>90%) lymphoid malignancies. This study is based upon the largest reported group of NBS-associated lymphomas. The predominant lymphoma types found in these 14 NBS children were diffuse large B cell lymphoma (DLBCL) and T cell lymphoblastic lymphoma (T-LBL/ALL), all showing monoclonal Ig/TCR rearrangements. The spectrum of NBS lymphomas is completely different from sporadic paediatric lymphomas and lymphomas in other immunodeficient patients. Morphological and molecular analysis of consecutive lymphoproliferations in six NBS patients revealed two cases of true secondary lymphoma. Furthermore, 9/13 NBS patients with lymphomas analysed by split-signal FISH showed breaks in the Ig or TCR loci, several of which likely represent chromosome aberrations. The combined data would fit a model in which an NBN gene defect results in a higher frequency of DNA misrejoining during double-strand break (DSB) repair, thereby contributing to an increased likelihood of lymphoma formation in NBS patients.
Collapse
Affiliation(s)
- M Gładkowska-Dura
- Department of Pathology, Children's Memorial Health Institute, Warsaw, Poland
| | | | | | | | | | | | | |
Collapse
|
12
|
Xrs2 facilitates crossovers during DNA double-strand gap repair in yeast. DNA Repair (Amst) 2008; 7:1563-77. [PMID: 18599383 DOI: 10.1016/j.dnarep.2008.06.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2007] [Revised: 06/02/2008] [Accepted: 06/04/2008] [Indexed: 11/23/2022]
Abstract
Xrs2 is a member of the MRX complex (Mre11/Rad50/Xrs2) in Saccharomyces cerevisiae. In this study we demonstrate the important role of the MRX complex and in more detail of Xrs2 for the repair of radiation-induced chromosomal double-strand breaks by pulsed field gel electrophoresis. By using a newly designed in vivo plasmid-chromosome recombination system, we could show that gap repair efficiency and the association with crossovers were reduced in the MRX null mutants, but repair accuracy was unaffected. For these processes, an intact Mre11-binding domain of Xrs2 is crucial, whereas the FHA- and BRCT-domains as well as the Tel1-binding domain of Xrs2 are dispensable. Obviously, the Mre11-binding domain of the Xrs2 protein is crucial for the analysed functions and our results suggest a new role of the MRX complex for the formation of crossovers. Analysis of double mutants showed that the phenotype of the Deltaxrs2 null mutant concerning the crossover frequency is dominant over the phenotypes of Deltasrs2 and Deltasgs1 null mutants. Thus, the complex seems to be involved in early steps of double-strand break and gap repair, and we propose that it has a regulatory role for the selection of homologous recombination pathways.
Collapse
|
13
|
Abstract
Before the human exploration of Mars or long-duration missions on the Earth's moon, the risk of cancer and other diseases from space radiation must be accurately estimated and mitigated. Space radiation, comprised of energetic protons and heavy nuclei, has been shown to produce distinct biological damage compared with radiation on Earth, leading to large uncertainties in the projection of cancer and other health risks, and obscuring evaluation of the effectiveness of possible countermeasures. Here, we describe how research in cancer radiobiology can support human missions to Mars and other planets.
Collapse
Affiliation(s)
- Marco Durante
- Biophysics group at GSI, Planckstrasse 1, 64291 Darmstadt, Germany.
| | | |
Collapse
|
14
|
Manti L, Braselmann H, Calabrese ML, Massa R, Pugliese M, Scampoli P, Sicignano G, Grossi G. Effects of Modulated Microwave Radiation at Cellular Telephone Frequency (1.95 GHz) on X-Ray-Induced Chromosome Aberrations in Human LymphocytesIn Vitro. Radiat Res 2008; 169:575-83. [DOI: 10.1667/rr1044.1] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2007] [Accepted: 01/18/2008] [Indexed: 11/03/2022]
|
15
|
di Masi A, Viganotti M, Polticelli F, Ascenzi P, Tanzarella C, Antoccia A. The R215W mutation in NBS1 impairs gamma-H2AX binding and affects DNA repair: molecular bases for the severe phenotype of 657del5/R215W Nijmegen breakage syndrome patients. Biochem Biophys Res Commun 2008; 369:835-40. [PMID: 18328813 DOI: 10.1016/j.bbrc.2008.02.129] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2008] [Accepted: 02/21/2008] [Indexed: 10/22/2022]
Abstract
Nijmegen breakage syndrome (NBS) is a genetic disorder characterized by chromosomal instability and hypersensitivity to ionising radiation. Compound heterozygous 657del5/R215W NBS patients display a clinical phenotype more severe than the majority of NBS patients homozygous for the 657del5 mutation. The NBS1 protein, mutated in NBS patients, contains a FHA/BRCT domain necessary for the DNA-double strand break (DSB) damage response. Recently, a second BRCT domain has been identified, however, its role is still unknown. Here, we demonstrate that the R215W mutation in NBS1 impairs histone gamma-H2AX binding after induction of DNA damage, leading to a delay in DNA-DSB rejoining. Molecular modelling reveals that the 215 residue of NBS1 is located between the two BRCT domains, affecting their relative orientation that appears critical for gamma-H2AX binding. Present data represent the first evidence for the role of NBS1 tandem BRCT domains in gamma-H2AX recognition, and could explain the severe phenotype observed in 657del5/R215W NBS patients.
Collapse
Affiliation(s)
- Alessandra di Masi
- Department of Biology, University Roma Tre, Viale Guglielmo Marconi 446, I-00146 Roma, Italy
| | | | | | | | | | | |
Collapse
|
16
|
Abstract
The DNA-dependent protein kinase (DNA-PK) is central to the process of nonhomologous end joining because it recognizes and then binds double strand breaks initiating repair. It has long been appreciated that DNA-PK protects DNA ends to promote end joining. Here we review recent work from our laboratories and others demonstrating that DNA-PK can regulate end access both positively and negatively. This is accomplished via distinct autophosphorylation events that result in opposing effects on DNA end access. Additional autophosphorylations that are both physically and functionally distinct serve to regulate kinase activity and complex dissociation. Finally, DNA-PK both positively and negatively regulates DNA end access to repair via the homologous recombination pathway. This has particularly important implications in human cells because of DNA-PK's cellular abundance.
Collapse
Affiliation(s)
- Katheryn Meek
- College of Veterinary Medicine, Michigan State University, East Lansing, Michigan, USA
| | | | | |
Collapse
|