1
|
Alqahtani SS, Koltai T, Ibrahim ME, Bashir AHH, Alhoufie STS, Ahmed SBM, Molfetta DD, Carvalho TMA, Cardone RA, Reshkin SJ, Hifny A, Ahmed ME, Alfarouk KO. Role of pH in Regulating Cancer Pyrimidine Synthesis. J Xenobiot 2022; 12:158-180. [PMID: 35893264 PMCID: PMC9326563 DOI: 10.3390/jox12030014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 06/17/2022] [Accepted: 06/28/2022] [Indexed: 11/18/2022] Open
Abstract
Replication is a fundamental aspect of cancer, and replication is about reproducing all the elements and structures that form a cell. Among them are DNA, RNA, enzymes, and coenzymes. All the DNA is doubled during each S (synthesis) cell cycle phase. This means that six billion nucleic acids must be synthesized in each cycle. Tumor growth, proliferation, and mutations all depend on this synthesis. Cancer cells require a constant supply of nucleotides and other macromolecules. For this reason, they must stimulate de novo nucleotide synthesis to support nucleic acid provision. When deregulated, de novo nucleic acid synthesis is controlled by oncogenes and tumor suppressor genes that enable increased synthesis and cell proliferation. Furthermore, cell duplication must be achieved swiftly (in a few hours) and in the midst of a nutrient-depleted and hypoxic environment. This also means that the enzymes participating in nucleic acid synthesis must work efficiently. pH is a critical factor in enzymatic efficiency and speed. This review will show that the enzymatic machinery working in nucleic acid synthesis requires a pH on the alkaline side in most cases. This coincides with many other pro-tumoral factors, such as the glycolytic phenotype, benefiting from an increased intracellular pH. An increased intracellular pH is a perfect milieu for high de novo nucleic acid production through optimal enzymatic performance.
Collapse
Affiliation(s)
- Saad Saeed Alqahtani
- Department of Pharmacy Practice, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia;
- Pharmacy Practice Research Unit, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia
| | | | - Muntaser E. Ibrahim
- Department of Molecular Biology, Institute of Endemic Diseases, University of Khartoum, Khartoum 11111, Sudan; (M.E.I.); (A.H.H.B.)
| | - Adil H. H. Bashir
- Department of Molecular Biology, Institute of Endemic Diseases, University of Khartoum, Khartoum 11111, Sudan; (M.E.I.); (A.H.H.B.)
| | - Sari T. S. Alhoufie
- Medical Laboratories Technology Department, College of Applied Medical Sciences, Taibah University, Medina 42353, Saudi Arabia;
| | - Samrein B. M. Ahmed
- Department of Biosciences and Chemistry, College of Health, Wellbeing and Life Sciences, Sheffield Hallam University, Sheffield S1 1WB, UK;
| | - Daria Di Molfetta
- Department of Biosciences, Biotechnologies, and Biopharmaceutics, University of Bari, 70126 Bari, Italy; (D.D.M.); (T.M.A.C.); (R.A.C.); (S.J.R.)
| | - Tiago M. A. Carvalho
- Department of Biosciences, Biotechnologies, and Biopharmaceutics, University of Bari, 70126 Bari, Italy; (D.D.M.); (T.M.A.C.); (R.A.C.); (S.J.R.)
| | - Rosa Angela Cardone
- Department of Biosciences, Biotechnologies, and Biopharmaceutics, University of Bari, 70126 Bari, Italy; (D.D.M.); (T.M.A.C.); (R.A.C.); (S.J.R.)
| | - Stephan Joel Reshkin
- Department of Biosciences, Biotechnologies, and Biopharmaceutics, University of Bari, 70126 Bari, Italy; (D.D.M.); (T.M.A.C.); (R.A.C.); (S.J.R.)
| | | | - Mohamed E. Ahmed
- Research Center, Zamzam University College, Khartoum 11123, Sudan;
| | - Khalid Omer Alfarouk
- Research Center, Zamzam University College, Khartoum 11123, Sudan;
- Alfarouk Biomedical Research LLC, Temple Terrace, FL 33617, USA
- Hala Alfarouk Cancer Center, Khartoum 11123, Sudan
- Correspondence:
| |
Collapse
|
2
|
A New Class of Uracil-DNA Glycosylase Inhibitors Active against Human and Vaccinia Virus Enzyme. Molecules 2021; 26:molecules26216668. [PMID: 34771075 PMCID: PMC8587785 DOI: 10.3390/molecules26216668] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 10/24/2021] [Accepted: 10/30/2021] [Indexed: 11/17/2022] Open
Abstract
Uracil-DNA glycosylases are enzymes that excise uracil bases appearing in DNA as a result of cytosine deamination or accidental dUMP incorporation from the dUTP pool. The activity of Family 1 uracil-DNA glycosylase (UNG) activity limits the efficiency of antimetabolite drugs and is essential for virulence in some bacterial and viral infections. Thus, UNG is regarded as a promising target for antitumor, antiviral, antibacterial, and antiprotozoal drugs. Most UNG inhibitors presently developed are based on the uracil base linked to various substituents, yet new pharmacophores are wanted to target a wide range of UNGs. We have conducted virtual screening of a 1,027,767-ligand library and biochemically screened the best hits for the inhibitory activity against human and vaccinia virus UNG enzymes. Although even the best inhibitors had IC50 ≥ 100 μM, they were highly enriched in a common fragment, tetrahydro-2,4,6-trioxopyrimidinylidene (PyO3). In silico, PyO3 preferably docked into the enzyme's active site, and in kinetic experiments, the inhibition was better consistent with the competitive mechanism. The toxicity of two best inhibitors for human cells was independent of the presence of methotrexate, which is consistent with the hypothesis that dUMP in genomic DNA is less toxic for the cell than strand breaks arising from the massive removal of uracil. We conclude that PyO3 may be a novel pharmacophore with the potential for development into UNG-targeting agents.
Collapse
|
3
|
Pálinkás HL, Békési A, Róna G, Pongor L, Papp G, Tihanyi G, Holub E, Póti Á, Gemma C, Ali S, Morten MJ, Rothenberg E, Pagano M, Szűts D, Győrffy B, Vértessy BG. Genome-wide alterations of uracil distribution patterns in human DNA upon chemotherapeutic treatments. eLife 2020; 9:e60498. [PMID: 32956035 PMCID: PMC7505663 DOI: 10.7554/elife.60498] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 08/23/2020] [Indexed: 12/17/2022] Open
Abstract
Numerous anti-cancer drugs perturb thymidylate biosynthesis and lead to genomic uracil incorporation contributing to their antiproliferative effect. Still, it is not yet characterized if uracil incorporations have any positional preference. Here, we aimed to uncover genome-wide alterations in uracil pattern upon drug treatments in human cancer cell line models derived from HCT116. We developed a straightforward U-DNA sequencing method (U-DNA-Seq) that was combined with in situ super-resolution imaging. Using a novel robust analysis pipeline, we found broad regions with elevated probability of uracil occurrence both in treated and non-treated cells. Correlation with chromatin markers and other genomic features shows that non-treated cells possess uracil in the late replicating constitutive heterochromatic regions, while drug treatment induced a shift of incorporated uracil towards segments that are normally more active/functional. Data were corroborated by colocalization studies via dSTORM microscopy. This approach can be applied to study the dynamic spatio-temporal nature of genomic uracil.
Collapse
Affiliation(s)
- Hajnalka L Pálinkás
- Genome Metabolism Research Group, Institute of Enzymology, Research Centre for Natural SciencesBudapestHungary
- Department of Applied Biotechnology and Food Sciences, Budapest University of Technology and EconomicsBudapestHungary
- Doctoral School of Multidisciplinary Medical Science, University of SzegedSzegedHungary
| | - Angéla Békési
- Genome Metabolism Research Group, Institute of Enzymology, Research Centre for Natural SciencesBudapestHungary
- Department of Applied Biotechnology and Food Sciences, Budapest University of Technology and EconomicsBudapestHungary
| | - Gergely Róna
- Department of Applied Biotechnology and Food Sciences, Budapest University of Technology and EconomicsBudapestHungary
- Department of Biochemistry and Molecular Pharmacology, New York University School of MedicineNew YorkUnited States
- Perlmutter Cancer Center, New York University School of MedicineNew YorkUnited States
- Howard Hughes Medical Institute, New York University School of MedicineNew YorkUnited States
| | - Lőrinc Pongor
- Cancer Biomarker Research Group, Institute of Enzymology, Research Centre for Natural SciencesBudapestHungary
- Department of Bioinformatics and 2nd Department of Pediatrics, Semmelweis UniversityBudapestHungary
| | - Gábor Papp
- Department of Applied Biotechnology and Food Sciences, Budapest University of Technology and EconomicsBudapestHungary
| | - Gergely Tihanyi
- Genome Metabolism Research Group, Institute of Enzymology, Research Centre for Natural SciencesBudapestHungary
- Department of Applied Biotechnology and Food Sciences, Budapest University of Technology and EconomicsBudapestHungary
| | - Eszter Holub
- Department of Applied Biotechnology and Food Sciences, Budapest University of Technology and EconomicsBudapestHungary
| | - Ádám Póti
- Genome Stability Research Group, Institute of Enzymology, Research Centre for Natural SciencesBudapestHungary
| | - Carolina Gemma
- Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital CampusLondonUnited Kingdom
| | - Simak Ali
- Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital CampusLondonUnited Kingdom
| | - Michael J Morten
- Department of Biochemistry and Molecular Pharmacology, New York University School of MedicineNew YorkUnited States
| | - Eli Rothenberg
- Department of Biochemistry and Molecular Pharmacology, New York University School of MedicineNew YorkUnited States
| | - Michele Pagano
- Department of Biochemistry and Molecular Pharmacology, New York University School of MedicineNew YorkUnited States
- Perlmutter Cancer Center, New York University School of MedicineNew YorkUnited States
- Howard Hughes Medical Institute, New York University School of MedicineNew YorkUnited States
| | - Dávid Szűts
- Genome Stability Research Group, Institute of Enzymology, Research Centre for Natural SciencesBudapestHungary
| | - Balázs Győrffy
- Cancer Biomarker Research Group, Institute of Enzymology, Research Centre for Natural SciencesBudapestHungary
- Department of Bioinformatics and 2nd Department of Pediatrics, Semmelweis UniversityBudapestHungary
| | - Beáta G Vértessy
- Genome Metabolism Research Group, Institute of Enzymology, Research Centre for Natural SciencesBudapestHungary
- Department of Applied Biotechnology and Food Sciences, Budapest University of Technology and EconomicsBudapestHungary
| |
Collapse
|
4
|
Abstract
Human deoxyuridine 5'-triphosphate nucleotidohydrolase (dUTPase), essential for DNA integrity, acts as a survival factor for tumor cells and is a target for cancer chemotherapy. Here we report that the Staphylococcal repressor protein StlSaPIBov1 (Stl) forms strong complex with human dUTPase. Functional analysis reveals that this interaction results in significant reduction of both dUTPase enzymatic activity and DNA binding capability of Stl. We conducted structural studies to understand the mechanism of this mutual inhibition. Small-angle X-ray scattering (SAXS) complemented with hydrogen-deuterium exchange mass spectrometry (HDX-MS) data allowed us to obtain 3D structural models comprising a trimeric dUTPase complexed with separate Stl monomers. These models thus reveal that upon dUTPase-Stl complex formation the functional homodimer of Stl repressor dissociates, which abolishes the DNA binding ability of the protein. Active site forming dUTPase segments were directly identified to be involved in the dUTPase-Stl interaction by HDX-MS, explaining the loss of dUTPase activity upon complexation. Our results provide key novel structural insights that pave the way for further applications of the first potent proteinaceous inhibitor of human dUTPase.
Collapse
|
5
|
Yan Y, Qing Y, Pink JJ, Gerson SL. Loss of Uracil DNA Glycosylase Selectively Resensitizes p53-Mutant and -Deficient Cells to 5-FdU. Mol Cancer Res 2018; 16:212-221. [PMID: 29117941 DOI: 10.1158/1541-7786.mcr-17-0215] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Revised: 08/02/2017] [Accepted: 10/26/2017] [Indexed: 11/16/2022]
Abstract
Thymidylate synthase (TS) inhibitors including fluoropyrimidines [e.g., 5-Fluorouracil (5-FU) and 5-Fluorodeoxyuridine (5-FdU, floxuridine)] and antifolates (e.g., pemetrexed) are widely used against solid tumors. Previously, we reported that shRNA-mediated knockdown (KD) of uracil DNA glycosylase (UDG) sensitized cancer cells to 5-FdU. Because p53 has also been shown as a critical determinant of the sensitivity to TS inhibitors, we further interrogated 5-FdU cytotoxicity after UDG depletion with regard to p53 status. By analyzing a panel of human cancer cells with known p53 status, it was determined that p53-mutated or -deficient cells are highly resistant to 5-FdU. UDG depletion resensitizes 5-FdU in p53-mutant and -deficient cells, whereas p53 wild-type (WT) cells are not affected under similar conditions. Utilizing paired HCT116 p53 WT and p53 knockout (KO) cells, it was shown that loss of p53 improves cell survival after 5-FdU, and UDG depletion only significantly sensitizes p53 KO cells. This sensitization can also be recapitulated by UDG depletion in cells with p53 KD by shRNAs. In addition, sensitization is also observed with pemetrexed in p53 KO cells, but not with 5-FU, most likely due to RNA incorporation. Importantly, in p53 WT cells, the apoptosis pathway induced by 5-FdU is activated independent of UDG status. However, in p53 KO cells, apoptosis is compromised in UDG-expressing cells, but dramatically elevated in UDG-depleted cells. Collectively, these results provide evidence that loss of UDG catalyzes significant cell death signals only in cancer cells mutant or deficient in p53.Implications: This study reveals that UDG depletion restores sensitivity to TS inhibitors and has chemotherapeutic potential in the context of mutant or deficient p53. Mol Cancer Res; 16(2); 212-21. ©2017 AACR.
Collapse
Affiliation(s)
- Yan Yan
- Department of Pharmacology, Case Western Reserve University, Cleveland, Ohio
| | - Yulan Qing
- Case Comprehensive Cancer Center, Division of General Medical Sciences-Oncology, Case Western Reserve University, Cleveland, Ohio
| | - John J Pink
- Case Comprehensive Cancer Center, Division of General Medical Sciences-Oncology, Case Western Reserve University, Cleveland, Ohio
| | - Stanton L Gerson
- Case Comprehensive Cancer Center, Division of General Medical Sciences-Oncology, Case Western Reserve University, Cleveland, Ohio.
| |
Collapse
|
6
|
Yan Y, Han X, Qing Y, Condie AG, Gorityala S, Yang S, Xu Y, Zhang Y, Gerson SL. Inhibition of uracil DNA glycosylase sensitizes cancer cells to 5-fluorodeoxyuridine through replication fork collapse-induced DNA damage. Oncotarget 2018; 7:59299-59313. [PMID: 27517750 PMCID: PMC5312313 DOI: 10.18632/oncotarget.11151] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Accepted: 07/19/2016] [Indexed: 12/12/2022] Open
Abstract
5-fluorodeoxyuridine (5-FdU, floxuridine) is active against multiple cancers through the inhibition of thymidylate synthase, which consequently introduces uracil and 5-FU incorporation into the genome. Uracil DNA glycosylase (UDG) is one of the main enzymes responsible for the removal of uracil and 5-FU. However, how exactly UDG mediates cellular sensitivity to 5-FdU, and if so whether it is through its ability to remove uracil and 5-FU have not been well characterized. In this study, we report that UDG depletion led to incorporation of uracil and 5-FU in DNA following 5-FdU treatment and significantly enhanced 5-FdU's cytotoxicity in cancer cell lines. Co-treatment, but not post-treatment with thymidine prevented cell death of UDG depleted cells by 5-FdU, indicating that the enhanced cytotoxicity is due to the retention of uracil and 5-FU in genomic DNA in the absence of UDG. Furthermore, UDG depleted cells were arrested at late G1 and early S phase by 5-FdU, followed by accumulation of sub-G1 population indicating cell death. Mechanistically, 5-FdU dramatically reduced DNA replication speed in UDG depleted cells. UDG depletion also greatly enhanced DNA damage as shown by γH2AX foci formation. Notably, the increased γH2AX foci formation was not suppressed by caspase inhibitor treatment, suggesting that DNA damage precedes cell death induced by 5-FdU. Together, these data provide novel mechanistic insights into the roles of UDG in DNA replication, damage repair, and cell death in response to 5-FdU and suggest that UDG is a target for improving the anticancer effect of this agent.
Collapse
Affiliation(s)
- Yan Yan
- Department of Pharmacology, Case Western Reserve University, Cleveland, OH, USA
| | - Xiangzi Han
- Department of Pharmacology, Case Western Reserve University, Cleveland, OH, USA
| | - Yulan Qing
- Department of Hematology and Oncology, Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH, USA
| | - Allison G Condie
- Division of Radiopharmaceutical Science, Case Center for Imaging Research, Department of Radiology, Chemistry, and Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA
| | | | - Shuming Yang
- Department of Hematology and Oncology, Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH, USA
| | - Yan Xu
- Department of Hematology and Oncology, Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH, USA.,Department of Chemistry, Cleveland State University, Cleveland, OH, USA
| | - Youwei Zhang
- Department of Pharmacology, Case Western Reserve University, Cleveland, OH, USA
| | - Stanton L Gerson
- Department of Hematology and Oncology, Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH, USA
| |
Collapse
|
7
|
Benedek A, Pölöskei I, Ozohanics O, Vékey K, Vértessy BG. The Stl repressor from Staphylococcus aureus is an efficient inhibitor of the eukaryotic fruitfly dUTPase. FEBS Open Bio 2017; 8:158-167. [PMID: 29435406 PMCID: PMC5794464 DOI: 10.1002/2211-5463.12302] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 06/25/2017] [Accepted: 06/30/2017] [Indexed: 11/17/2022] Open
Abstract
DNA metabolism and repair is vital for the maintenance of genome integrity. Specific proteinaceous inhibitors of key factors in this process have high potential for deciphering pathways of DNA metabolism and repair. The dUTPase enzyme family is responsible for guarding against erroneous uracil incorporation into DNA. Here, we investigate whether the staphylococcal Stl repressor may interact with not only bacterial but also eukaryotic dUTPase. We provide experimental evidence for the formation of a strong complex between Stl and Drosophila melanogasterdUTPase. We also find that dUTPase activity is strongly diminished in this complex. Our results suggest that the dUTPase protein sequences involved in binding to Stl are at least partially conserved through evolution from bacteria to eukaryotes.
Collapse
Affiliation(s)
- András Benedek
- Institute of Enzymology Research Centre for Natural Sciences Hungarian Academy of Sciences Budapest Hungary.,Department of Applied Biotechnology Budapest University of Technology and Economics Hungary
| | - István Pölöskei
- Department of Applied Biotechnology Budapest University of Technology and Economics Hungary
| | - Olivér Ozohanics
- Institute of Organic Chemistry Research Centre for Natural Sciences Hungarian Academy of Sciences Budapest Hungary
| | - Károly Vékey
- Institute of Organic Chemistry Research Centre for Natural Sciences Hungarian Academy of Sciences Budapest Hungary
| | - Beáta G Vértessy
- Institute of Enzymology Research Centre for Natural Sciences Hungarian Academy of Sciences Budapest Hungary.,Department of Applied Biotechnology Budapest University of Technology and Economics Hungary
| |
Collapse
|
8
|
Hagenkort A, Paulin CBJ, Desroses M, Sarno A, Wiita E, Mortusewicz O, Koolmeister T, Loseva O, Jemth AS, Almlöf I, Homan E, Lundbäck T, Gustavsson AL, Scobie M, Helleday T. dUTPase inhibition augments replication defects of 5-Fluorouracil. Oncotarget 2017; 8:23713-23726. [PMID: 28423595 PMCID: PMC5410339 DOI: 10.18632/oncotarget.15785] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Accepted: 02/06/2017] [Indexed: 11/01/2022] Open
Abstract
The antimetabolite 5-Fluorouracil (5-FU) is used in the treatment of various forms of cancer and has a complex mode of action. Despite 6 decades in clinical application the contribution of 5-FdUTP and dUTP [(5-F)dUTP] and 5-FUTP misincorporation into DNA and RNA respectively, for 5-FU-induced toxicity is still under debate.This study investigates DNA replication defects induced by 5-FU treatment and how (5-F)dUTP accumulation contributes to this effect. We reveal that 5-FU treatment leads to extensive problems in DNA replication fork progression, causing accumulation of cells in S-phase, DNA damage and ultimately cell death. Interestingly, these effects can be reinforced by either depletion or inhibition of the deoxyuridine triphosphatase (dUTPase, also known as DUT), highlighting the importance of (5-F)dUTP accumulation for cytotoxicity.With this study, we not only extend the current understanding of the mechanism of action of 5-FU, but also contribute to the characterization of dUTPase inhibitors. We demonstrate that pharmacological inhibition of dUTPase is a promising approach that may improve the efficacy of 5-FU treatment in the clinic.
Collapse
Affiliation(s)
- Anna Hagenkort
- Division of Translational Medicine and Chemical Biology, Science for Life Laboratory, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Cynthia B J Paulin
- Division of Translational Medicine and Chemical Biology, Science for Life Laboratory, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Matthieu Desroses
- Division of Translational Medicine and Chemical Biology, Science for Life Laboratory, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Antonio Sarno
- Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Elisée Wiita
- Division of Translational Medicine and Chemical Biology, Science for Life Laboratory, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Oliver Mortusewicz
- Division of Translational Medicine and Chemical Biology, Science for Life Laboratory, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Tobias Koolmeister
- Division of Translational Medicine and Chemical Biology, Science for Life Laboratory, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Olga Loseva
- Division of Translational Medicine and Chemical Biology, Science for Life Laboratory, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Ann-Sofie Jemth
- Division of Translational Medicine and Chemical Biology, Science for Life Laboratory, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Ingrid Almlöf
- Division of Translational Medicine and Chemical Biology, Science for Life Laboratory, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Evert Homan
- Division of Translational Medicine and Chemical Biology, Science for Life Laboratory, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Thomas Lundbäck
- Chemical Biology Consortium Sweden, Division of Translational Medicine and Chemical Biology, Science for Life Laboratory, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Anna-Lena Gustavsson
- Chemical Biology Consortium Sweden, Division of Translational Medicine and Chemical Biology, Science for Life Laboratory, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Martin Scobie
- Division of Translational Medicine and Chemical Biology, Science for Life Laboratory, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Thomas Helleday
- Division of Translational Medicine and Chemical Biology, Science for Life Laboratory, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
9
|
Baehr CA, Huntoon CJ, Hoang SM, Jerde CR, Karnitz LM. Glycogen Synthase Kinase 3 (GSK-3)-mediated Phosphorylation of Uracil N-Glycosylase 2 (UNG2) Facilitates the Repair of Floxuridine-induced DNA Lesions and Promotes Cell Survival. J Biol Chem 2016; 291:26875-26885. [PMID: 27875297 DOI: 10.1074/jbc.m116.746081] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Revised: 11/10/2016] [Indexed: 12/23/2022] Open
Abstract
Uracil N-glycosylase 2 (UNG2), the nuclear isoform of UNG, catalyzes the removal of uracil or 5-fluorouracil lesions that accumulate in DNA following treatment with the anticancer agents 5-fluorouracil and 5-fluorodeoxyuridine (floxuridine), a 5-fluorouracil metabolite. By repairing these DNA lesions before they can cause cell death, UNG2 promotes cancer cell survival and is therefore critically involved in tumor resistance to these agents. However, the mechanisms by which UNG2 is regulated remain unclear. Several phosphorylation sites within the N-terminal regulatory domain of UNG2 have been identified, although the effects of these modifications on UNG2 function have not been fully explored, nor have the identities of the kinases involved been determined. Here we show that glycogen synthase kinase 3 (GSK-3) interacts with and phosphorylates UNG2 at Thr60 and that Thr60 phosphorylation requires a Ser64 priming phosphorylation event. We also show that mutating Thr60 or Ser64 to Ala increases the half-life of UNG2, reduces the rate of in vitro uracil excision, and slows UNG2 dissociation from chromatin after DNA replication. Using an UNG2-deficient ovarian cancer cell line that is hypersensitive to floxuridine, we show that GSK-3 phosphorylation facilitates UNG2-dependent repair of floxuridine-induced DNA lesions and promotes tumor cell survival following exposure to this agent. These data suggest that GSK-3 regulates UNG2 and promotes DNA damage repair.
Collapse
Affiliation(s)
- Carly A Baehr
- From the Departments of Molecular Pharmacology and Experimental Therapeutics and
| | - Catherine J Huntoon
- From the Departments of Molecular Pharmacology and Experimental Therapeutics and.,the Division of Oncology Research, Mayo Clinic, Rochester, Minnesota 55905-0002
| | - Song-My Hoang
- From the Departments of Molecular Pharmacology and Experimental Therapeutics and
| | - Calvin R Jerde
- From the Departments of Molecular Pharmacology and Experimental Therapeutics and
| | - Larry M Karnitz
- From the Departments of Molecular Pharmacology and Experimental Therapeutics and .,the Division of Oncology Research, Mayo Clinic, Rochester, Minnesota 55905-0002.,Radiation Oncology and
| |
Collapse
|
10
|
Róna G, Scheer I, Nagy K, Pálinkás HL, Tihanyi G, Borsos M, Békési A, Vértessy BG. Detection of uracil within DNA using a sensitive labeling method for in vitro and cellular applications. Nucleic Acids Res 2016; 44:e28. [PMID: 26429970 PMCID: PMC4756853 DOI: 10.1093/nar/gkv977] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2015] [Revised: 09/10/2015] [Accepted: 09/15/2015] [Indexed: 11/14/2022] Open
Abstract
The role of uracil in genomic DNA has been recently re-evaluated. It is now widely accepted to be a physiologically important DNA element in diverse systems from specific phages to antibody maturation and Drosophila development. Further relevant investigations would largely benefit from a novel reliable and fast method to gain quantitative and qualitative information on uracil levels in DNA both in vitro and in situ, especially since current techniques does not allow in situ cellular detection. Here, starting from a catalytically inactive uracil-DNA glycosylase protein, we have designed several uracil sensor fusion proteins. The designed constructs can be applied as molecular recognition tools that can be detected with conventional antibodies in dot-blot applications and may also serve as in situ uracil-DNA sensors in cellular techniques. Our method is verified on numerous prokaryotic and eukaryotic cellular systems. The method is easy to use and can be applied in a high-throughput manner. It does not require expensive equipment or complex know-how, facilitating its easy implementation in any basic molecular biology laboratory. Elevated genomic uracil levels from cells of diverse genetic backgrounds and/or treated with different drugs can be demonstrated also in situ, within the cell.
Collapse
Affiliation(s)
- Gergely Róna
- Institute of Enzymology, RCNS, Hungarian Academy of Sciences, Magyar Tudósok Str. 2, H-1117 Budapest, Hungary Department of Applied Biotechnology and Food Sciences, Budapest University of Technology and Economics, Szt Gellért Square 4, H-1111 Budapest, Hungary
| | - Ildikó Scheer
- Institute of Enzymology, RCNS, Hungarian Academy of Sciences, Magyar Tudósok Str. 2, H-1117 Budapest, Hungary Department of Applied Biotechnology and Food Sciences, Budapest University of Technology and Economics, Szt Gellért Square 4, H-1111 Budapest, Hungary
| | - Kinga Nagy
- Institute of Enzymology, RCNS, Hungarian Academy of Sciences, Magyar Tudósok Str. 2, H-1117 Budapest, Hungary Department of Applied Biotechnology and Food Sciences, Budapest University of Technology and Economics, Szt Gellért Square 4, H-1111 Budapest, Hungary
| | - Hajnalka L Pálinkás
- Institute of Enzymology, RCNS, Hungarian Academy of Sciences, Magyar Tudósok Str. 2, H-1117 Budapest, Hungary Doctoral School of Multidisciplinary Medical Science, University of Szeged, H-6720 Szeged, Hungary
| | - Gergely Tihanyi
- Institute of Enzymology, RCNS, Hungarian Academy of Sciences, Magyar Tudósok Str. 2, H-1117 Budapest, Hungary Department of Applied Biotechnology and Food Sciences, Budapest University of Technology and Economics, Szt Gellért Square 4, H-1111 Budapest, Hungary
| | - Máté Borsos
- Institute of Enzymology, RCNS, Hungarian Academy of Sciences, Magyar Tudósok Str. 2, H-1117 Budapest, Hungary
| | - Angéla Békési
- Institute of Enzymology, RCNS, Hungarian Academy of Sciences, Magyar Tudósok Str. 2, H-1117 Budapest, Hungary
| | - Beáta G Vértessy
- Institute of Enzymology, RCNS, Hungarian Academy of Sciences, Magyar Tudósok Str. 2, H-1117 Budapest, Hungary Department of Applied Biotechnology and Food Sciences, Budapest University of Technology and Economics, Szt Gellért Square 4, H-1111 Budapest, Hungary
| |
Collapse
|
11
|
Inside the biochemical pathways of thymidylate synthase perturbed by anticancer drugs: Novel strategies to overcome cancer chemoresistance. Drug Resist Updat 2015; 23:20-54. [PMID: 26690339 DOI: 10.1016/j.drup.2015.10.003] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Revised: 10/08/2015] [Accepted: 10/23/2015] [Indexed: 12/11/2022]
Abstract
Our current understanding of the mechanisms of action of antitumor agents and the precise mechanisms underlying drug resistance is that these two processes are directly linked. Moreover, it is often possible to delineate chemoresistance mechanisms based on the specific mechanism of action of a given anticancer drug. A more holistic approach to the chemoresistance problem suggests that entire metabolic pathways, rather than single enzyme targets may better explain and educate us about the complexity of the cellular responses upon cytotoxic drug administration. Drugs, which target thymidylate synthase and folate-dependent enzymes, represent an important therapeutic arm in the treatment of various human malignancies. However, prolonged patient treatment often provokes drug resistance phenomena that render the chemotherapeutic treatment highly ineffective. Hence, strategies to overcome drug resistance are primarily designed to achieve either enhanced intracellular drug accumulation, to avoid the upregulation of folate-dependent enzymes, and to circumvent the impairment of DNA repair enzymes which are also responsible for cross-resistance to various anticancer drugs. The current clinical practice based on drug combination therapeutic regimens represents the most effective approach to counteract drug resistance. In the current paper, we review the molecular aspects of the activity of TS-targeting drugs and describe how such mechanisms are related to the emergence of clinical drug resistance. We also discuss the current possibilities to overcome drug resistance by using a molecular mechanistic approach based on medicinal chemistry methods focusing on rational structural modifications of novel antitumor agents. This paper also focuses on the importance of the modulation of metabolic pathways upon drug administration, their analysis and the assessment of their putative roles in the networks involved using a meta-analysis approach. The present review describes the main pathways that are modulated by TS-targeting anticancer drugs starting from the description of the normal functioning of the folate metabolic pathway, through the protein modulation occurring upon drug delivery to cultured tumor cells as well as cancer patients, finally describing how the pathways are modulated by drug resistance development. The data collected are then analyzed using network/netwire connecting methods in order to provide a wider view of the pathways involved and of the importance of such information in identifying additional proteins that could serve as novel druggable targets for efficacious cancer therapy.
Collapse
|
12
|
Huehls AM, Huntoon CJ, Joshi PM, Baehr CA, Wagner JM, Wang X, Lee MY, Karnitz LM. Genomically Incorporated 5-Fluorouracil that Escapes UNG-Initiated Base Excision Repair Blocks DNA Replication and Activates Homologous Recombination. Mol Pharmacol 2015; 89:53-62. [PMID: 26494862 DOI: 10.1124/mol.115.100164] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Accepted: 10/21/2015] [Indexed: 12/17/2022] Open
Abstract
5-Fluorouracil (5-FU) and its metabolite 5-fluorodeoxyuridine (FdUrd, floxuridine) are chemotherapy agents that are converted to 5-fluorodeoxyuridine monophosphate (FdUMP) and 5-fluorodeoxyuridine triphosphate (FdUTP). FdUMP inhibits thymidylate synthase and causes the accumulation of uracil in the genome, whereas FdUTP is incorporated by DNA polymerases as 5-FU in the genome; however, it remains unclear how either genomically incorporated U or 5-FU contributes to killing. We show that depletion of the uracil DNA glycosylase (UNG) sensitizes tumor cells to FdUrd. Furthermore, we show that UNG depletion does not sensitize cells to the thymidylate synthase inhibitor (raltitrexed), which induces uracil but not 5-FU accumulation, thus indicating that genomically incorporated 5-FU plays a major role in the antineoplastic effects of FdUrd. We also show that 5-FU metabolites do not block the first round of DNA synthesis but instead arrest cells at the G1/S border when cells again attempt replication and activate homologous recombination (HR). This arrest is not due to 5-FU lesions blocking DNA polymerase δ but instead depends, in part, on the thymine DNA glycosylase. Consistent with the activation of HR repair, disruption of HR sensitized cells to FdUrd, especially when UNG was disabled. These results show that 5-FU lesions that escape UNG repair activate HR, which promotes cell survival.
Collapse
Affiliation(s)
- Amelia M Huehls
- Department of Molecular Pharmacology and Experimental Therapeutics (A.M.H., C.J.H., P.M.J., C.A.B., J.M.W., L.M.K.) and Division of Oncology Research (C.J.H., J.M.W., L.M.K), Department of Radiation Oncology (L.M.K.), Mayo Clinic, Rochester, Minnesota; and Department of Biochemistry and Molecular Biology, New York Medical College, Valhalla, New York (X.W., M.Y.L.)
| | - Catherine J Huntoon
- Department of Molecular Pharmacology and Experimental Therapeutics (A.M.H., C.J.H., P.M.J., C.A.B., J.M.W., L.M.K.) and Division of Oncology Research (C.J.H., J.M.W., L.M.K), Department of Radiation Oncology (L.M.K.), Mayo Clinic, Rochester, Minnesota; and Department of Biochemistry and Molecular Biology, New York Medical College, Valhalla, New York (X.W., M.Y.L.)
| | - Poorval M Joshi
- Department of Molecular Pharmacology and Experimental Therapeutics (A.M.H., C.J.H., P.M.J., C.A.B., J.M.W., L.M.K.) and Division of Oncology Research (C.J.H., J.M.W., L.M.K), Department of Radiation Oncology (L.M.K.), Mayo Clinic, Rochester, Minnesota; and Department of Biochemistry and Molecular Biology, New York Medical College, Valhalla, New York (X.W., M.Y.L.)
| | - Carly A Baehr
- Department of Molecular Pharmacology and Experimental Therapeutics (A.M.H., C.J.H., P.M.J., C.A.B., J.M.W., L.M.K.) and Division of Oncology Research (C.J.H., J.M.W., L.M.K), Department of Radiation Oncology (L.M.K.), Mayo Clinic, Rochester, Minnesota; and Department of Biochemistry and Molecular Biology, New York Medical College, Valhalla, New York (X.W., M.Y.L.)
| | - Jill M Wagner
- Department of Molecular Pharmacology and Experimental Therapeutics (A.M.H., C.J.H., P.M.J., C.A.B., J.M.W., L.M.K.) and Division of Oncology Research (C.J.H., J.M.W., L.M.K), Department of Radiation Oncology (L.M.K.), Mayo Clinic, Rochester, Minnesota; and Department of Biochemistry and Molecular Biology, New York Medical College, Valhalla, New York (X.W., M.Y.L.)
| | - Xiaoxiao Wang
- Department of Molecular Pharmacology and Experimental Therapeutics (A.M.H., C.J.H., P.M.J., C.A.B., J.M.W., L.M.K.) and Division of Oncology Research (C.J.H., J.M.W., L.M.K), Department of Radiation Oncology (L.M.K.), Mayo Clinic, Rochester, Minnesota; and Department of Biochemistry and Molecular Biology, New York Medical College, Valhalla, New York (X.W., M.Y.L.)
| | - Marietta Y Lee
- Department of Molecular Pharmacology and Experimental Therapeutics (A.M.H., C.J.H., P.M.J., C.A.B., J.M.W., L.M.K.) and Division of Oncology Research (C.J.H., J.M.W., L.M.K), Department of Radiation Oncology (L.M.K.), Mayo Clinic, Rochester, Minnesota; and Department of Biochemistry and Molecular Biology, New York Medical College, Valhalla, New York (X.W., M.Y.L.)
| | - Larry M Karnitz
- Department of Molecular Pharmacology and Experimental Therapeutics (A.M.H., C.J.H., P.M.J., C.A.B., J.M.W., L.M.K.) and Division of Oncology Research (C.J.H., J.M.W., L.M.K), Department of Radiation Oncology (L.M.K.), Mayo Clinic, Rochester, Minnesota; and Department of Biochemistry and Molecular Biology, New York Medical College, Valhalla, New York (X.W., M.Y.L.)
| |
Collapse
|
13
|
Das D, Preet R, Mohapatra P, Satapathy SR, Siddharth S, Tamir T, Jain V, Bharatam PV, Wyatt MD, Kundu CN. 5-Fluorouracil mediated anti-cancer activity in colon cancer cells is through the induction of Adenomatous Polyposis Coli: Implication of the long-patch base excision repair pathway. DNA Repair (Amst) 2015; 24:15-25. [PMID: 25460919 DOI: 10.1016/j.dnarep.2014.10.006] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Revised: 10/14/2014] [Accepted: 10/15/2014] [Indexed: 12/18/2022]
Abstract
Colorectal cancer (CRC) patients with APC mutations do not benefit from 5-FU therapy. It was reported that APC physically interacts with POLβ and FEN1, thus blocking LP-BER via APC's DNA repair inhibitory (DRI) domain in vitro. The aim of this study was to elucidate how APC status affects BER and the response of CRC to 5-FU. HCT-116, HT-29, and LOVO cells varying in APC status were treated with 5-FU to evaluate expression, repair, and survival responses. HCT-116 expresses wild-type APC; HT-29 expresses an APC mutant that contains DRI domain; LOVO expresses an APC mutant lacking DRI domain. 5-FU increased the expression of APC and decreased the expression of FEN1 in HCT-116 and HT-29 cells, which were sensitized to 5-FU when compared to LOVO cells. Knockdown of APC in HCT-116 rendered cells resistant to 5-FU, and FEN1 levels remained unchanged. Re-expression of full-length APC in LOVO cells caused sensitivity to 5-FU, and decreased expression of FEN1. These knockdown and addback studies confirmed that the DRI domain is necessary for the APC-mediated reduction in LP-BER and 5-FU. Modelling studies showed that 5-FU can interact with the DRI domain of APC via hydrogen bonding and hydrophobic interactions. 5-FU resistance in CRC occurs with mutations in APC that disrupt or eliminate the DRI domain's interaction with LP-BER. Understanding the type of APC mutation should better predict 5-FU resistance in CRC than simply characterizing APC status as wild-type or mutant.
Collapse
Affiliation(s)
- Dipon Das
- KIIT School of Biotechnology, KIIT University, Campus-11, Patia, Bhubaneswar, Orissa 751024, India
| | - Ranjan Preet
- KIIT School of Biotechnology, KIIT University, Campus-11, Patia, Bhubaneswar, Orissa 751024, India
| | - Purusottam Mohapatra
- KIIT School of Biotechnology, KIIT University, Campus-11, Patia, Bhubaneswar, Orissa 751024, India
| | - Shakti Ranjan Satapathy
- KIIT School of Biotechnology, KIIT University, Campus-11, Patia, Bhubaneswar, Orissa 751024, India
| | - Sumit Siddharth
- KIIT School of Biotechnology, KIIT University, Campus-11, Patia, Bhubaneswar, Orissa 751024, India
| | - Tigist Tamir
- Department of Drug Discovery and Biomedical Sciences, South Carolina College of Pharmacy, University of South Carolina, Columbia, SC, USA
| | - Vaibhav Jain
- Department of Pharmacoinformatics, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S.A.S. Nagar, Mohali, Punjab 160062, India
| | - Prasad V Bharatam
- Department of Pharmacoinformatics, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S.A.S. Nagar, Mohali, Punjab 160062, India
| | - Michael D Wyatt
- Department of Drug Discovery and Biomedical Sciences, South Carolina College of Pharmacy, University of South Carolina, Columbia, SC, USA
| | - Chanakya Nath Kundu
- KIIT School of Biotechnology, KIIT University, Campus-11, Patia, Bhubaneswar, Orissa 751024, India.
| |
Collapse
|
14
|
Hirmondó R, Szabó JE, Nyíri K, Tarjányi S, Dobrotka P, Tóth J, Vértessy BG. Cross-species inhibition of dUTPase via the Staphylococcal Stl protein perturbs dNTP pool and colony formation in Mycobacterium. DNA Repair (Amst) 2015; 30:21-7. [PMID: 25841100 DOI: 10.1016/j.dnarep.2015.03.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Revised: 03/09/2015] [Accepted: 03/11/2015] [Indexed: 12/11/2022]
Abstract
Proteins responsible for the integrity of the genome are often used targets in drug therapies against various diseases. The inhibitors of these proteins are also important to study the pathways in genome integrity maintenance. A prominent example is Ugi, a well known cross-species inhibitor protein of the enzyme uracil-DNA glycosylase, responsible for uracil excision from DNA. Here, we report that a Staphylococcus pathogenicity island repressor protein called StlSaPIbov1 (Stl) exhibits potent dUTPase inhibition in Mycobacteria. To our knowledge, this is the first indication of a cross-species inhibitor protein for any dUTPase. We demonstrate that the Staphylococcus aureus Stl and the Mycobacterium tuberculosis dUTPase form a stable complex and that in this complex, the enzymatic activity of dUTPase is strongly inhibited. We also found that the expression of the Stl protein in Mycobacterium smegmatis led to highly increased cellular dUTP levels in the mycobacterial cell, this effect being in agreement with its dUTPase inhibitory role. In addition, Stl expression in M. smegmatis drastically decreased colony forming ability, as well, indicating significant perturbation of the phenotype. Therefore, we propose that Stl can be considered to be a cross-species dUTPase inhibitor and may be used as an important reagent in dUTPase inhibition experiments either in vitro/in situ or in vivo.
Collapse
Affiliation(s)
- Rita Hirmondó
- Institute of Enzymology, Research Centre for Natural Sciences (RCNS), Hungarian Academy of Sciences, Budapest, Hungary.
| | - Judit E Szabó
- Institute of Enzymology, Research Centre for Natural Sciences (RCNS), Hungarian Academy of Sciences, Budapest, Hungary; Department of Applied Biotechnology and Food Sciences, Budapest University of Technology and Economics, Budapest, Hungary
| | - Kinga Nyíri
- Institute of Enzymology, Research Centre for Natural Sciences (RCNS), Hungarian Academy of Sciences, Budapest, Hungary; Department of Applied Biotechnology and Food Sciences, Budapest University of Technology and Economics, Budapest, Hungary
| | - Szilvia Tarjányi
- Institute of Enzymology, Research Centre for Natural Sciences (RCNS), Hungarian Academy of Sciences, Budapest, Hungary
| | - Paula Dobrotka
- Institute of Enzymology, Research Centre for Natural Sciences (RCNS), Hungarian Academy of Sciences, Budapest, Hungary; Department of Applied Biotechnology and Food Sciences, Budapest University of Technology and Economics, Budapest, Hungary
| | - Judit Tóth
- Institute of Enzymology, Research Centre for Natural Sciences (RCNS), Hungarian Academy of Sciences, Budapest, Hungary
| | - Beáta G Vértessy
- Institute of Enzymology, Research Centre for Natural Sciences (RCNS), Hungarian Academy of Sciences, Budapest, Hungary; Department of Applied Biotechnology and Food Sciences, Budapest University of Technology and Economics, Budapest, Hungary.
| |
Collapse
|
15
|
Gačić Z, Kolarević S, Sunjog K, Kračun-Kolarević M, Paunović M, Knežević-Vukčević J, Vuković-Gačić B. The impact of in vivo and in vitro exposure to base analogue 5-FU on the level of DNA damage in haemocytes of freshwater mussels Unio pictorum and Unio tumidus. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2014; 191:145-150. [PMID: 24836502 DOI: 10.1016/j.envpol.2014.04.024] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Revised: 04/10/2014] [Accepted: 04/15/2014] [Indexed: 06/03/2023]
Abstract
The impact of in vivo and in vitro exposure to anticancer drug 5-Fluorouracil (5-FU) on the level of DNA damage was evaluated using comet assay on haemocytes of freshwater mussels Unio pictorum and Unio tumidus. For the in vivo experiment, the groups of 5 mussels per concentration were exposed for 72 h to 5-FU (0.04, 0.4, 4, 40 and 100 μM) with 0.4 μM being the lowest concentration to induce significant DNA damage. For the in vitro experiment, the primary cultures of haemocytes were treated with 0.04, 0.4, 4 and 40 μM 5-FU for 22 h and the treatment with CdCl2 was used as a positive control. In contrast to in vivo exposure, 5-FU did not induce significant increase of DNA damage in vitro, possibly because of the absence of haemocytes proliferation in primary cultures.
Collapse
Affiliation(s)
- Zoran Gačić
- University of Belgrade, Institute for Multidisciplinary Research, Kneza Višeslava 1, 11000 Belgrade, Serbia.
| | - Stoimir Kolarević
- University of Belgrade, Faculty of Biology, Chair of Microbiology, Center for Genotoxicology and Ecogenotoxicology, Studentski trg 16, 11000 Belgrade, Serbia.
| | - Karolina Sunjog
- University of Belgrade, Institute for Multidisciplinary Research, Kneza Višeslava 1, 11000 Belgrade, Serbia
| | - Margareta Kračun-Kolarević
- University of Belgrade, Institute for Biological ResearchSiniša Stanković, Despota Stefana 142, 11000 Belgrade, Serbia
| | - Momir Paunović
- University of Belgrade, Institute for Biological ResearchSiniša Stanković, Despota Stefana 142, 11000 Belgrade, Serbia.
| | - Jelena Knežević-Vukčević
- University of Belgrade, Faculty of Biology, Chair of Microbiology, Center for Genotoxicology and Ecogenotoxicology, Studentski trg 16, 11000 Belgrade, Serbia
| | - Branka Vuković-Gačić
- University of Belgrade, Faculty of Biology, Chair of Microbiology, Center for Genotoxicology and Ecogenotoxicology, Studentski trg 16, 11000 Belgrade, Serbia.
| |
Collapse
|
16
|
Weeks LD, Zentner GE, Scacheri PC, Gerson SL. Uracil DNA glycosylase (UNG) loss enhances DNA double strand break formation in human cancer cells exposed to pemetrexed. Cell Death Dis 2014; 5:e1045. [PMID: 24503537 PMCID: PMC3944228 DOI: 10.1038/cddis.2013.477] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2013] [Accepted: 10/10/2013] [Indexed: 11/26/2022]
Abstract
Misincorporation of genomic uracil and formation of DNA double strand breaks (DSBs) are known consequences of exposure to TS inhibitors such as pemetrexed. Uracil DNA glycosylase (UNG) catalyzes the excision of uracil from DNA and initiates DNA base excision repair (BER). To better define the relationship between UNG activity and pemetrexed anticancer activity, we have investigated DNA damage, DSB formation, DSB repair capacity, and replication fork stability in UNG+/+ and UNG−/− cells. We report that despite identical growth rates and DSB repair capacities, UNG−/− cells accumulated significantly greater uracil and DSBs compared with UNG+/+ cells when exposed to pemetrexed. ChIP-seq analysis of γ-H2AX enrichment confirmed fewer DSBs in UNG+/+ cells. Furthermore, DSBs in UNG+/+ and UNG−/− cells occur at distinct genomic loci, supporting differential mechanisms of DSB formation in UNG-competent and UNG-deficient cells. UNG−/− cells also showed increased evidence of replication fork instability (PCNA dispersal) when exposed to pemetrexed. Thymidine co-treatment rescues S-phase arrest in both UNG+/+ and UNG−/− cells treated with IC50-level pemetrexed. However, following pemetrexed exposure, UNG−/− but not UNG+/+ cells are refractory to thymidine rescue, suggesting that deficient uracil excision rather than dTTP depletion is the barrier to cell cycle progression in UNG−/− cells. Based on these findings we propose that pemetrexed-induced uracil misincorporation is genotoxic, contributing to replication fork instability, DSB formation and ultimately cell death.
Collapse
Affiliation(s)
- L D Weeks
- Department of Pathology, Case Western Reserve University School of Medicine, 10900 Euclid Avenue, Cleveland, OH 44106, USA
| | - G E Zentner
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, 10900 Euclid Avenue, Cleveland, OH 44106, USA
| | - P C Scacheri
- 1] Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, 10900 Euclid Avenue, Cleveland, OH 44106, USA [2] Case Comprehensive Cancer Center, Case Western Reserve University, 2103 Cornell Road, Cleveland, OH 44106, USA
| | - S L Gerson
- 1] Department of Pathology, Case Western Reserve University School of Medicine, 10900 Euclid Avenue, Cleveland, OH 44106, USA [2] Case Comprehensive Cancer Center, Case Western Reserve University, 2103 Cornell Road, Cleveland, OH 44106, USA [3] Department of Medicine, Division of Hematology/Oncology, Case Western Reserve University School of Medicine, 2103 Cornell Road, Cleveland, OH 44106, USA
| |
Collapse
|
17
|
Das D, Preet R, Mohapatra P, Satapathy SR, Kundu CN. 1,3-Bis(2-chloroethyl)-1-nitrosourea enhances the inhibitory effect of Resveratrol on 5-fluorouracil sensitive/resistant colon cancer cells. World J Gastroenterol 2013; 19:7374-7388. [PMID: 24259968 PMCID: PMC3831219 DOI: 10.3748/wjg.v19.i42.7374] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2012] [Revised: 03/22/2013] [Accepted: 06/06/2013] [Indexed: 02/06/2023] Open
Abstract
AIM: To study the mechanism of 5-fluorouracil (5-FU) resistance in colon cancer cells and to develop strategies for overcoming such resistance by combination treatment.
METHODS: We established and characterized a 5-FU resistance (5-FU-R) cell line derived from continuous exposure (25 μmol/L) to 5-FU for 20 wk in 5-FU sensitive HCT-116 cells. The proliferation and expression of different representative apoptosis and anti-apoptosis markers in 5-FU sensitive and 5-FU resistance cells were measured by the MTT assay and by Western blotting, respectively, after treatment with Resveratrol (Res) and/or 1,3-Bis(2-chloroethyl)-1-nitrosourea (BCNU). Apoptosis and cell cycle arrest was measured by 4',6'-diamidino-2-phenylindole hydrochloride staining and fluorescence-activated cell sorting analysis, respectively. The extent of DNA damage was measured by the Comet assay. We measured the visible changes in the DNA damage/repair cascade by Western blotting.
RESULTS: The widely used chemotherapeutic agents BCNU and Res decreased the growth of 5-FU sensitive HCT-116 cells in a dose dependent manner. Combined application of BCNU and Res caused more apoptosis in 5-FU sensitive cells in comparison to individual treatment. In addition, the combined application of BCNU and Res caused a significant decrease of major DNA base excision repair components in 5-FU sensitive cells. We established a 5-FU resistance cell line (5-FU-R) from 5-FU-sensitive HCT-116 (mismatch repair deficient) cells that was not resistant to other chemotherapeutic agents (e.g., BCNU, Res) except 5-FU. The 5-FU resistance of 5-FU-R cells was assessed by exposure to increasing concentrations of 5-FU followed by the MTT assay. There was no significant cell death noted in 5-FU-R cells in comparison to 5-FU sensitive cells after 5-FU treatment. This resistant cell line overexpressed anti-apoptotic [e.g., AKT, nuclear factor κB, FLICE-like inhibitory protein), DNA repair (e.g., DNA polymerase beta (POL-β), DNA polymerase eta (POLH), protein Flap endonuclease 1 (FEN1), DNA damage-binding protein 2 (DDB2)] and 5-FU-resistance proteins (thymidylate synthase) but under expressed pro-apoptotic proteins (e.g., DAB2, CK1) in comparison to the parental cells. Increased genotoxicity and apoptosis were observed in resistant cells after combined application of BCNU and Res in comparison to untreated or parental cells. BCNU increased the sensitivity to Res of 5-FU resistant cells compared with parental cells. Fifty percent cell death were noted in parental cells when 18 μmol/L of Res was associated with fixed concentration (20 μmol/L) of BCNU, but a much lower concentration of Res (8 μmol/L) was needed to achieve the same effect in 5-FU resistant cells. Interestingly, increased levels of adenomatous polyposis coli and decreased levels POL-β, POLH, FEN1 and DDB2 were noted after the same combined treatment in resistant cells.
CONCLUSION: BCNU combined with Res exerts a synergistic effect that may prove useful for the treatment of colon cancer and to overcome drug resistance.
Collapse
|
18
|
Eldin P, Chazal N, Fenard D, Bernard E, Guichou JF, Briant L. Vpr expression abolishes the capacity of HIV-1 infected cells to repair uracilated DNA. Nucleic Acids Res 2013; 42:1698-710. [PMID: 24178031 PMCID: PMC3919559 DOI: 10.1093/nar/gkt974] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
The human immunodeficiency virus type 1 (HIV-1) Vpr protein binds to the cellular uracil–DNA glycosylase UNG2 and induces its degradation through the assembly with the DDB1-CUL4 ubiquitin ligase complex. This interaction counteracts the antiviral activity exerted by UNG2 on HIV-1 gene transcription, as previously reported by us. In this work, we show that Vpr expression in the context of HIV-1 infection markedly decreases UNG2 expression in transformed or primary CD4+ T lymphocytes. We demonstrate for the first time that Vpr-UNG2 interaction significantly impairs the uracil excision activity of infected cells. The loss of uracil excision activity coincides with a significant accumulation of uracilated bases in the genome of infected cells without changes in cell division. Although UNG2 expression and uracil–DNA glycosylase activity are recovered after the peak of retroviral replication, the mutagenic effect of transient DNA uracilation in cycling cells should be taken into account. Therefore, the possible consequences of Vpr-mediated temporary depletion of endogenous nuclear UNG2 and subsequent alteration of the genomic integrity of infected cells need to be evaluated in the physiopathogenesis of HIV infection.
Collapse
Affiliation(s)
- Patrick Eldin
- Centre d'étude d'agents Pathogènes et Biotechnologies pour la Santé (CPBS) - UMR 5236-CNRS - Université Montpellier 1 and 2, Montpellier, France and Centre de Biochimie Structurale, INSERM U1054, CNRS UMR5048, Université Montpellier 1 and 2, Montpellier, France
| | | | | | | | | | | |
Collapse
|
19
|
Weeks LD, Fu P, Gerson SL. Uracil-DNA glycosylase expression determines human lung cancer cell sensitivity to pemetrexed. Mol Cancer Ther 2013; 12:2248-60. [PMID: 23873851 DOI: 10.1158/1535-7163.mct-13-0172] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Uracil misincorporation into DNA is a consequence of pemetrexed inhibition of thymidylate synthase. The base excision repair (BER) enzyme uracil-DNA glycosylase (UNG) is the major glycosylase responsible for removal of misincorporated uracil. We previously illustrated hypersensitivity to pemetrexed in UNG(-/-) human colon cancer cells. Here, we examined the relationship between UNG expression and pemetrexed sensitivity in human lung cancer. We observed a spectrum of UNG expression in human lung cancer cells. Higher levels of UNG are associated with pemetrexed resistance and are present in cell lines derived from pemetrexed-resistant histologic subtypes (small cell and squamous cell carcinoma). Acute pemetrexed exposure induces UNG protein and mRNA, consistent with upregulation of uracil-DNA repair machinery. Chronic exposure of H1299 adenocarcinoma cells to increasing pemetrexed concentrations established drug-resistant sublines. Significant induction of UNG protein confirmed upregulation of BER as a feature of acquired pemetrexed resistance. Cotreatment with the BER inhibitor methoxyamine overrides pemetrexed resistance in chronically exposed cells, underscoring the use of BER-directed therapeutics to offset acquired drug resistance. Expression of UNG-directed siRNA and shRNA enhanced sensitivity in A549 and H1975 cells, and in drug-resistant sublines, confirming that UNG upregulation is protective. In human lung cancer, UNG deficiency is associated with pemetrexed-induced retention of uracil in DNA that destabilizes DNA replication forks resulting in DNA double-strand breaks and cell death. Thus, in experimental models, UNG is a critical mediator of pemetrexed sensitivity that warrants evaluation to determine clinical value.
Collapse
Affiliation(s)
- Lachelle D Weeks
- Corresponding Author: Stanton L. Gerson, Case Comprehensive Cancer Center, Wearn 151, 111000 Euclid Avenue, Cleveland, OH 44106.
| | | | | |
Collapse
|
20
|
Nagaria P, Svilar D, Brown AR, Wang XH, Sobol RW, Wyatt MD. SMUG1 but not UNG DNA glycosylase contributes to the cellular response to recovery from 5-fluorouracil induced replication stress. Mutat Res 2012; 743-744:26-32. [PMID: 23253900 DOI: 10.1016/j.mrfmmm.2012.12.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2012] [Revised: 11/19/2012] [Accepted: 12/03/2012] [Indexed: 10/27/2022]
Abstract
5-Fluorouracil (5-FU) is a widely utilized cancer chemotherapeutic that causes DNA damage via two mechanisms. Its active metabolite inhibits thymidylate synthase, which deprives cells of TTP and causes the introduction of uracil in DNA. Also, 5-FU is directly incorporated into DNA. Both uracil and 5-FU in DNA are recognized by uracil-DNA glycosylases (UDGs), which initiate base excision repair. UNG and SMUG1 are the two human UDGs most likely to combat the genomic incorporation of uracil and 5-FU during replication. In this study, we examined the roles of UNG and SMUG1 in the initial cellular response to 5-FU and compared continuous exposure to a 24h exposure followed by incubation in drug-free media, which mimics what occurs clinically. Loss of UNG did not alter cellular sensitivity to 5-FU in two human cell lines, despite its predominant biochemical activity for uracil and 5-FU in DNA. Loss of SMUG1 corresponded with >2-fold increase in sensitivity to 5-FU, but only with a 24h treatment followed by recovery. There was no difference between SMUG1 proficient and depleted cells following continuous exposure. We observed that 5-FU treatment induced an enhanced S-phase arrest and CHK1 activation plus an increase in the formation of strand breaks and alkali-labile sites in all sublines. However, SMUG1-depleted cells showed a prolonged S-phase arrest, a transient increase in DNA double-strand breaks following 5-FU treatment and an altered phosphorylation of CHK1 following removal of drug. Collectively, the results suggest that SMUG1 has a role in the resumption of replication following 5-FU treatment.
Collapse
Affiliation(s)
- Pratik Nagaria
- Department of Drug Discovery and Biomedical Sciences, South Carolina College of Pharmacy, University of South Carolina, United States
| | - David Svilar
- Department of Pharmacology & Chemical Biology, University of Pittsburgh School of Medicine & University of Pittsburgh Cancer Institute, Hillman Cancer Center, United States
| | - Ashley R Brown
- Department of Pharmacology & Chemical Biology, University of Pittsburgh School of Medicine & University of Pittsburgh Cancer Institute, Hillman Cancer Center, United States
| | - Xiao-Hong Wang
- Department of Pharmacology & Chemical Biology, University of Pittsburgh School of Medicine & University of Pittsburgh Cancer Institute, Hillman Cancer Center, United States
| | - Robert W Sobol
- Department of Pharmacology & Chemical Biology, University of Pittsburgh School of Medicine & University of Pittsburgh Cancer Institute, Hillman Cancer Center, United States; Department of Human Genetics, University of Pittsburgh Graduate School of Public Health, Pittsburgh, PA 15213, United States
| | - Michael D Wyatt
- Department of Drug Discovery and Biomedical Sciences, South Carolina College of Pharmacy, University of South Carolina, United States.
| |
Collapse
|
21
|
Uracil-containing DNA in Drosophila: stability, stage-specific accumulation, and developmental involvement. PLoS Genet 2012; 8:e1002738. [PMID: 22685418 PMCID: PMC3369950 DOI: 10.1371/journal.pgen.1002738] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2011] [Accepted: 04/13/2012] [Indexed: 11/26/2022] Open
Abstract
Base-excision repair and control of nucleotide pools safe-guard against permanent uracil accumulation in DNA relying on two key enzymes: uracil–DNA glycosylase and dUTPase. Lack of the major uracil–DNA glycosylase UNG gene from the fruit fly genome and dUTPase from fruit fly larvae prompted the hypotheses that i) uracil may accumulate in Drosophila genomic DNA where it may be well tolerated, and ii) this accumulation may affect development. Here we show that i) Drosophila melanogaster tolerates high levels of uracil in DNA; ii) such DNA is correctly interpreted in cell culture and embryo; and iii) under physiological spatio-temporal control, DNA from fruit fly larvae, pupae, and imago contain greatly elevated levels of uracil (200–2,000 uracil/million bases, quantified using a novel real-time PCR–based assay). Uracil is accumulated in genomic DNA of larval tissues during larval development, whereas DNA from imaginal tissues contains much less uracil. Upon pupation and metamorphosis, uracil content in DNA is significantly decreased. We propose that the observed developmental pattern of uracil–DNA is due to the lack of the key repair enzyme UNG from the Drosophila genome together with down-regulation of dUTPase in larval tissues. In agreement, we show that dUTPase silencing increases the uracil content in DNA of imaginal tissues and induces strong lethality at the early pupal stages, indicating that tolerance of highly uracil-substituted DNA is also stage-specific. Silencing of dUTPase perturbs the physiological pattern of uracil–DNA accumulation in Drosophila and leads to a strongly lethal phenotype in early pupal stages. These findings suggest a novel role of uracil-containing DNA in Drosophila development and metamorphosis and present a novel example for developmental effects of dUTPase silencing in multicellular eukaryotes. Importantly, we also show lack of the UNG gene in all available genomes of other Holometabola insects, indicating a potentially general tolerance and developmental role of uracil–DNA in this evolutionary clade. The usual paradigm confines “normal” DNA of living cells to a well-defined restricted chemical space populated with only four bases (adenine, thymine, guanine, and cytosine) and some of their methylated derivatives (e.g. 5′-methyl-cytosine). Uracil is not considered to be a “normal” DNA base, except in several bacteriophages. On the contrary, uracil is generally considered to be an error in DNA. We show that Drosophila cells interpret uracil-substituted DNA as normal DNA, due to lack of two repair enzymes. Importantly, this unusual trait is under developmental control and applies only for animals before pupation. Metamorphosis is drastically perturbed by silencing of dUTPase, responsible for keeping uracil out of DNA. Our results argue that in Drosophila, and perhaps in other Holometabola insects as well, uracil–DNA plays a dedicated physiological role.
Collapse
|
22
|
Yang Z, Waldman AS, Wyatt MD. Expression and regulation of RAD51 mediate cellular responses to chemotherapeutics. Biochem Pharmacol 2011; 83:741-6. [PMID: 22222428 DOI: 10.1016/j.bcp.2011.12.022] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2011] [Revised: 12/14/2011] [Accepted: 12/16/2011] [Indexed: 02/07/2023]
Abstract
There is evidence that RAD51 expression associates with resistance to commonly used chemotherapeutics. Our previous work demonstrated that inhibitors of thymidylate synthase (TS) induced RAD51-dependent homologous recombination (HR), and depleting the RAD51 recombinase sensitized cells to TS inhibitors. In this study, the consequences of RAD51 over-expression were studied. Over-expression of wild-type RAD51 (∼6-fold above endogenous RAD51) conferred resistance to TS inhibitors. In contrast, over-expression of a mutant RAD51 (T309A) that is incapable of being phosphorylated rendered cells more chemosensitive. Moreover, over-expression of the T309A mutant acted in a dominant negative manner over endogenous RAD51 by causing the reduced localization of RAD51 foci following treatment with TS inhibitors. To measure the effect of mutant RAD51 on the cellular response to other DNA damaging chemotherapeutics, the topoisomerase poison etoposide was utilized. Cells over-expressing wild-type RAD51 showed reduced DNA strand breaks, while cells over-expressing the mutant RAD51 showed more than twice as many strand breaks, suggesting that the mutant RAD51 was actively inhibiting strand break resolution. To directly demonstrate an effect on HR, wild-type RAD51 and T309A mutant RAD51 were transiently expressed in HeLa cells that contained an HR reporter construct. HR events provoked by DNA breaks induced by the I-SceI endonuclease increased in cells expressing wild-type RAD51 and decreased in cells expressing the T309A mutant. Collectively, the data suggest that interference with the activation of RAD51-mediated HR represents a potentially useful anticancer target for combination therapies.
Collapse
Affiliation(s)
- Zhengguan Yang
- Department of Pharmaceutical and Biomedical Sciences, South Carolina College of Pharmacy, University of South Carolina, Columbia, SC 29208, United States
| | | | | |
Collapse
|
23
|
Checkpoint signaling, base excision repair, and PARP promote survival of colon cancer cells treated with 5-fluorodeoxyuridine but not 5-fluorouracil. PLoS One 2011; 6:e28862. [PMID: 22194930 PMCID: PMC3240632 DOI: 10.1371/journal.pone.0028862] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2011] [Accepted: 11/16/2011] [Indexed: 12/19/2022] Open
Abstract
The fluoropyrimidines 5-fluorouracil (5-FU) and FdUrd (5-fluorodeoxyuridine; floxuridine) are the backbone of chemotherapy regimens for colon cancer and other tumors. Despite their widespread use, it remains unclear how these agents kill tumor cells. Here, we have analyzed the checkpoint and DNA repair pathways that affect colon tumor responses to 5-FU and FdUrd. These studies demonstrate that both FdUrd and 5-FU activate the ATR and ATM checkpoint signaling pathways, indicating that they cause genotoxic damage. Notably, however, depletion of ATM or ATR does not sensitize colon cancer cells to 5-FU, whereas these checkpoint pathways promote the survival of cells treated with FdUrd, suggesting that FdUrd exerts cytotoxicity by disrupting DNA replication and/or inducing DNA damage, whereas 5-FU does not. We also found that disabling the base excision (BER) repair pathway by depleting XRCC1 or APE1 sensitized colon cancer cells to FdUrd but not 5-FU. Consistent with a role for the BER pathway, we show that small molecule poly(ADP-ribose) polymerase 1/2 (PARP) inhibitors, AZD2281 and ABT-888, remarkably sensitized both mismatch repair (MMR)-proficient and -deficient colon cancer cell lines to FdUrd but not to 5-FU. Taken together, these studies demonstrate that the roles of genotoxin-induced checkpoint signaling and DNA repair differ significantly for these agents and also suggest a novel approach to colon cancer therapy in which FdUrd is combined with a small molecule PARP inhibitor.
Collapse
|
24
|
Wisniewska-Jarosinska M, Sliwinski T, Kasznicki J, Kaczmarczyk D, Krupa R, Bloch K, Drzewoski J, Chojnacki J, Blasiak J, Morawiec-Sztandera A. Cytotoxicity and genotoxicity of capecitabine in head and neck cancer and normal cells. Mol Biol Rep 2011; 38:3679-88. [PMID: 21107724 PMCID: PMC3115142 DOI: 10.1007/s11033-010-0482-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2010] [Accepted: 11/09/2010] [Indexed: 11/29/2022]
Abstract
The interaction between a chemical and a cell may strongly depend on whether this cell is normal or pathological. Side effects of anticancer drugs may sometimes overcome their benefit action, so it is important to investigate their effect in both the target and normal cells. Capecitabine (Xeloda, CAP), a prodrug of 5-fluorouracil, is mainly used in colon cancer, but little is known about its action in head and neck cancer. We compared the cyto- and genotoxicity of CAP in head and neck HTB-43 cells and normal human lymphocytes by comet assay and flow cytometry. CAP at concentration up to 50 μM significantly decreased the viability of the cancer cells, whereas it did not affect normal lymphocytes. The drug did not interact with isolated plasmid DNA, but it damaged DNA in both cancer and normal cells. However, the extent of the damage in the former was much higher than in the latter. CAP induced apoptosis in the cancer cells, but not in normal lymphocytes. Pre-treatment of the cells with the nitrone spin traps α-(4-pyridil-1-oxide)-N-tert-butylnitrone and N-tert-butyl-α-phenylnitrone decreased the extent of CAP induced DNA damage, suggesting that free radicals may be involved in the formation of DNA lesions induced by CAP. The drug evoked an increase in the G0/G1 cell population accompanied by a decrease in the S cell population. CAP may evoke a pronounced cyto- and genotoxic effects in head and neck cancer cells, whereas it may or may not induce such effects in normal cells to far lesser extent.
Collapse
Affiliation(s)
| | - Tomasz Sliwinski
- Department of Molecular Genetics, University of Lodz, Banacha 12/16, 90-237 Lodz, Poland
| | - Jacek Kasznicki
- Department of Clinical Pharmacology, Medical University of Lodz, 95-100 Zgierz, Poland
| | - Dariusz Kaczmarczyk
- Department of Head and Neck Cancer, Medical University of Lodz, 93-509 Lodz, Poland
| | - Renata Krupa
- Department of Molecular Genetics, University of Lodz, Banacha 12/16, 90-237 Lodz, Poland
| | - Karolina Bloch
- Department of Molecular Genetics, University of Lodz, Banacha 12/16, 90-237 Lodz, Poland
| | - Jozef Drzewoski
- Department of Clinical Pharmacology, Medical University of Lodz, 95-100 Zgierz, Poland
| | - Jan Chojnacki
- Department of Gastroenterology and Internal Medicine, Medical University of Lodz, 90-647 Lodz, Poland
| | - Janusz Blasiak
- Department of Molecular Genetics, University of Lodz, Banacha 12/16, 90-237 Lodz, Poland
| | | |
Collapse
|
25
|
Pettersen HS, Visnes T, Vågbø CB, Svaasand EK, Doseth B, Slupphaug G, Kavli B, Krokan HE. UNG-initiated base excision repair is the major repair route for 5-fluorouracil in DNA, but 5-fluorouracil cytotoxicity depends mainly on RNA incorporation. Nucleic Acids Res 2011; 39:8430-44. [PMID: 21745813 PMCID: PMC3201877 DOI: 10.1093/nar/gkr563] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Cytotoxicity of 5-fluorouracil (FU) and 5-fluoro-2′-deoxyuridine (FdUrd) due to DNA fragmentation during DNA repair has been proposed as an alternative to effects from thymidylate synthase (TS) inhibition or RNA incorporation. The goal of the present study was to investigate the relative contribution of the proposed mechanisms for cytotoxicity of 5-fluoropyrimidines. We demonstrate that in human cancer cells, base excision repair (BER) initiated by the uracil–DNA glycosylase UNG is the major route for FU–DNA repair in vitro and in vivo. SMUG1, TDG and MBD4 contributed modestly in vitro and not detectably in vivo. Contribution from mismatch repair was limited to FU:G contexts at best. Surprisingly, knockdown of individual uracil–DNA glycosylases or MSH2 did not affect sensitivity to FU or FdUrd. Inhibitors of common steps of BER or DNA damage signalling affected sensitivity to FdUrd and HmdUrd, but not to FU. In support of predominantly RNA-mediated cytotoxicity, FU-treated cells accumulated ~3000- to 15 000-fold more FU in RNA than in DNA. Moreover, FU-cytotoxicity was partially reversed by ribonucleosides, but not deoxyribonucleosides and FU displayed modest TS-inhibition compared to FdUrd. In conclusion, UNG-initiated BER is the major route for FU–DNA repair, but cytotoxicity of FU is predominantly RNA-mediated, while DNA-mediated effects are limited to FdUrd.
Collapse
Affiliation(s)
- Henrik Sahlin Pettersen
- Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology, N-7489 Trondheim, Norway
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Grogan BC, Parker JB, Guminski AF, Stivers JT. Effect of the thymidylate synthase inhibitors on dUTP and TTP pool levels and the activities of DNA repair glycosylases on uracil and 5-fluorouracil in DNA. Biochemistry 2011; 50:618-27. [PMID: 21222484 DOI: 10.1021/bi102046h] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
5-Fluorouracil (5-FU), 5-fluorodeoxyuridine (5-dUrd), and raltitrixed (RTX) are anticancer agents that target thymidylate synthase (TS), thereby blocking the conversion of dUMP into dTMP. In budding yeast, 5-FU promotes a large increase in the dUMP/dTMP ratio leading to massive polymerase-catalyzed incorporation of uracil (U) into genomic DNA, and to a lesser extent 5-FU, which are both excised by yeast uracil DNA glycosylase (UNG), leading to DNA fragmentation and cell death. In contrast, the toxicity of 5-FU and RTX in human and mouse cell lines does not involve UNG, but, instead, other DNA glycosylases that can excise uracil derivatives. To elucidate the basis for these divergent findings in yeast and human cells, we have investigated how these drugs perturb cellular dUTP and TTP pool levels and the relative abilities of three human DNA glycosylases (hUNG2, hSMUG1, and hTDG) to excise various TS drug-induced lesions in DNA. We found that 5-dUrd only modestly increases the dUTP and dTTP pool levels in asynchronous MEF, HeLa, and HT-29 human cell lines when growth occurs in standard culture media. In contrast, treatment of chicken DT40 B cells with 5-dUrd or RTX resulted in large increases in the dUTP/TTP ratio. Surprisingly, even though UNG is the only DNA glycosylase in DT40 cells that can act on U·A base pairs derived from dUTP incorporation, an isogenic ung(-/-) DT40 cell line showed little change in its sensitivity to RTX as compared to control cells. In vitro kinetic analyses of the purified human enzymes show that hUNG2 is the most powerful catalyst for excision of 5-FU and U regardless of whether it is found in base pairs with A or G or present in single-stranded DNA. Fully consistent with the in vitro activity assays, nuclear extracts isolated from human and chicken cell cultures show that hUNG2 is the overwhelming activity for removal of both U and 5-FU, despite its bystander status with respect to drug toxicity in these cell lines. The diverse outcomes of TS inhibition with respect to nucleotide pool levels, the nature of the resulting DNA lesion, and the DNA repair response are discussed.
Collapse
Affiliation(s)
- Breeana C Grogan
- Department of Pharmacology and Molecular Sciences, The Johns Hopkins University School of Medicine, 725 North Wolfe Street, Baltimore, Maryland 21205-2185, United States
| | | | | | | |
Collapse
|
27
|
Horváth A, Vértessy BG. A one-step method for quantitative determination of uracil in DNA by real-time PCR. Nucleic Acids Res 2010; 38:e196. [PMID: 20864450 PMCID: PMC2995087 DOI: 10.1093/nar/gkq815] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Uracil may occur in DNA due to either cytosine deamination or thymine replacing incorporation. Its quantitative characterization is important in assessing DNA damages in cells with perturbed thymidylate metabolism or within different DNA segments involved in immunoglobulin gene diversification. The archaeal DNA polymerase from Pyrococcus furiosus binds strongly to the deaminated base uracil and stalls on uracil-containing templates. Here, we present a straightforward method for quantitative assessment of uracil in DNA within specific genomic segments. We use wild-type P. furiosus polymerase in parallel with its point mutant version which lacks the uracil-binding specificity on synthetic and genomic DNA samples to quantify the uracil content in a single-step real-time PCR assay. Quantification of the PCR results is based on an approach analogous to template copy number determination in comparing different samples. Data obtained on synthetic uracil-containing templates are verified by direct isotopic measurements. The method is also tested on physiological DNA samples from Escherichia coli and mouse cell lines with perturbed thymidylate biosynthesis. The present PCR-based method is easy to use and measures the uracil content within a genomic segment defined by the primers. Using distinct sets of primers, the method allows the analysis of heterogeneity of uracil distribution within the genome.
Collapse
Affiliation(s)
- András Horváth
- Laboratory of Genome Metabolism and Repair, Department of Applied Biotechnology, Institute of Enzymology, Hungarian Academy of Sciences, Budapest University of Technology and Economics, Budapest, Hungary
| | | |
Collapse
|
28
|
Matuo R, Sousa FG, Escargueil AE, Soares DG, Grivicich I, Saffi J, Larsen AK, Henriques JAP. DNA repair pathways involved in repair of lesions induced by 5-fluorouracil and its active metabolite FdUMP. Biochem Pharmacol 2010; 79:147-53. [DOI: 10.1016/j.bcp.2009.08.016] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2009] [Revised: 08/14/2009] [Accepted: 08/17/2009] [Indexed: 11/28/2022]
|
29
|
Matuo R, Sousa FG, Escargueil AE, Grivicich I, Garcia-Santos D, Chies JAB, Saffi J, Larsen AK, Henriques JAP. 5-Fluorouracil and its active metabolite FdUMP cause DNA damage in human SW620 colon adenocarcinoma cell line. J Appl Toxicol 2009; 29:308-16. [PMID: 19115314 DOI: 10.1002/jat.1411] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
5-Fluorouracil (5-FU) is an antineoplasic drug widely used to treat cancer. Its cytotoxic effect has been principally ascribed to the misincorporation of fluoronucleotides into DNA and RNA during their synthesis, and the inhibition of thymidylate synthase (TS) by FdUMP (one of the 5-FU active metabolites), which leads to nucleotide pool imbalance. In the present study, we compared the ability of 5-FU and FdUMP to induce apoptosis and to influence the cell cycle progression in human colon SW620 adenocarcinoma cells in regards to their genotoxic and clastogenic activities. Our study demonstrates that 5-FU induces SSB, DSB and apoptosis earlier than FdUMP. Interestingly, while both drugs are able to induce apoptosis, their effect on the cell cycle progression differed. Indeed, 5-FU induces an arrest in G1/S while FdUMP causes an arrest in G2/M. Independently of the temporal difference in strand breaks and apoptosis induction, as well as the differential cell cycle modulation, both drugs presented similar clastogenic effects. The different pattern of cell cycle arrest suggests that the two drugs induce different types of primary DNA lesions that could lead to the activation of different checkpoints and recruit different DNA repair pathways.
Collapse
Affiliation(s)
- Renata Matuo
- Departamento de Biofísica/Centro de Biotecnologia Universidade Federal do Rio Grande do Sul, UFRGS Porto Alegre, RS, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Abstract
The anti-metabolite 5-fluorouracil (5-FU) is employed clinically to manage solid tumors including colorectal and breast cancer. Intracellular metabolites of 5-FU can exert cytotoxic effects via inhibition of thymidylate synthetase, or through incorporation into RNA and DNA, events that ultimately activate apoptosis. In this review, we cover the current data implicating DNA repair processes in cellular responsiveness to 5-FU treatment. Evidence points to roles for base excision repair (BER) and mismatch repair (MMR). However, mechanistic details remain unexplained, and other pathways have not been exhaustively interrogated. Homologous recombination is of particular interest, because it resolves unrepaired DNA intermediates not properly dealt with by BER or MMR. Furthermore, crosstalk among DNA repair pathways and S-phase checkpoint signaling has not been examined. Ongoing efforts aim to design approaches and reagents that (i) approximate repair capacity and (ii) mediate strategic regulation of DNA repair in order to improve the efficacy of current anticancer treatments.
Collapse
Affiliation(s)
- M D Wyatt
- Department of Pharmaceutical and Biomedical Sciences, South Carolina College of Pharmacy, University of South Carolina, 715 Sumter Street, Columbia, SC 29208, USA.
| | | |
Collapse
|
31
|
Yang Z, Waldman AS, Wyatt MD. DNA damage and homologous recombination signaling induced by thymidylate deprivation. Biochem Pharmacol 2008; 76:987-96. [PMID: 18773878 DOI: 10.1016/j.bcp.2008.08.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2008] [Revised: 08/05/2008] [Accepted: 08/07/2008] [Indexed: 02/03/2023]
Abstract
DNA damage is accepted as a consequence of thymidylate deprivation induced by chemotherapeutic inhibitors of thymidylate synthase (TS), but the types of damage and signaling responses remain incompletely understood. Thymidylate deprivation increases dUTP and uracil in DNA, which is removed by base excision repair (BER). Because BER requires a synthesis step, strand break intermediates presumably accumulate. Thymidylate deprivation also induces cell cycle arrest during replication. Homologous recombination (HR) is a means of repairing persistent BER intermediates and collapsed replication forks. There are also intimate links between HR and S-phase checkpoint pathways. In this study, the goals were to determine the involvement of HR-associated proteins and DNA damage signaling responses to thymidylate deprivation. When RAD51, which is a central component of HR, was depleted by siRNA cells were sensitized to raltitrexed (RTX), which specifically inhibits TS. To our knowledge, this is the first demonstration in mammalian cells that depletion of RAD51 causes sensitivity to thymidylate deprivation. Activation of DNA damage signaling responses was examined following treatment with RTX. Phosphorylation of replication protein A (RPA2 subunit) and formation of damage-induced foci were strikingly evident following IC(50) doses of RTX. Induction was much more striking following RTX treatment than with hydroxyurea, which is commonly used to inhibit replication. RTX treatment also induced foci of RAD51, gamma-H2AX, phospho-Chk1, and phospho-NBS1, although the extent of co-localization with RPA2 foci varied. Collectively, the results suggest that HR and S-phase checkpoint signaling processes are invoked by thymidylate deprivation and influence cellular resistance to thymidylate deprivation.
Collapse
Affiliation(s)
- Zhengguan Yang
- Department of Pharmaceutical and Biomedical Sciences, South Carolina College of Pharmacy, University of South Carolina, 715 Sumter Street, Columbia, SC 29208, USA
| | | | | |
Collapse
|
32
|
Waldman BC, Wang Y, Kilaru K, Yang Z, Bhasin A, Wyatt MD, Waldman AS. Induction of intrachromosomal homologous recombination in human cells by raltitrexed, an inhibitor of thymidylate synthase. DNA Repair (Amst) 2008; 7:1624-35. [PMID: 18603020 DOI: 10.1016/j.dnarep.2008.06.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2008] [Revised: 06/10/2008] [Accepted: 06/10/2008] [Indexed: 11/18/2022]
Abstract
Thymidylate deprivation brings about "thymineless death" in prokaryotes and eukaryotes. Although the precise mechanism for thymineless death has remained elusive, inhibition of the enzyme thymidylate synthase (TS), which catalyzes the de novo synthesis of TMP, has served for many years as a basis for chemotherapeutic strategies. Numerous studies have identified a variety of cellular responses to thymidylate deprivation, including disruption of DNA replication and induction of DNA breaks. Since stalled or collapsed replication forks and strand breaks are generally viewed as being recombinogenic, it is not surprising that a link has been demonstrated between recombination induction and thymidylate deprivation in bacteria and lower eukaryotes. A similar connection between recombination and TS inhibition has been suggested by studies done in mammalian cells, but the relationship between recombination and TS inhibition in mammalian cells had not been demonstrated rigorously. To gain insight into the mechanism of thymineless death in mammalian cells, in this work we undertook a direct investigation of recombination in human cells treated with raltitrexed (RTX), a folate analog that is a specific inhibitor of TS. Using a model system to study intrachromosomal homologous recombination in cultured fibroblasts, we provide definitive evidence that treatment with RTX can stimulate accurate recombination events in human cells. Gene conversions not associated with crossovers were specifically enhanced several-fold by RTX. Additional experiments demonstrated that recombination events provoked by a double-strand break (DSB) were not impacted by treatment with RTX, nor was error-prone DSB repair via nonhomologous end-joining. Our work provides evidence that thymineless death in human cells is not mediated by corruption of DSB repair processes and suggests that an increase in chromosomal recombination may be an important element of cellular responses leading to thymineless death.
Collapse
|
33
|
Berger SH, Pittman DL, Wyatt MD. Uracil in DNA: consequences for carcinogenesis and chemotherapy. Biochem Pharmacol 2008; 76:697-706. [PMID: 18599024 DOI: 10.1016/j.bcp.2008.05.019] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2008] [Revised: 05/12/2008] [Accepted: 05/20/2008] [Indexed: 10/22/2022]
Abstract
The synthesis of thymidylate (TMP) occupies a convergence of two critical metabolic pathways: folate metabolism and pyrimidine biosynthesis. Thymidylate is formed from deoxyuridylate (dUMP) using N(5),N(10)-methylene tetrahydrofolate. The metabolic relationship between dUMP, TMP, and folate has been the subject of cancer research from prevention to chemotherapy. Thymidylate stress is induced by nutritional deficiency of folic acid, defects in folate metabolism, and by antifolate and fluoropyrimidine chemotherapeutics. Both classes of chemotherapeutics remain mainstay treatments against solid tumors. Because of the close relationship between dUMP and TMP, thymidylate stress is associated with increased incorporation of uracil into DNA. Genomic uracil is removed by uracil DNA glycosylases of base excision repair (BER). Unfortunately, BER is apparently problematic during thymidylate stress. Because BER requires a DNA resynthesis step, elevated dUTP causes reintroduction of genomic uracil. BER strand break intermediates are clastogenic if not repaired. Thus, BER during thymidylate stress appears to cause genome instability, yet might also contribute to the mechanism of action for antifolates and fluoropyrimidines. However, the precise roles of BER and its components during thymidylate stress remain unclear. In particular, links between BER and downstream events remain poorly defined, including damage signaling pathways and homologous recombination (HR). Evidence is growing that HR responds to persistent BER strand break intermediates and DNA damage signaling pathways mediate cross talk between BER and HR. Examination of crosstalk among BER, HR, and damage signaling may shed light on decades of investigation and provide insight for development of novel chemopreventive and chemotherapeutic approaches.
Collapse
Affiliation(s)
- Sondra H Berger
- Department of Pharmaceutical and Biomedical Sciences, South Carolina College of Pharmacy, University of South Carolina, 715 Sumter Street, Columbia, SC 29208, USA.
| | | | | |
Collapse
|