1
|
Liu X, Qian D, Liu H, Abbruzzese JL, Luo S, Walsh KM, Wei Q. Genetic variants of the peroxisome proliferator-activated receptor (PPAR) signaling pathway genes and risk of pancreatic cancer. Mol Carcinog 2020; 59:930-939. [PMID: 32367578 PMCID: PMC7592725 DOI: 10.1002/mc.23208] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 03/22/2020] [Accepted: 04/04/2020] [Indexed: 12/17/2022]
Abstract
Because the peroxisome proliferator-activated receptor (PPAR) signaling pathway is involved in development and progression of pancreatic cancer, we investigated associations between genetic variants of the PPAR pathway genes and pancreatic cancer risk by using three published genome-wide association study datasets including 8477 cases and 6946 controls of European ancestry. Expression quantitative trait loci (eQTL) analysis was also performed for correlations between genotypes of the identified genetic variants and messenger RNA (mRNA) expression levels of their genes by using available databases of the 1000 Genomes, TCGA, and GTEx projects. In the single-locus logistic regression analysis, we identified 1141 out of 17 532 significant single-nucleotide polymorphisms (SNPs) in 112 PPAR pathway genes. Further multivariate logistic regression analysis identified three independent, potentially functional loci (rs12947620 in MED1, rs11079651 in PRKCA, and rs34367566 in PRKCB) for pancreatic cancer risk (odds ratio [OR] = 1.11, 95% confidence interval [CI], [1.06-1.17], P = 5.46 × 10-5 ; OR = 1.10, 95% CI, [1.04-1.15], P = 1.99 × 10-4 ; and OR = 1.09, 95% CI, [1.04-1.14], P = 3.16 × 10-4 , respectively) among 65 SNPs that passed multiple comparison correction by false discovery rate (< 0.2). When risk genotypes of these three SNPs were combined, carriers with 2 to 3 unfavorable genotypes (NUGs) had a higher risk of pancreatic cancer than those with 0 to 1 NUGs. The eQTL analysis showed that rs34367566 A>AG was associated with decreased expression levels of PRKCB mRNA in 373 lymphoblastoid cell lines. Our findings indicate that genetic variants of the PPAR pathway genes, particularly MED1, PRKCA, and PRKCB, may contribute to susceptibility to pancreatic cancer.
Collapse
Affiliation(s)
- Xiaowen Liu
- Department of Gastric Surgery, Fudan University Shanghai Cancer Center, Shanghai 20032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 20032, China
- Duke Cancer Institute, Duke University Medical Center, Durham, NC 27710, USA
| | - Danwen Qian
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 20032, China
- Duke Cancer Institute, Duke University Medical Center, Durham, NC 27710, USA
| | - Hongliang Liu
- Duke Cancer Institute, Duke University Medical Center, Durham, NC 27710, USA
- Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
| | - James L. Abbruzzese
- Duke Cancer Institute, Duke University Medical Center, Durham, NC 27710, USA
- Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
| | - Sheng Luo
- Department of Biostatistics and Bioinformatics, Duke University School of Medicine, Durham, NC 27710, USA
| | - Kyle M. Walsh
- Duke Cancer Institute, Duke University Medical Center, Durham, NC 27710, USA
- Department of Neurosurgery, Duke University School of Medicine, Durham, NC 27710, USA
| | - Qingyi Wei
- Duke Cancer Institute, Duke University Medical Center, Durham, NC 27710, USA
- Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Population Health Sciences, Duke University School of Medicine, Durham, NC 27710, USA
| |
Collapse
|
2
|
Kara H, Chazal N, Bouaziz S. Is Uracil-DNA Glycosylase UNG2 a New Cellular Weapon Against HIV-1? Curr HIV Res 2020; 17:148-160. [PMID: 31433761 DOI: 10.2174/1570162x17666190821154331] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2019] [Revised: 08/01/2019] [Accepted: 08/09/2019] [Indexed: 01/12/2023]
Abstract
Uracil-DNA glycosylase-2 (UNG2) is a DNA repair protein that removes uracil from single and double-stranded DNA through a basic excision repair process. UNG2 is packaged into new virions by interaction with integrase (IN) and is needed during the early stages of the replication cycle. UNG2 appears to play both a positive and negative role during HIV-1 replication; UNG2 improves the fidelity of reverse transcription but the nuclear isoform of UNG2 participates in the degradation of cDNA and the persistence of the cellular genome by repairing its uracil mismatches. In addition, UNG2 is neutralized by Vpr, which redirects it to the proteasome for degradation, suggesting that UNG2 may be a new cellular restriction factor. So far, we have not understood why HIV-1 imports UNG2 via its IN and why it causes degradation of endogenous UNG2 by redirecting it to the proteasome via Vpr. In this review, we propose to discuss the ambiguous role of UNG2 during the HIV-1 replication cycle.
Collapse
Affiliation(s)
- Hesna Kara
- Cibles Therapeutiques et Conception de Medicaments (CiTCoM), CNRS UMR8038, Faculte des Sciences Pharmaceutiques et Biologiques, Universite Paris Descartes, Paris, France
| | - Nathalie Chazal
- Institut de Recherche en Infectiologie de Montpellier (IRIM), CNRS UMR9004, Universite de Montpellier, Montpellier, France
| | - Serge Bouaziz
- Cibles Therapeutiques et Conception de Medicaments (CiTCoM), CNRS UMR8038, Faculte des Sciences Pharmaceutiques et Biologiques, Universite Paris Descartes, Paris, France
| |
Collapse
|
3
|
Cheng Y, He C, Wang M, Ma X, Mo F, Yang S, Han J, Wei X. Targeting epigenetic regulators for cancer therapy: mechanisms and advances in clinical trials. Signal Transduct Target Ther 2019; 4:62. [PMID: 31871779 PMCID: PMC6915746 DOI: 10.1038/s41392-019-0095-0] [Citation(s) in RCA: 590] [Impact Index Per Article: 118.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Revised: 10/16/2019] [Accepted: 10/24/2019] [Indexed: 02/05/2023] Open
Abstract
Epigenetic alternations concern heritable yet reversible changes in histone or DNA modifications that regulate gene activity beyond the underlying sequence. Epigenetic dysregulation is often linked to human disease, notably cancer. With the development of various drugs targeting epigenetic regulators, epigenetic-targeted therapy has been applied in the treatment of hematological malignancies and has exhibited viable therapeutic potential for solid tumors in preclinical and clinical trials. In this review, we summarize the aberrant functions of enzymes in DNA methylation, histone acetylation and histone methylation during tumor progression and highlight the development of inhibitors of or drugs targeted at epigenetic enzymes.
Collapse
Affiliation(s)
- Yuan Cheng
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Cai He
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Manni Wang
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Xuelei Ma
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Fei Mo
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Shengyong Yang
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Junhong Han
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Xiawei Wei
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
4
|
Suzuki S, Iwaizumi M, Yamada H, Sugiyama T, Hamaya Y, Furuta T, Kanaoka S, Sugimura H, Miyajima H, Osawa S, Carethers JM, Sugimoto K. MBD4 frameshift mutation caused by DNA mismatch repair deficiency enhances cytotoxicity by trifluridine, an active antitumor agent of TAS-102, in colorectal cancer cells. Oncotarget 2017; 9:11477-11488. [PMID: 29545913 PMCID: PMC5837757 DOI: 10.18632/oncotarget.22484] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 10/02/2017] [Indexed: 01/12/2023] Open
Abstract
Backgrounds Trifluridine is an active antitumor component of TAS-102 that resembles 5-fluorouracil. Although patients with advanced colorectal cancer (CRC) exhibiting a mismatch repair (MMR) deficiency reportedly do not benefit from 5-fluorouracil-based chemotherapy and we previously reported that truncated methyl-CpG binding domain protein 4 (MBD4) enhances 5-fluorouracil cytotoxicity in MMR-deficient CRC cells, little is known regarding the effect of MMR deficiency on trifluridine cytotoxicity in CRC. Aim We investigated whether trifluridine induces cytotoxicity in a DNA MMR-dependent manner and evaluated how truncated MBD4 alters trifluridine cytotoxicity. Methods We utilized the human CRC cell lines HCT116 (hMLH1-deficient cells) and HCT116+ch3 (hMLH1-restored cells) and compared their sensitivities to trifluridine. And we established 5-fluorouracil-refractory hMLH1-deficient cells and analyzed trifluridine cytotoxicity. Finally, we established truncated MBD4 overexpressed CRC cell lines, and compared trifluridine sensitivity.
Collapse
Affiliation(s)
- Satoshi Suzuki
- First Department of Medicine, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Moriya Iwaizumi
- First Department of Medicine, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Hidetaka Yamada
- Department of Tumor Pathology, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Tomohiro Sugiyama
- First Department of Medicine, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Yasushi Hamaya
- First Department of Medicine, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Takahisa Furuta
- Center for Clinical Research, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Shigeru Kanaoka
- Department of Gastroenterology, Hamamatsu Medical Center, Hamamatsu, Japan
| | - Haruhiko Sugimura
- Department of Tumor Pathology, Hamamatsu University School of Medicine, Hamamatsu, Japan.,International Mass Imaging Center, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Hiroaki Miyajima
- First Department of Medicine, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Satoshi Osawa
- Department of Endoscopic and Photodynamic Medicine, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - John M Carethers
- Division of Gastroenterology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Ken Sugimoto
- First Department of Medicine, Hamamatsu University School of Medicine, Hamamatsu, Japan
| |
Collapse
|
5
|
Gigek CO, Chen ES, Smith MAC. Methyl-CpG-Binding Protein (MBD) Family: Epigenomic Read-Outs Functions and Roles in Tumorigenesis and Psychiatric Diseases. J Cell Biochem 2016. [PMID: 26205787 DOI: 10.1002/jcb.25281] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Epigenetics is the study of the heritable changes on gene expression that are responsible for the regulation of development and that have an impact on several diseases. However, it is of equal importance to understand how epigenetic machinery works. DNA methylation is the most studied epigenetic mark and is generally associated with the regulation of gene expression through the repression of promoter activity and by affecting genome stability. Therefore, the ability of the cell to interpret correct methylation marks and/or the correct interpretation of methylation plays a role in many diseases. The major family of proteins that bind methylated DNA is the methyl-CpG binding domain proteins, or the MBDs. Here, we discuss the structure that makes these proteins a family, the main functions and interactions of all protein family members and their role in human disease such as psychiatric disorders and cancer.
Collapse
Affiliation(s)
- Carolina Oliveira Gigek
- Disciplina de Genética, Departamento de Morfologia e Genética, Universidade Federal de São Paulo (UNIFESP), Rua Botucatu, 740, Edifício Leitão da Cunha, 1, ° andar, CEP 04023-900, São Paulo, SP, Brazil.,Disciplina de Gastroenterologia Cirúrgica, Departamento de Cirurgia, Universidade Federal de São Paulo (UNIFESP), R. Napoleão de Barros, 715, 2º andar, CEP:04024-002, São Paulo, Brazil
| | - Elizabeth Suchi Chen
- Disciplina de Genética, Departamento de Morfologia e Genética, Universidade Federal de São Paulo (UNIFESP), Rua Botucatu, 740, Edifício Leitão da Cunha, 1, ° andar, CEP 04023-900, São Paulo, SP, Brazil
| | - Marilia Arruda Cardoso Smith
- Disciplina de Genética, Departamento de Morfologia e Genética, Universidade Federal de São Paulo (UNIFESP), Rua Botucatu, 740, Edifício Leitão da Cunha, 1, ° andar, CEP 04023-900, São Paulo, SP, Brazil
| |
Collapse
|
6
|
Involvement of MBD4 inactivation in mismatch repair-deficient tumorigenesis. Oncotarget 2016; 6:42892-904. [PMID: 26503472 PMCID: PMC4767479 DOI: 10.18632/oncotarget.5740] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Accepted: 09/18/2015] [Indexed: 12/14/2022] Open
Abstract
The DNA glycosylase gene MBD4 safeguards genomic stability at CpG sites and is frequently mutated at coding poly-A tracks in mismatch repair (MMR)-defective colorectal tumors (CRC). Mbd4 biallelic inactivation in mice provided conflicting results as to its role in tumorigenesis. Thus, it is unclear whether MBD4 alterations are only secondary to MMR defects without functional consequences or can contribute to the mutator phenotype. We investigated MBD4 variants in a large series of hereditary/familial and sporadic CRC cases. Whereas MBD4 frameshifts were only detected in tumors, missense variants were found in both normal and tumor DNA. In CRC with double-MBD4/MMR and single-MBD4 variants, transition mutation frequency was increased, indicating that MBD4 defects may affect the mutational landscape independently of MMR defect. Mbd4-deficient mice showed reduced survival when combined with Mlh1−/− genotype. Taken together, these data suggest that MBD4 inactivation may contribute to tumorigenesis, acting as a modifier of MMR-deficient cancer phenotype.
Collapse
|
7
|
Suzuki S, Iwaizumi M, Tseng-Rogenski S, Hamaya Y, Miyajima H, Kanaoka S, Sugimoto K, Carethers JM. Production of truncated MBD4 protein by frameshift mutation in DNA mismatch repair-deficient cells enhances 5-fluorouracil sensitivity that is independent of hMLH1 status. Cancer Biol Ther 2016; 17:760-8. [PMID: 27115207 DOI: 10.1080/15384047.2016.1178430] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Methyl-CpG binding domain protein 4 (MBD4) is a DNA glycosylase that can remove 5-fluorodeoxyuracil from DNA as well as repair T:G or U:G mismatches. MBD4 is a target for frameshift mutation with DNA mismatch repair (MMR) deficiency, creating a truncated MBD4 protein (TruMBD4) that lacks its glycosylase domain. Here we show that TruMBD4 plays an important role for enhancing 5-fluorouracil (5FU) sensitivity in MMR-deficient colorectal cancer cells. We found biochemically that TruMBD4 binds to 5FU incorporated into DNA with higher affinity than MBD4. TruMBD4 reduced the 5FU affinity of the MMR recognition complexes that determined 5FU sensitivity by previous reports, suggesting other mechanisms might be operative to trigger cytotoxicity. To analyze overall 5FU sensitivity with TruMBD4, we established TruMBD4 overexpression in hMLH1-proficient or -deficient colorectal cancer cells followed by treatment with 5FU. 5FU-treated TruMBD4 cells demonstrated diminished growth characteristics compared to controls, independently of hMLH1 status. Flow cytometry revealed more 5FU-treated TruMBD4 cells in S phase than controls. We conclude that patients with MMR-deficient cancers, which show characteristic resistance to 5FU therapy, may be increased for 5FU sensitivity via secondary frameshift mutation of the base excision repair gene MBD4.
Collapse
Affiliation(s)
- Satoshi Suzuki
- a First Department of Medicine , Hamamatsu University School of Medicine , Hamamatsu , Shizuoka , Japan
| | - Moriya Iwaizumi
- a First Department of Medicine , Hamamatsu University School of Medicine , Hamamatsu , Shizuoka , Japan.,b Division of Gastroenterology, Department of Internal Medicine and Department of Human Genetics, University of Michigan , Ann Arbor , MA , USA
| | - Stephanie Tseng-Rogenski
- b Division of Gastroenterology, Department of Internal Medicine and Department of Human Genetics, University of Michigan , Ann Arbor , MA , USA
| | - Yasushi Hamaya
- a First Department of Medicine , Hamamatsu University School of Medicine , Hamamatsu , Shizuoka , Japan.,b Division of Gastroenterology, Department of Internal Medicine and Department of Human Genetics, University of Michigan , Ann Arbor , MA , USA
| | - Hiroaki Miyajima
- a First Department of Medicine , Hamamatsu University School of Medicine , Hamamatsu , Shizuoka , Japan
| | - Shigeru Kanaoka
- c Department of Gastroenterology , Hamamatsu Medical Center , Shizuoka , Japan
| | - Ken Sugimoto
- a First Department of Medicine , Hamamatsu University School of Medicine , Hamamatsu , Shizuoka , Japan
| | - John M Carethers
- b Division of Gastroenterology, Department of Internal Medicine and Department of Human Genetics, University of Michigan , Ann Arbor , MA , USA
| |
Collapse
|
8
|
Abdel-Rahman WM. Genomic instability and carcinogenesis: an update. Curr Genomics 2011; 9:535-41. [PMID: 19516960 PMCID: PMC2694557 DOI: 10.2174/138920208786847926] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2008] [Revised: 08/12/2008] [Accepted: 08/14/2008] [Indexed: 12/15/2022] Open
Abstract
Cancers arise as a result of stepwise accumulation of mutations which may occur at the nucleotide level and/or the gross chromosomal level. Many cancers particularly those of the colon display a form of genomic instability which may facilitate and speed up tumor initiation and development. In few instances, a "mutator mutation" has been clearly implicated in driving the accumulation of other carcinogenic mutations. For example, the post-replicative DNA mismatch repair deficiency results in dramatic increase in insertion/deletion mutations giving rise to the microsatellite instability (MSI) phenotype and may predispose to a spectrum of tumours when it occurs in the germline. Although many sporadic cancers show multiple mutations suggesting unstable genome, the role of this instability in carcinogenesis, as opposed to the power of natural selection, has been a matter of controversy. This review gives an update of the latest data on these issues particularly recent data from genome-wide, high throughput techniques as well as mathematical modelling. Throughout this review, reference will be made to the relevance of genomic instability to the pathogenesis of colorectal carcinoma particularly its hereditary and familial subsets.
Collapse
Affiliation(s)
- Wael M Abdel-Rahman
- Department of Medical Laboratory Technology, College of Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
| |
Collapse
|
9
|
Meng HX, Hackett JA, Nestor C, Dunican DS, Madej M, Reddington JP, Pennings S, Harrison DJ, Meehan RR. Apoptosis and DNA methylation. Cancers (Basel) 2011; 3:1798-820. [PMID: 24212783 PMCID: PMC3757391 DOI: 10.3390/cancers3021798] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2011] [Revised: 03/11/2011] [Accepted: 03/11/2011] [Indexed: 01/05/2023] Open
Abstract
Epigenetic mechanisms assist in maintaining gene expression patterns and cellular properties in developing and adult tissues. The molecular pathology of disease states frequently includes perturbation of DNA and histone methylation patterns, which can activate apoptotic pathways associated with maintenance of genome integrity. This perspective focuses on the pathways linking DNA methyltransferases and methyl-CpG binding proteins to apoptosis, and includes new bioinformatic analyses to characterize the evolutionary origin of two G/T mismatch-specific thymine DNA glycosylases, MBD4 and TDG.
Collapse
Affiliation(s)
- Huan X. Meng
- MRC Human Genetics Unit, IGMM, Western General Hospital, Edinburgh EH4 2XU, UK; E-Mails: (H.X.M.); (J.A.H.); (C.N.); (D.S.D.); (M.M.); (J.P.R.)
| | - James A. Hackett
- MRC Human Genetics Unit, IGMM, Western General Hospital, Edinburgh EH4 2XU, UK; E-Mails: (H.X.M.); (J.A.H.); (C.N.); (D.S.D.); (M.M.); (J.P.R.)
| | - Colm Nestor
- MRC Human Genetics Unit, IGMM, Western General Hospital, Edinburgh EH4 2XU, UK; E-Mails: (H.X.M.); (J.A.H.); (C.N.); (D.S.D.); (M.M.); (J.P.R.)
- Breakthrough Research Unit, University of Edinburgh, Western General Hospital, Edinburgh EH4 2XU, UK; E-Mail: (D.J.H.)
| | - Donncha S. Dunican
- MRC Human Genetics Unit, IGMM, Western General Hospital, Edinburgh EH4 2XU, UK; E-Mails: (H.X.M.); (J.A.H.); (C.N.); (D.S.D.); (M.M.); (J.P.R.)
| | - Monika Madej
- MRC Human Genetics Unit, IGMM, Western General Hospital, Edinburgh EH4 2XU, UK; E-Mails: (H.X.M.); (J.A.H.); (C.N.); (D.S.D.); (M.M.); (J.P.R.)
| | - James P. Reddington
- MRC Human Genetics Unit, IGMM, Western General Hospital, Edinburgh EH4 2XU, UK; E-Mails: (H.X.M.); (J.A.H.); (C.N.); (D.S.D.); (M.M.); (J.P.R.)
| | - Sari Pennings
- Queen's Medical Research Institute, University of Edinburgh, Edinburgh EH16 4TJ, UK; E-Mail: (S.P.)
| | - David J. Harrison
- Breakthrough Research Unit, University of Edinburgh, Western General Hospital, Edinburgh EH4 2XU, UK; E-Mail: (D.J.H.)
| | - Richard R. Meehan
- MRC Human Genetics Unit, IGMM, Western General Hospital, Edinburgh EH4 2XU, UK; E-Mails: (H.X.M.); (J.A.H.); (C.N.); (D.S.D.); (M.M.); (J.P.R.)
- Breakthrough Research Unit, University of Edinburgh, Western General Hospital, Edinburgh EH4 2XU, UK; E-Mail: (D.J.H.)
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +44 (0)-332-2471; Fax: +44 (0) 131 467 8456
| |
Collapse
|
10
|
Liu XQ, Rajput A, Geng L, Ongchin M, Chaudhuri A, Wang J. Restoration of transforming growth factor-beta receptor II expression in colon cancer cells with microsatellite instability increases metastatic potential in vivo. J Biol Chem 2011; 286:16082-90. [PMID: 21454688 DOI: 10.1074/jbc.m111.221697] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Microsatellite instability (MSI), which occurs in 15% of colorectal cancer, has been shown to have a lower incidence of metastasis and better patient survival rates compared with microsatellite stable colorectal cancer. However, a mechanistic understanding of the basis for this difference is very limited. Here, we show that restoration of TGFβ signaling by re-expression of TGFβ receptor II in MSI colon cancer cells increased PI3K/AKT activation, conferred resistance to growth factor deprivation stress-induced apoptosis, and promoted cell motility in vitro. Treatment with a potent PI3K inhibitor (LY294002) blocked the prosurvival and promotility effects of TGFβ, indicating that TGFβ-mediated promotion of cell survival and motility is dependent upon activation of the PI3K/AKT pathway. Analysis of apoptotic effectors that are affected by TGFβ signaling indicated that Bim is an effector of TGFβ-mediated survival. In addition, TGFβ-induced down-regulation of E-cadherin contributed to the prosurvival effect of TGFβ, and restoration of TGFβ signaling in MSI colon cancer cells increased liver metastasis in an orthotopic model in vivo. Taken together, our results demonstrate that restoration of TGFβ signaling promotes cell survival, motility, and metastatic progression in MSI colon cancer cells and indicate that TGFβ receptor II mutations contribute to the favorable outcomes in colon cancer patients with MSI.
Collapse
Affiliation(s)
- Xiao-Qiong Liu
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska 68198-5950, USA
| | | | | | | | | | | |
Collapse
|
11
|
Visnes T, Doseth B, Pettersen HS, Hagen L, Sousa MML, Akbari M, Otterlei M, Kavli B, Slupphaug G, Krokan HE. Uracil in DNA and its processing by different DNA glycosylases. Philos Trans R Soc Lond B Biol Sci 2009; 364:563-8. [PMID: 19008197 DOI: 10.1098/rstb.2008.0186] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Uracil in DNA may result from incorporation of dUMP during replication and from spontaneous or enzymatic deamination of cytosine, resulting in U:A pairs or U:G mismatches, respectively. Uracil generated by activation-induced cytosine deaminase (AID) in B cells is a normal intermediate in adaptive immunity. Five mammalian uracil-DNA glycosylases have been identified; these are mitochondrial UNG1 and nuclear UNG2, both encoded by the UNG gene, and the nuclear proteins SMUG1, TDG and MBD4. Nuclear UNG2 is apparently the sole contributor to the post-replicative repair of U:A lesions and to the removal of uracil from U:G contexts in immunoglobulin genes as part of somatic hypermutation and class-switch recombination processes in adaptive immunity. All uracil-DNA glycosylases apparently contribute to U:G repair in other cells, but they are likely to have different relative significance in proliferating and non-proliferating cells, and in different phases of the cell cycle. There are also some indications that there may be species differences in the function of the uracil-DNA glycosylases.
Collapse
Affiliation(s)
- Torkild Visnes
- Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology, 7489 Trondheim, Norway
| | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Viana-Pereira M, Almeida I, Sousa S, Mahler-Araújo B, Seruca R, Pimentel J, Reis RM. Analysis of microsatellite instability in medulloblastoma. Neuro Oncol 2009; 11:458-67. [PMID: 19179424 DOI: 10.1215/15228517-2008-115] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Medulloblastoma is the most common malignant brain tumor in children. The presence of microsatellite instability (MSI) in brain tumors, particularly medulloblastomas, has not been properly addressed. The aim of the present study was to evaluate the role of MSI in medulloblastoma carcinogenesis. MSI status was determined in 36 patients using a pentaplex PCR of quasimonomorphic markers (NR27, NR21, NR24, BAT25, and BAT26). Methylation status of mismatch repair (MMR) genes was achieved by methylation-specific multiplex ligation-dependent probe amplification (MLPA). In addition, MutS homolog 6 (MSH6) expression was determined by immunohistochemistry. Mutations of 10 MSI target genes (TCF4, XRCC2, MBD4, MRE11, ATR, MSH3, TGFBR2, RAD50, MSH6, and BAX) were studied by pentaplex PCR followed by analysis with GeneScan 3.7 software. Mutation analysis of hotspot regions of beta-catenin (CTNNB1) and BRAF (v-raf murine sarcoma viral oncogene homolog B1) oncogenes was performed by PCR single-strand conformation polymorphism analysis followed by direct sequencing. Among the 36 tumors, we found four (11%) cases with instability, one with high MSI and three with low MSI. Methylation analysis of MMR genes in cases presenting shifts on the MSI markers revealed mild hypermethylation of MSH6 in 75% of cases, yet MSH6 was expressed in all the tumors. The MSI target genes MBD4 (methyl-CpG binding domain protein 4) and MRE11 (meiotic recombination 11 homolog A) were mutated in two different tumors. No CTNNB1 or BRAF mutations were found. This study is the most comprehensive analysis of MSI in medulloblastomas to date. We observed the presence of MSI together with mutations of MSI target genes in a small fraction of cases, suggesting a new genetic pathway for a role in medulloblastoma development.
Collapse
Affiliation(s)
- Marta Viana-Pereira
- Life and Health Sciences Research Institute, School of Health Sciences, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | | | | | | | | | | | | |
Collapse
|
13
|
Marlowe J, Teo SS, Chibout SD, Pognan F, Moggs J. Mapping the epigenome--impact for toxicology. EXS 2009; 99:259-88. [PMID: 19157065 DOI: 10.1007/978-3-7643-8336-7_10] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Recent advances in technological approaches for mapping and characterizing the epigenome are generating a wealth of new opportunities for exploring the relationship between epigenetic modifications, human disease and the therapeutic potential of pharmaceutical drugs. While the best examples for xenobiotic-induced epigenetic perturbations come from the field of non-genotoxic carcinogenesis, there is growing evidence for the relevance of epigenetic mechanisms associated with a wide range of disease areas and drug targets. The application of epigenomic profiling technologies to drug safety sciences has great potential for providing novel insights into the molecular basis of long-lasting cellular perturbations including increased susceptibility to disease and/or toxicity, memory of prior immune stimulation and/or drug exposure, and transgenerational effects.
Collapse
Affiliation(s)
- Jennifer Marlowe
- Novartis Pharma AG, Investigative Toxicology, Preclinical Safety, Basel, Switzerland.
| | | | | | | | | |
Collapse
|