1
|
Wu HH, Leng S, Sergi C, Leng R. How MicroRNAs Command the Battle against Cancer. Int J Mol Sci 2024; 25:5865. [PMID: 38892054 PMCID: PMC11172831 DOI: 10.3390/ijms25115865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 05/23/2024] [Accepted: 05/26/2024] [Indexed: 06/21/2024] Open
Abstract
MicroRNAs (miRNAs) are small RNA molecules that regulate more than 30% of genes in humans. Recent studies have revealed that miRNAs play a crucial role in tumorigenesis. Large sets of miRNAs in human tumors are under-expressed compared to normal tissues. Furthermore, experiments have shown that interference with miRNA processing enhances tumorigenesis. Multiple studies have documented the causal role of miRNAs in cancer, and miRNA-based anticancer therapies are currently being developed. This review primarily focuses on two key points: (1) miRNAs and their role in human cancer and (2) the regulation of tumor suppressors by miRNAs. The review discusses (a) the regulation of the tumor suppressor p53 by miRNA, (b) the critical role of the miR-144/451 cluster in regulating the Itch-p63-Ago2 pathway, and (c) the regulation of PTEN by miRNAs. Future research and the perspectives of miRNA in cancer are also discussed. Understanding these pathways will open avenues for therapeutic interventions targeting miRNA regulation.
Collapse
Affiliation(s)
- Hong Helena Wu
- 370 Heritage Medical Research Center, Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, AB T6G 2S2, Canada;
| | - Sarah Leng
- Department of Laboratory Medicine and Pathology (5B4. 09), University of Alberta, Edmonton, AB T6G 2B7, Canada (C.S.)
| | - Consolato Sergi
- Department of Laboratory Medicine and Pathology (5B4. 09), University of Alberta, Edmonton, AB T6G 2B7, Canada (C.S.)
- Division of Anatomical Pathology, Children’s Hospital of Eastern Ontario (CHEO), University of Ottawa, 401 Smyth Road, Ottawa, ON K1H 8L1, Canada
| | - Roger Leng
- 370 Heritage Medical Research Center, Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, AB T6G 2S2, Canada;
| |
Collapse
|
2
|
Murakami K, Matsunaga T, Matsuzaki T, Naruke Y, Miyauchi S, Kobayashi S, Yoneyama S, Sakai Y, Ichijo T, Hirata TI, Kimura A, Chiba Y, Matsuda KI, Yamada S, Hikono H. Serum bta-miRNA-375 as a potential biomarker for the early diagnosis of enzootic bovine leukosis. PLoS One 2024; 19:e0302868. [PMID: 38723001 PMCID: PMC11081263 DOI: 10.1371/journal.pone.0302868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 04/15/2024] [Indexed: 05/13/2024] Open
Abstract
To identify a biomarker for the early diagnosis of enzootic bovine leukosis (EBL) caused by bovine leukemia virus (BLV), we investigated the expression of a microRNA, bta-miR-375, in cattle serum. Using quantitative reverse-transcriptase PCR analysis, we measured bta-miR-375 levels in 27 samples from cattle with EBL (EBL cattle), 45 samples from animals infected with BLV but showing no clinical signs (NS cattle), and 30 samples from cattle uninfected with BLV (BLV negative cattle). In this study, we also compared the kinetics of bta-miR-375 with those of the conventional biomarkers of proviral load (PVL), lactate dehydrogenase (LDH), and thymidine kinase (TK) from the no-clinical-sign phase until EBL onset in three BLV-infected Japanese black (JB) cattle. Bta-miR-375 expression was higher in NS cattle than in BLV negative cattle (P < 0.05) and greater in EBL cattle than in BLV negative and NS cattle (P < 0.0001 for both comparisons). Receiver operating characteristic curves demonstrated that bta-miR-375 levels distinguished EBL cattle from NS cattle with high sensitivity and specificity. In NS cattle, bta-miR-375 expression was increased as early as at 2 months before EBL onset-earlier than the expression of PVL, TK, or LDH isoenzymes 2 and 3. These results suggest that serum miR-375 is a promising biomarker for the early diagnosis of EBL.
Collapse
Affiliation(s)
- Kenji Murakami
- Graduate School of Veterinary Sciences, Iwate University, Morioka, Iwate, Japan
- Faculty of Agriculture, Farm Animal Clinical Skill and Disease Control Center, Iwate University, Morioka, Iwate, Japan
| | - Towa Matsunaga
- National Veterinary Assay Laboratory, Ministry of Agriculture, Forestry and Fisheries, Kokubunji, Tokyo, Japan
| | - Takashi Matsuzaki
- Graduate School of Veterinary Sciences, Iwate University, Morioka, Iwate, Japan
| | - Yuta Naruke
- Food Safety and Consumer Affairs Bureau, Ministry of Agriculture, Forestry and Fisheries, Chiyoda, Tokyo, Japan
| | - Sonoko Miyauchi
- Animal Diagnostic Laboratory, Ehime Prefecture, Toon, Ehime, Japan
| | - Sota Kobayashi
- National Institute of Animal Health, Tsukuba, Ibaraki, Japan
| | - Syuji Yoneyama
- Graduate School of Veterinary Sciences, Iwate University, Morioka, Iwate, Japan
| | - Yusuke Sakai
- Graduate School of Veterinary Sciences, Iwate University, Morioka, Iwate, Japan
| | - Toshihiro Ichijo
- Graduate School of Veterinary Sciences, Iwate University, Morioka, Iwate, Japan
- Faculty of Agriculture, Farm Animal Clinical Skill and Disease Control Center, Iwate University, Morioka, Iwate, Japan
| | - Toh-ichi Hirata
- Faculty of Agriculture, Field Science Center, Iwate University, Shizukuishi, Iwate, Japan
| | - Atsushi Kimura
- Faculty of Agriculture, Farm Animal Clinical Skill and Disease Control Center, Iwate University, Morioka, Iwate, Japan
| | - Yuzumi Chiba
- Iwate Central Livestock Hygiene Center, Morioka, Iwate, Japan
| | - Kei-ich Matsuda
- Livestock Medicine Training Center, Miyagi Prefecture Agricultural Mutual Aid Association, Oohira, Miyagi, Japan
| | - Shinji Yamada
- Graduate School of Veterinary Sciences, Iwate University, Morioka, Iwate, Japan
- Faculty of Agriculture, Farm Animal Clinical Skill and Disease Control Center, Iwate University, Morioka, Iwate, Japan
| | - Hirokazu Hikono
- Faculty of Life and Environmental Sciences, Department of Animal Sciences, Teikyo University of Science, Adachi, Tokyo, Japan
| |
Collapse
|
3
|
Xu K, Guo H, Xia A, Wang Z, Wang S, Wang Q. Non-coding RNAs in radiotherapy resistance: Roles and therapeutic implications in gastrointestinal cancer. Biomed Pharmacother 2023; 161:114485. [PMID: 36917887 DOI: 10.1016/j.biopha.2023.114485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 02/19/2023] [Accepted: 03/07/2023] [Indexed: 03/14/2023] Open
Abstract
Radiotherapy has become an indispensable and conventional means for patients with advanced solid tumors including gastrointestinal cancer. However, innate or acquired radiotherapy resistance remains a significant challenge and greatly limits the therapeutic effect, which results in cancer relapse and poor prognosis. Therefore, it is an urgent need to identify novel biomarkers and therapeutic targets for clarify the biological characteristics and mechanism of radiotherapy resistance. Recently, lots of studies have revealed that non-coding RNAs (ncRNAs) are the potential indicators and regulators of radiotherapy resistance via the mediation of various targets/pathways in different cancers. These findings may serve as a potential therapeutic strategy to overcome radiotherapy resistance. In this review, we will shed light on the recent findings regarding the functions and regulatory mechanisms of ncRNAs following radiotherapy, and comprehensively discuss their potential as biomarkers and therapeutic targets in radiotherapy resistance of gastrointestinal cancer.
Collapse
Affiliation(s)
- Kaiyue Xu
- Department of Hepatobiliary Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210000, China; Department of Radiation Oncology, Suzhou Municipal Hospital, The Affiliated Suzhou Hospital of Nanjing University Medical School, Suzhou 215000, China
| | - Huimin Guo
- Department of Gastroenterology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210000, China
| | - Anliang Xia
- Department of Hepatobiliary Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210000, China
| | - Zhangding Wang
- Department of Gastroenterology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210000, China.
| | - Shouyu Wang
- Department of Hepatobiliary Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210000, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University Medical School, Nanjing 210093, China.
| | - Qiang Wang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei 230000, China; Medical Transformation Research Institute, The First Affiliated Hospital of Anhui Medical University, Hefei 230000, China.
| |
Collapse
|
4
|
Tang C, Qi J, Wu Y, Luo L, Wang Y, Wu Y, Shi X. Improving the prediction for the response to radiotherapy of clinical tumor samples by using combinatorial model of MicroRNA expression. Front Genet 2022; 13:1069112. [DOI: 10.3389/fgene.2022.1069112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 11/11/2022] [Indexed: 11/23/2022] Open
Abstract
Purpose: Radiation therapy (RT) is one of the main treatments for cancer. The response to radiotherapy varies widely between individuals and some patients have poor response to RT treatment due to tumor radioresistance. Stratifying patients according to molecular signatures of individual tumor characteristics can improve clinical treatment. In here, we aimed to use clinical and genomic databases to develop miRNA signatures that can predict response to radiotherapy in various cancer types.Methods: We analyzed the miRNAs profiles using tumor samples treated with RT across eight types of human cancers from TCGA database. These samples were divided into response group (S, n = 224) and progressive disease group (R, n = 134) based on RT response of tumors. To enhance the discrimination for S and R samples, the predictive models based on binary logistic regression were developed to identify the best combinations of multiple miRNAs.Results: The miRNAs differentially expressed between the groups S and R in each caner type were identified. Total 47 miRNAs were identified in eight cancer types (p values <0.05, t-test), including several miRNAs previously reported to be associated with radiotherapy sensitivity. Functional enrichment analysis revealed that epithelial-to-mesenchymal transition (EMT), stem cell, NF-κB signal, immune response, cell death, cell cycle, and DNA damage response and DNA damage repair processes were significantly enriched. The cancer-type-specific miRNA signatures were identified, which consist of 2-13 of miRNAs in each caner type. Receiver operating characteristic (ROC) analyses showed that the most of individual miRNAs were effective in distinguishing responsive and non-responsive patients (the area under the curve (AUC) ranging from 0.606 to 0.889). The patient stratification was further improved by applying the combinatorial model of miRNA expression (AUC ranging from 0.711 to 0.992). Also, five miRNAs that were significantly associated with overall survival were identified as prognostic miRNAs.Conclusion: These mRNA signatures could be used as potential biomarkers selecting patients who will benefit from radiotherapy. Our study identified a series of miRNA that were differentially expressed between RT good responders and poor responders, providing useful clues for further functional assays to demonstrate a possible regulatory role in radioresistance.
Collapse
|
5
|
Zhou H, He Q, Li C, Alsharafi BLM, Deng L, Long Z, Gan Y. Focus on the tumor microenvironment: A seedbed for neuroendocrine prostate cancer. Front Cell Dev Biol 2022; 10:955669. [PMID: 35938167 PMCID: PMC9355504 DOI: 10.3389/fcell.2022.955669] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Accepted: 07/01/2022] [Indexed: 11/13/2022] Open
Abstract
The tumor microenvironment (TME) is a microecology consisting of tumor and mesenchymal cells and extracellular matrices. The TME plays important regulatory roles in tumor proliferation, invasion, metastasis, and differentiation. Neuroendocrine differentiation (NED) is a mechanism by which castration resistance develops in advanced prostate cancer (PCa). NED is induced after androgen deprivation therapy and neuroendocrine prostate cancer (NEPC) is established finally. NEPC has poor prognosis and short overall survival and is a major cause of death in patients with PCa. Both the cellular and non-cellular components of the TME regulate and induce NEPC formation through various pathways. Insights into the roles of the TME in NEPC evolution, growth, and progression have increased over the past few years. These novel insights will help refine the NEPC formation model and lay the foundation for the discovery of new NEPC therapies targeting the TME.
Collapse
Affiliation(s)
- Hengfeng Zhou
- Andrology Center, Department of Urology, the Third Xiangya Hospital, Central South University, Changsha, China
| | - Qiangrong He
- Andrology Center, Department of Urology, the Third Xiangya Hospital, Central South University, Changsha, China
| | - Chao Li
- Andrology Center, Department of Urology, the Third Xiangya Hospital, Central South University, Changsha, China
| | | | - Liang Deng
- Andrology Center, Department of Urology, the Third Xiangya Hospital, Central South University, Changsha, China
| | - Zhi Long
- Andrology Center, Department of Urology, the Third Xiangya Hospital, Central South University, Changsha, China
- *Correspondence: Zhi Long, ; Yu Gan,
| | - Yu Gan
- Department of Urology, Xiangya Hospital, Central South University, Changsha, China
- *Correspondence: Zhi Long, ; Yu Gan,
| |
Collapse
|
6
|
Role of p53 in Regulating Radiation Responses. LIFE (BASEL, SWITZERLAND) 2022; 12:life12071099. [PMID: 35888186 PMCID: PMC9319710 DOI: 10.3390/life12071099] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 07/15/2022] [Accepted: 07/16/2022] [Indexed: 12/12/2022]
Abstract
p53 is known as the guardian of the genome and plays various roles in DNA damage and cancer suppression. The p53 gene was found to express multiple p53 splice variants (isoforms) in a physiological, tissue-dependent manner. The various genes that up- and down-regulated p53 are involved in cell viability, senescence, inflammation, and carcinogenesis. Moreover, p53 affects the radioadaptive response. Given that several studies have already been published on p53, this review presents its role in the response to gamma irradiation by interacting with MDM2, NF-κB, and miRNA, as well as in the inflammation processes, senescence, carcinogenesis, and radiation adaptive responses. Finally, the potential of p53 as a biomarker is discussed.
Collapse
|
7
|
Kahl I, Mense J, Finke C, Boller AL, Lorber C, Győrffy B, Greve B, Götte M, Espinoza-Sánchez NA. The cell cycle-related genes RHAMM, AURKA, TPX2, PLK1, and PLK4 are associated with the poor prognosis of breast cancer patients. J Cell Biochem 2022; 123:581-600. [PMID: 35014077 DOI: 10.1002/jcb.30205] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 12/13/2021] [Accepted: 12/15/2021] [Indexed: 01/02/2023]
Abstract
Breast cancer is the third most common type of cancer diagnosed. Cell cycle is a complex but highly organized and controlled process, in which normal cells sense mitogenic growth signals that instruct them to enter and progress through their cell cycle. This process culminates in cell division generating two daughter cells with identical amounts of genetic material. Uncontrolled proliferation is one of the hallmarks of cancer. In this study, we analyzed the expression of the cell cycle-related genes receptor for hyaluronan (HA)-mediated motility (RHAMM), AURKA, TPX2, PLK1, and PLK4 and correlated them with the prognosis in a collective of 3952 breast cancer patients. A high messenger RNA expression of all studied genes correlated with a poor prognosis. Stratifying the patients according to the expression of hormonal receptors, we found that in patients with estrogen and progesterone receptor-positive and human epithelial growth factor receptor 2-negative tumors, and Luminal A and Luminal B tumors, the expression of the five analyzed genes correlates with worse survival. qPCR analysis of a panel of breast cancer cell lines representative of major molecular subtypes indicated a predominant expression in the luminal subtype. In vitro experiments showed that radiation influences the expression of the five analyzed genes both in luminal and triple-negative model cell lines. Functional analysis of MDA-MB-231 cells showed that small interfering RNA knockdown of PLK4 and TPX2 and pharmacological inhibition of PLK1 had an impact on the cell cycle and colony formation. Looking for a potential upstream regulation by microRNAs, we observed a differential expression of RHAMM, AURKA, TPX2, PLK1, and PLK4 after transfecting the MDA-MB-231 cells with three different microRNAs. Survival analysis of miR-34c-5p, miR-375, and miR-142-3p showed a different impact on the prognosis of breast cancer patients. Our study suggests that RHAMM, AURKA, TPX2, PLK1, and PLK4 can be used as potential targets for treatment or as a prognostic value in breast cancer patients.
Collapse
Affiliation(s)
- Iris Kahl
- Department of Gynecology and Obstetrics, Münster University Hospital, Münster, Germany
| | - Julian Mense
- Department of Gynecology and Obstetrics, Münster University Hospital, Münster, Germany
| | - Christopher Finke
- Department of Gynecology and Obstetrics, Münster University Hospital, Münster, Germany
| | - Anna-Lena Boller
- Department of Gynecology and Obstetrics, Münster University Hospital, Münster, Germany
| | - Clara Lorber
- Department of Gynecology and Obstetrics, Münster University Hospital, Münster, Germany
| | - Balázs Győrffy
- Department of Bioinformatics, Semmelweis University, Budapest, Hungary.,Cancer Biomarker Research Group, Research Centre for Natural Sciences, Budapest, Hungary
| | - Burkhard Greve
- Department of Radiotherapy-Radiooncology, Münster University Hospital, Münster, Germany
| | - Martin Götte
- Department of Gynecology and Obstetrics, Münster University Hospital, Münster, Germany
| | - Nancy A Espinoza-Sánchez
- Department of Gynecology and Obstetrics, Münster University Hospital, Münster, Germany.,Department of Radiotherapy-Radiooncology, Münster University Hospital, Münster, Germany
| |
Collapse
|
8
|
Slabáková E, Kahounová Z, Procházková J, Souček K. Regulation of Neuroendocrine-like Differentiation in Prostate Cancer by Non-Coding RNAs. Noncoding RNA 2021; 7:ncrna7040075. [PMID: 34940756 PMCID: PMC8704250 DOI: 10.3390/ncrna7040075] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 11/18/2021] [Accepted: 11/29/2021] [Indexed: 12/21/2022] Open
Abstract
Neuroendocrine prostate cancer (NEPC) represents a variant of prostate cancer that occurs in response to treatment resistance or, to a much lesser extent, de novo. Unravelling the molecular mechanisms behind transdifferentiation of cancer cells to neuroendocrine-like cancer cells is essential for development of new treatment opportunities. This review focuses on summarizing the role of small molecules, predominantly microRNAs, in this phenomenon. A published literature search was performed to identify microRNAs, which are reported and experimentally validated to modulate neuroendocrine markers and/or regulators and to affect the complex neuroendocrine phenotype. Next, available patients’ expression datasets were surveyed to identify deregulated microRNAs, and their effect on NEPC and prostate cancer progression is summarized. Finally, possibilities of miRNA detection and quantification in body fluids of prostate cancer patients and their possible use as liquid biopsy in prostate cancer monitoring are discussed. All the addressed clinical and experimental contexts point to an association of NEPC with upregulation of miR-375 and downregulation of miR-34a and miR-19b-3p. Together, this review provides an overview of different roles of non-coding RNAs in the emergence of neuroendocrine prostate cancer.
Collapse
|
9
|
Shi L, Feng L, Tong Y, Jia J, Li T, Wang J, Jiang Z, Yu M, Xia H, Jin Q, Jiang X, Cheng Y, Ju L, Liu J, Zhang Q, Lou J. Genome wide profiling of miRNAs relevant to the DNA damage response induced by hexavalent chromium exposure (DDR-related miRNAs in response to Cr (VI) exposure). ENVIRONMENT INTERNATIONAL 2021; 157:106782. [PMID: 34329887 DOI: 10.1016/j.envint.2021.106782] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 07/12/2021] [Accepted: 07/15/2021] [Indexed: 06/13/2023]
Abstract
AIM We aimed to explore the expression of miRNAs and their potential roles in the DNA damage response (DDR) induced by Cr (VI) exposure in human B lymphoblast cells (HMy2.CIR cells) and in a population of Cr (VI)-exposed humans. METHODS Differentially expressed miRNAs were found by a combination of miRNA sequencing and RT-qPCR validation in HMy2.CIR cells treated with K2Cr2O7. Differentially expressed miRNAs related to DDR were selected for functional study. The expression levels of differential miRNAs were also investigated in chromate workers. RESULTS A total of 214 differentially expressed miRNAs were identified by sequencing, and the expression of 5 miRNAs among 25 associated with DDR was found to be consistent between sequencing and validation studies.Functional studies showed that miR-148a-3p, miR-21-5p, and miR-424-3p might be related to Cr (VI)-induced cell apoptosis, and miR-221-3p might participate in Cr (VI)-induced DDR. We also found that the expression of miR-21-5p and miR-424-3p was upregulated in chromate workers. CONCLUSIONS Cr (VI) exposure could significantly impact miRNAs expression in vitro and in chromate workers. Functional studies showed that miR-148a-3p, miR-21-5p and miR-221-3p might take a crucial role in the cellular DDR induced by Cr (VI) exposure.
Collapse
Affiliation(s)
- Li Shi
- School of Public Health (Institute of Occupational Diseases), Hangzhou Medical College (Zhejiang Academy of Medical Sciences), Hangzhou, Zhejiang, China
| | - Lingfang Feng
- School of Public Health (Institute of Occupational Diseases), Hangzhou Medical College (Zhejiang Academy of Medical Sciences), Hangzhou, Zhejiang, China
| | - Yan Tong
- Affiliated Hangzhou First People's Hospital, Zhejiang University, School of Medicine, Hangzhou, Zhejiang, China
| | - Junlin Jia
- Center for Biostatistics, Bioinformatics and Big Data, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Tao Li
- School of Public Health (Institute of Occupational Diseases), Hangzhou Medical College (Zhejiang Academy of Medical Sciences), Hangzhou, Zhejiang, China
| | - Jing Wang
- School of Public Health (Institute of Occupational Diseases), Hangzhou Medical College (Zhejiang Academy of Medical Sciences), Hangzhou, Zhejiang, China
| | - Zhaoqiang Jiang
- School of Public Health (Institute of Occupational Diseases), Hangzhou Medical College (Zhejiang Academy of Medical Sciences), Hangzhou, Zhejiang, China
| | - Min Yu
- School of Public Health (Institute of Occupational Diseases), Hangzhou Medical College (Zhejiang Academy of Medical Sciences), Hangzhou, Zhejiang, China
| | - Hailing Xia
- School of Public Health (Institute of Occupational Diseases), Hangzhou Medical College (Zhejiang Academy of Medical Sciences), Hangzhou, Zhejiang, China
| | - Qi Jin
- School of Public Health (Institute of Occupational Diseases), Hangzhou Medical College (Zhejiang Academy of Medical Sciences), Hangzhou, Zhejiang, China
| | - Xiyi Jiang
- School of Public Health (Institute of Occupational Diseases), Hangzhou Medical College (Zhejiang Academy of Medical Sciences), Hangzhou, Zhejiang, China
| | - Yongran Cheng
- School of Public Health (Institute of Occupational Diseases), Hangzhou Medical College (Zhejiang Academy of Medical Sciences), Hangzhou, Zhejiang, China
| | - Li Ju
- School of Public Health (Institute of Occupational Diseases), Hangzhou Medical College (Zhejiang Academy of Medical Sciences), Hangzhou, Zhejiang, China
| | - Jiaqi Liu
- School of Public Health (Institute of Occupational Diseases), Hangzhou Medical College (Zhejiang Academy of Medical Sciences), Hangzhou, Zhejiang, China
| | - Quan Zhang
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang, China
| | - Jianlin Lou
- School of Public Health (Institute of Occupational Diseases), Hangzhou Medical College (Zhejiang Academy of Medical Sciences), Hangzhou, Zhejiang, China.
| |
Collapse
|
10
|
Kong X, Yu D, Wang Z, Li S. Relationship between p53 status and the bioeffect of ionizing radiation. Oncol Lett 2021; 22:661. [PMID: 34386083 PMCID: PMC8299044 DOI: 10.3892/ol.2021.12922] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Accepted: 06/30/2021] [Indexed: 12/11/2022] Open
Abstract
Radiotherapy is widely used in the clinical treatment of cancer patients and it may be used alone or in combination with surgery or chemotherapy to inhibit tumor development. However, radiotherapy may at times not kill all cancer cells completely, as certain cells may develop radioresistance that counteracts the effects of radiation. The emergence of radioresistance is associated with the genetic background and epigenetic regulation of cells. p53 is an important tumor suppressor gene that is expressed at low levels in cells. However, when cells are subjected to stress-induced stimulation, the expression level of p53 increases, thereby preventing genomic disruption. This mechanism has important roles in maintaining cell stability and inhibiting carcinogenesis. However, mutation and deletion destroy the anticancer function of p53 and may induce carcinogenesis. In tumor radiotherapy, the status of p53 expression in cancer cells has a close relationship with radiotherapeutic efficacy. Therefore, understanding how p53 expression affects the cellular response to radiation is of great significance for solving the problem of radioresistance and improving radiotherapeutic outcomes. For the present review, the literature was searched for studies published between 1979 and 2021 using the PubMed database (https://pubmed.ncbi.nlm.nih.gov/) with the following key words: Wild-type p53, mutant-type p53, long non-coding RNA, microRNA, gene mutation, radioresistance and radiosensitivity. From the relevant studies retrieved, the association between different p53 mutants and cellular radiosensitivity, as well as the molecular mechanisms of p53 affecting the radiosensitivity of cells, were summarized. The aim of the present study was to provide useful information for understanding and resolving radioresistance, to help clinical researchers develop more accurate treatment strategies and to improve radiotherapeutic outcomes for cancer patients with p53 mutations.
Collapse
Affiliation(s)
- Xiaohan Kong
- Department of Breast Surgery, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Dehai Yu
- Laboratory of Cancer Precision Medicine, The First Hospital of Jilin University, Changchun, Jilin 130061, P.R. China
| | - Zhaoyi Wang
- Department of Gastrointestinal Surgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin 130033, P.R. China
| | - Sijie Li
- Department of Breast Surgery, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| |
Collapse
|
11
|
Zhang Y, Chang L, Wu Q, Zuo F. Long non-coding RNA NEAT1 increases the aggressiveness of gastric cancer by regulating the microRNA-142-5p/JAG1 axis. Exp Ther Med 2021; 22:862. [PMID: 34178135 PMCID: PMC8220654 DOI: 10.3892/etm.2021.10294] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 02/25/2021] [Indexed: 02/07/2023] Open
Abstract
Gastric cancer has been indicated to have a high recurrence rate in China. Previous studies have revealed that long non-coding RNA nuclear-enriched abundant transcript 1 (NEAT1) exerted critical roles in cancers. Therefore, the present study aimed to determine the function of NEAT1 and explore the unknown molecular mechanisms of gastric cancer pathogenesis. Reverse transcription-quantitative PCR assay was used to examine the expression of NEAT1, microRNA (miR)-142-5p and jagged1 (JAG1) in gastric cancer. Cell Counting Kit-8 and Transwell assays were conducted to examine cell proliferation, migration and invasion. The protein expression levels of N-cadherin, Vimentin, E-cadherin and JAG1 were quantified by western blot assay. The associations among NEAT1, miR-142-5p and JAG1 were confirmed by dual-luciferase reporter assay and RNA immunoprecipitation. The effects of NEAT1 silencing on tumor growth were evaluated by tumor xenografts. The results indicated that NEAT1 was highly expressed in tumor tissues and cells compared with that in paracancerous tissues and the normal gastric epithelial cell line GES-1 and significantly associated with poor prognosis in gastric cancer. Functional analyses further demonstrated that NEAT1 knockdown suppressed proliferation, motility and tumor growth in vitro and in vivo. Mechanistically, NEAT1 sponged miR-142-5p to regulate JAG1 expression. In addition, the effects of NEAT1 knockdown on the proliferation, migration and invasion of gastric cancer cells could be rescued by miR-142-5p inhibitor, and JAG1 overexpression reversed the miR-142-5p-mediated effects on gastric cancer cells. These findings demonstrated that long non-coding RNA NEAT1 regulated gastric cancer progression by targeting the miR-142-5p/JAG1 axis.
Collapse
Affiliation(s)
- Yanming Zhang
- Department of General Medicine, Yantaishan Hospital, Yantai, Shandong 264001, P.R. China
| | - Liying Chang
- Health Management Center, Qingdao Tumor Hospital, Qingdao, Shandong 266042, P.R. China
| | - Qunmei Wu
- Health Management Center, Qingdao Central Hospital, Qingdao, Shandong 266042, P.R. China
| | - Fang Zuo
- Department of Gastroenterology, Jinan Central Hospital, Jinan, Shandong 250010, P.R. China
| |
Collapse
|
12
|
Liu Y, Wang Q, Wen J, Wu Y, Man C. MiR-375: A novel multifunctional regulator. Life Sci 2021; 275:119323. [PMID: 33744323 DOI: 10.1016/j.lfs.2021.119323] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 02/20/2021] [Accepted: 02/27/2021] [Indexed: 01/23/2023]
Abstract
MiR-375, a primitively described beta cell-specific miRNA, is confirmed to function as multi-functional regulator in diverse typical cellular pathways according to the follow-up researches. Based on the existing studies, miR-375 can regulate many functional genes and ectopic expressions of miR-375 are usually associated with pathological changes, and its expression regulation mechanism is mainly related to promoter methylation or circRNA. In this review, the regulatory functions of miR-375 in immunity, such as its relevance with macrophages, T helper cells and autoimmune diseases were briefly discussed. Also, the functions of miR-375 involved in inflammation, development and virus replication were reviewed. Finally, the mechanisms and application prospects of miR-375 in cancers were analyzed. Studies show that the application of miR-375 as therapeutic target and biomarker has a broad developing space in future. We hope this paper can provide reference for its further study.
Collapse
Affiliation(s)
- Yang Liu
- College of Life Science and Technology, Harbin Normal University, Harbin 150001, PR China
| | - Qiuyuan Wang
- College of Life Science and Technology, Harbin Normal University, Harbin 150001, PR China
| | - Jie Wen
- College of Life Science and Technology, Harbin Normal University, Harbin 150001, PR China
| | - Yiru Wu
- College of Life Science and Technology, Harbin Normal University, Harbin 150001, PR China
| | - Chaolai Man
- College of Life Science and Technology, Harbin Normal University, Harbin 150001, PR China.
| |
Collapse
|
13
|
Isoforms of the p53 Family and Gastric Cancer: A Ménage à Trois for an Unfinished Affair. Cancers (Basel) 2021; 13:cancers13040916. [PMID: 33671606 PMCID: PMC7926742 DOI: 10.3390/cancers13040916] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 02/06/2021] [Accepted: 02/17/2021] [Indexed: 12/17/2022] Open
Abstract
Simple Summary The p53 family is a complex family of transcription factors with different cellular functions that are involved in several physiological processes. A massive amount of data has been accumulated on their critical role in the tumorigenesis and the aggressiveness of cancers of different origins. If common features are observed, there are numerous specificities that may reflect particularities of the tissues from which the cancers originated. In this regard, gastric cancer tumorigenesis is rather remarkable, as it is induced by bacterial and viral infections, various chemical carcinogens, and familial genetic alterations, which provide an example of the variety of molecular mechanisms responsible for cell transformation and how they impact the p53 family. This review summarizes the knowledge gathered from over 40 years of research on the role of the p53 family in gastric cancer, which still displays one of the most elevated mortality rates amongst all types of cancers. Abstract Gastric cancer is one of the most aggressive cancers, with a median survival of 12 months. This illustrates its complexity and the lack of therapeutic options, such as personalized therapy, because predictive markers do not exist. Thus, gastric cancer remains mostly treated with cytotoxic chemotherapies. In addition, less than 20% of patients respond to immunotherapy. TP53 mutations are particularly frequent in gastric cancer (±50% and up to 70% in metastatic) and are considered an early event in the tumorigenic process. Alterations in the expression of other members of the p53 family, i.e., p63 and p73, have also been described. In this context, the role of the members of the p53 family and their isoforms have been investigated over the years, resulting in conflicting data. For instance, whether mutations of TP53 or the dysregulation of its homologs may represent biomarkers for aggressivity or response to therapy still remains a matter of debate. This uncertainty illustrates the lack of information on the molecular pathways involving the p53 family in gastric cancer. In this review, we summarize and discuss the most relevant molecular and clinical data on the role of the p53 family in gastric cancer and enumerate potential therapeutic innovative strategies.
Collapse
|
14
|
Potter ML, Hill WD, Isales CM, Hamrick MW, Fulzele S. MicroRNAs are critical regulators of senescence and aging in mesenchymal stem cells. Bone 2021; 142:115679. [PMID: 33022453 PMCID: PMC7901145 DOI: 10.1016/j.bone.2020.115679] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 07/16/2020] [Accepted: 07/28/2020] [Indexed: 01/10/2023]
Abstract
MicroRNAs (miRNAs) have recently come under scrutiny for their role in various age-related diseases. Similarly, cellular senescence has been linked to disease and aging. MicroRNAs and senescence likely play an intertwined role in driving these pathologic states. In this review, we present the connection between these two drivers of age-related disease concerning mesenchymal stem cells (MSCs). First, we summarize key miRNAs that are differentially expressed in MSCs and other musculoskeletal lineage cells during senescence and aging. Additionally, we also reviewed miRNAs that are regulated via traditional senescence-associated secretory phenotype (SASP) cytokines in MSC. Lastly, we summarize miRNAs that have been found to target components of the cell cycle arrest pathways inherently activated in senescence. This review attempts to highlight potential miRNA targets for regenerative medicine applications in age-related musculoskeletal disease.
Collapse
Affiliation(s)
- Matthew L Potter
- Department of Orthopedics, Augusta University, Augusta, GA, United States of America
| | - William D Hill
- Medical University of South Carolina, Charleston, SC 29403, United States of America; Ralph H Johnson Veterans Affairs Medical Center, Charleston, SC, 29403, United States of America
| | - Carlos M Isales
- Department of Orthopedics, Augusta University, Augusta, GA, United States of America; Department of Medicine, Augusta University, Augusta, GA, United States of America; Institute of Healthy Aging, Augusta University, Augusta, GA, United States of America
| | - Mark W Hamrick
- Department of Orthopedics, Augusta University, Augusta, GA, United States of America; Institute of Healthy Aging, Augusta University, Augusta, GA, United States of America; Department of Cell Biology and Anatomy, Augusta University, Augusta, GA, United States of America
| | - Sadanand Fulzele
- Department of Orthopedics, Augusta University, Augusta, GA, United States of America; Department of Medicine, Augusta University, Augusta, GA, United States of America; Institute of Healthy Aging, Augusta University, Augusta, GA, United States of America; Department of Cell Biology and Anatomy, Augusta University, Augusta, GA, United States of America.
| |
Collapse
|
15
|
Merkel cell carcinoma-derived exosome-shuttle miR-375 induces fibroblast polarization by inhibition of RBPJ and p53. Oncogene 2020; 40:980-996. [PMID: 33311552 PMCID: PMC7862059 DOI: 10.1038/s41388-020-01576-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 11/02/2020] [Accepted: 11/18/2020] [Indexed: 12/13/2022]
Abstract
Merkel cell carcinoma (MCC) is a highly invasive and metastatic skin cancer. While high expression of miR-375 is a characteristic of MCC, it seems not to contribute to the malignant phenotype of MCC cells. miR-375 enrichment in MCC-derived extracellular vesicles suggests its intercellular signaling function. Here, we demonstrate that horizontally transferred miR-375 causes fibroblast polarization toward cancer-associated fibroblasts (CAFs). The polarization is evidenced by phenotypic changes and induction of α-SMA, CXCL2, and IL-1β. Fibroblast polarization is inhibited by specific antagomirs and mimicked by experimental miR-375 expression. Mechanistically, miR-375 downregulates RBPJ and p53, two key players regulating fibroblast polarization. In clinical MCC samples, in situ hybridization located miR-375 in CAFs, which correlated with high α-SMA protein and low RBPJ and TP53 expression; single-cell RNAseq revealed a disparate fibroblast polarization negatively correlating with p53 pathway-related gene expression. Thus, the functional role of miR-375 in MCC is to generate a pro-tumorigenic microenvironment by inducing fibroblast polarization.
Collapse
|
16
|
Wang L, Jiang J, Sun G, Zhang P, Li Y. Effects of lncRNA TUSC7 on the malignant biological behavior of osteosarcoma cells via regulation of miR-375. Oncol Lett 2020; 20:133. [PMID: 32934702 PMCID: PMC7471645 DOI: 10.3892/ol.2020.11994] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 07/06/2020] [Indexed: 12/23/2022] Open
Abstract
The present study aimed at investigating how long-chain non-coding RNA (lncRNA) tumor suppressor candidate 7 (TUSC7) regulates the malignant biological behavior of osteosarcoma cells. Tumor tissues and adjacent tissues of 30 patients with osteosarcoma were collected, and the expression levels of lncRNA TUSC7 and miR-375 were detected by RT-qPCR. lncRNA TUSC7 mimic and miR-375 mimic transfection models were established in MG63 osteosarcoma cells, and Transwell assays were used to detect the migration ability of MG63 cells. An MTT assay was used to assess the proliferation ability of MG63 cells. lncRNA TUSC7 in osteosarcoma tissue was significantly lower than that of adjacent tissues, while miR-375 levels were significantly higher than that of adjacent tissues; the two levels have a negative correlation. lncRNA TUSC7 mimic inhibited MG63 proliferation and migration abilities. miR-375 mimic promoted MG63 proliferation and migration abilities. The lncRNA TUSC7 mimic and miR-375 mimic co-transfection system could partially rescue the inhibition of lncRNA TUSC7 mimic on MG63 cells. In conclusion, lncRNA TUSC7 inhibited the proliferation and migration of MG63 osteosarcoma cells by regulating miR-375.
Collapse
Affiliation(s)
- Lulu Wang
- Department of Spinal Surgery, ShengLi Oilfield Central Hospital, Dongying, Shandong 257000, P.R. China
| | - Jiankui Jiang
- Department of Hand and Foot Surgery, ShengLi Oilfield Central Hospital, Dongying, Shandong 257000, P.R. China
| | - Guisen Sun
- Department of Spinal Surgery, ShengLi Oilfield Central Hospital, Dongying, Shandong 257000, P.R. China
| | - Panpan Zhang
- Department of Spinal Surgery, ShengLi Oilfield Central Hospital, Dongying, Shandong 257000, P.R. China
| | - Ya Li
- Department of Spinal Surgery, ShengLi Oilfield Central Hospital, Dongying, Shandong 257000, P.R. China
| |
Collapse
|
17
|
Regulation of DNA Damage Response and Homologous Recombination Repair by microRNA in Human Cells Exposed to Ionizing Radiation. Cancers (Basel) 2020; 12:cancers12071838. [PMID: 32650508 PMCID: PMC7408912 DOI: 10.3390/cancers12071838] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 06/26/2020] [Accepted: 06/29/2020] [Indexed: 12/12/2022] Open
Abstract
Ionizing radiation may be of both artificial and natural origin and causes cellular damage in living organisms. Radioactive isotopes have been used significantly in cancer therapy for many years. The formation of DNA double-strand breaks (DSBs) is the most dangerous effect of ionizing radiation on the cellular level. After irradiation, cells activate a DNA damage response, the molecular path that determines the fate of the cell. As an important element of this, homologous recombination repair is a crucial pathway for the error-free repair of DNA lesions. All components of DNA damage response are regulated by specific microRNAs. MicroRNAs are single-stranded short noncoding RNAs of 20–25 nt in length. They are directly involved in the regulation of gene expression by repressing translation or by cleaving target mRNA. In the present review, we analyze the biological mechanisms by which miRNAs regulate cell response to ionizing radiation-induced double-stranded breaks with an emphasis on DNA repair by homologous recombination, and its main component, the RAD51 recombinase. On the other hand, we discuss the ability of DNA damage response proteins to launch particular miRNA expression and modulate the course of this process. A full understanding of cell response processes to radiation-induced DNA damage will allow us to develop new and more effective methods of ionizing radiation therapy for cancers, and may help to develop methods for preventing the harmful effects of ionizing radiation on healthy organisms.
Collapse
|
18
|
Zhang Y, Wang M, Zang X, Mao Z, Chen Y, Mao F, Qian H, Xu W, Zhang X. CircHN1 affects cell proliferation and migration in gastric cancer. J Clin Lab Anal 2020; 34:e23433. [PMID: 32608539 PMCID: PMC7595908 DOI: 10.1002/jcla.23433] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 04/04/2020] [Accepted: 04/13/2020] [Indexed: 12/15/2022] Open
Abstract
Background Increasing evidence indicates that circular RNAs (circRNAs) are dysregulated in human cancers. The biological roles of circRNAs in gastric cancer (GC) have not been well‐characterized. Methods The GEO database was used to analyze circRNA expression profile in GC. The expression level of target circRNA in tumor tissues and adjacent non‐tumor tissues was detected by reverse transcription‐quantitative PCR. Gene transfection was used to manipulate the expression of circRNAs. The biological roles of circRNAs in cell proliferation, migration, and invasion were determined by cell counting, colony formation, transwell migration, Matrigel invasion, and mouse xenograft tumor assays. The interactions between circRNAs and miRNAs were verified by RNA immunoprecipitation and luciferase reporter assays. Results We found that circHN1 was upregulated in GC tissues and cell lines compared to adjacent non‐tumor tissues and normal gastric epithelial cells. Additionally, circHN1 silencing significantly promoted GC cell growth, colony formation, migration, and invasion, whereas circHN1 overexpression had the opposite effects. CircHN1 overexpression also suppressed gastric cancer growth in the mouse xenograft tumor model. CircHN1 was mainly localized in the cytoplasm of GC cells and could bind to AGO2. MiR‐1248 and miR‐375 were predicted to interact with circHN1 by bioinformatic analyses. MiR‐1248 and miR‐375 overexpression inhibited the activity of the circHN1 luciferase reporter. Conclusion CircHN1 is aberrantly expressed in GC and affects the proliferation and migration of gastric cancer cells by acting as miRNA sponge.
Collapse
Affiliation(s)
- Yu Zhang
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Maoye Wang
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Xueyan Zang
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Zheying Mao
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Yanke Chen
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Fei Mao
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Hui Qian
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Wenrong Xu
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Xu Zhang
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China.,Key Laboratory of Molecular Diagnostics and Precision Medicine for Surgical Oncology in Gansu Province, Gansu Provincial Hospital, Gansu, China
| |
Collapse
|
19
|
Podralska M, Ciesielska S, Kluiver J, van den Berg A, Dzikiewicz-Krawczyk A, Slezak-Prochazka I. Non-Coding RNAs in Cancer Radiosensitivity: MicroRNAs and lncRNAs as Regulators of Radiation-Induced Signaling Pathways. Cancers (Basel) 2020; 12:E1662. [PMID: 32585857 PMCID: PMC7352793 DOI: 10.3390/cancers12061662] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 06/19/2020] [Accepted: 06/21/2020] [Indexed: 02/07/2023] Open
Abstract
Radiotherapy is a cancer treatment that applies high doses of ionizing radiation to induce cell death, mainly by triggering DNA double-strand breaks. The outcome of radiotherapy greatly depends on radiosensitivity of cancer cells, which is determined by multiple proteins and cellular processes. In this review, we summarize current knowledge on the role of microRNAs (miRNAs) and long non-coding RNAs (lncRNAs), in determining the response to radiation. Non-coding RNAs modulate ionizing radiation response by targeting key signaling pathways, including DNA damage repair, apoptosis, glycolysis, cell cycle arrest, and autophagy. Additionally, we indicate miRNAs and lncRNAs that upon overexpression or inhibition alter cellular radiosensitivity. Current data indicate the potential of using specific non-coding RNAs as modulators of cellular radiosensitivity to improve outcome of radiotherapy.
Collapse
Affiliation(s)
- Marta Podralska
- Institute of Human Genetics, Polish Academy of Sciences, 60-479 Poznań, Poland;
| | - Sylwia Ciesielska
- Department of Systems Biology and Engineering, Faculty of Automatic Control, Electronics and Computer Science, Silesian University of Technology, 44-100 Gliwice, Poland;
| | - Joost Kluiver
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center, Groningen, 9700RB Groningen, The Netherlands; (J.K.); (A.v.d.B.)
| | - Anke van den Berg
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center, Groningen, 9700RB Groningen, The Netherlands; (J.K.); (A.v.d.B.)
| | | | | |
Collapse
|
20
|
The Role of MicroRNAs upon Epithelial-to-Mesenchymal Transition in Inflammatory Bowel Disease. Cells 2019; 8:cells8111461. [PMID: 31752264 PMCID: PMC6912477 DOI: 10.3390/cells8111461] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Revised: 11/03/2019] [Accepted: 11/18/2019] [Indexed: 02/06/2023] Open
Abstract
Increasing evidence suggest the significance of inflammation in the progression of cancer, for example the development of colorectal cancer in Inflammatory Bowel Disease (IBD) patients. Long-lasting inflammation in the gastrointestinal tract causes serious systemic complications and breaks the homeostasis of the intestine, where the altered expression of regulatory genes and miRNAs trigger malignant transformations. Several steps lead from acute inflammation to malignancies: epithelial-to-mesenchymal transition (EMT) and inhibitory microRNAs (miRNAs) are known factors during multistage carcinogenesis and IBD pathogenesis. In this review, we outline the interactions between EMT components and miRNAs that may affect cancer development during IBD.
Collapse
|
21
|
Eckstein M, Sailer V, Nielsen BS, Wittenberg T, Wiesmann V, Lieb V, Nolte E, Hartmann A, Kristiansen G, Wernert N, Wullich B, Taubert H, Wach S. Co-staining of microRNAs and their target proteins by miRNA in situ hybridization and immunohistofluorescence on prostate cancer tissue microarrays. J Transl Med 2019; 99:1527-1534. [PMID: 31186527 DOI: 10.1038/s41374-019-0251-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 04/01/2019] [Accepted: 04/01/2019] [Indexed: 01/31/2023] Open
Abstract
The co-expression of miRNAs and their target proteins was studied on tissue microarrays from different prostate cancer (PCa) patients. PCa of primary Gleason pattern 4 (GP4), lymph node metastases of GP4, distant metastases, and normal tissue from the transitional and peripheral zones were co-stained by fluorescent miRNA in situ hybridization (miRisH) and protein immunohistofluorescence (IHF). The miRNAs and corresponding target proteins include the pairs miR-145/ERG, miR-143/uPAR, and miR-375/SEC23A. The fluorescence-stained and scanned tissue microarrays (TMAs) were evaluated by experienced uropathologists. The pair miR-145/ERG showed an exclusive staining for miR-145 in the nuclei of stromal cells, both in tumor and normal tissue, and for ERG in the cytoplasm with/without co-expression in the nucleus of tumor cells. The pair miR-143/uPAR revealed a clear distinction between miR-143 in the nuclei of stromal cells and uPAR staining in the cytoplasm of tumor cells. Metastases (lymph node and distant) however, showed tumor cells with cytoplasmic staining for miR-143/uPAR. In normal tissues, beside the nuclei of the stroma cells, gland cells could also express miR-143 and uPAR in the cytoplasm. miR-375 showed particular staining in the nucleoli of GP4 and metastatic samples, suggesting that nucleoli play a special role in sequestering proteins and miRNAs. Combined miRisH/IHF allows for the study of miRNA expression patterns and their target proteins at the single-cell level.
Collapse
Affiliation(s)
- Markus Eckstein
- Institute of Pathology, University Hospital Erlangen, FAU Erlangen-Nürnberg, Erlangen, Germany
| | - Verena Sailer
- Institute of Pathology, University Hospital Bonn, Bonn, Germany.,Department of Pathology and Laboratory Medicine, Weill Cornell Medicine of Cornell University, New York, NY, USA
| | | | | | - Veit Wiesmann
- Fraunhofer Institute for Integrated Circuits IIS, Erlangen, Germany
| | - Verena Lieb
- Department of Urology and Pediatric Urology, University Hospital Erlangen, FAU Erlangen-Nürnberg, Erlangen, Germany
| | - Elke Nolte
- Department of Urology and Pediatric Urology, University Hospital Erlangen, FAU Erlangen-Nürnberg, Erlangen, Germany
| | - Arndt Hartmann
- Institute of Pathology, University Hospital Erlangen, FAU Erlangen-Nürnberg, Erlangen, Germany
| | | | - Nicolas Wernert
- Institute of Pathology, University Hospital Bonn, Bonn, Germany
| | - Bernd Wullich
- Department of Urology and Pediatric Urology, University Hospital Erlangen, FAU Erlangen-Nürnberg, Erlangen, Germany
| | - Helge Taubert
- Department of Urology and Pediatric Urology, University Hospital Erlangen, FAU Erlangen-Nürnberg, Erlangen, Germany.
| | - Sven Wach
- Department of Urology and Pediatric Urology, University Hospital Erlangen, FAU Erlangen-Nürnberg, Erlangen, Germany
| | | |
Collapse
|
22
|
Choi RSY, Lai WYX, Lee LTC, Wong WLC, Pei XM, Tsang HF, Leung JJ, Cho WCS, Chu MKM, Wong EYL, Wong SCC. Current and future molecular diagnostics of gastric cancer. Expert Rev Mol Diagn 2019; 19:863-874. [PMID: 31448971 DOI: 10.1080/14737159.2019.1660645] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Introduction: Gastric cancer (GC) is the fifth most common cancer and confers the second-highest mortality among other cancers. Improving the survival rates of GC patients requires prompt and accurate diagnosis and effective treatment which is often preceded by the poorly understood pathogenic mechanisms. Area covered: This literature review aims to summarize current understanding of genetic and molecular alterations that promote carcinogenesis including (1) activation of oncogenes, (2) overexpression of growth factors, receptors and matrix metalloproteinases, (3) inactivation of tumor suppressor genes, DNA repair genes, and cell adhesion molecules and (4) alterations of cell-cycle regulators that regulate biological characteristics of cancer cells. Moreover, the significance of molecular biomarkers such as micro-RNAs (miRNAs) and long non-coding RNAs (lncRNAs) and advanced molecular techniques including droplet digital polymerase chain reaction (ddPCR), quantitative PCR (qPCR) and next-generation sequencing (NGS) are also discussed. Expert opinion: A GC-specific panel of biomarkers based on the NGS or ddPCR has the potential for diagnosis, prognosis, and monitoring treatment response in GC patients. Despite the requirements for validation in larger population in clinical studies, race-specific differences in the gene panel have also to be examined by performing the clinical trials in subjects with different races.
Collapse
Affiliation(s)
- Rachel Sin-Yu Choi
- Department of Health Technology and Informatics, Faculty of Health and Social Sciences, Hong Kong Polytechnic University , Hong Kong , Hong Kong Special Administrative Region, China
| | - Wing Yin Xenia Lai
- Department of Health Technology and Informatics, Faculty of Health and Social Sciences, Hong Kong Polytechnic University , Hong Kong , Hong Kong Special Administrative Region, China
| | - Lok Ting Claire Lee
- Department of Health Technology and Informatics, Faculty of Health and Social Sciences, Hong Kong Polytechnic University , Hong Kong , Hong Kong Special Administrative Region, China
| | - Wing Lam Christa Wong
- Department of Health Technology and Informatics, Faculty of Health and Social Sciences, Hong Kong Polytechnic University , Hong Kong , Hong Kong Special Administrative Region, China
| | - Xiao Meng Pei
- Department of Health Technology and Informatics, Faculty of Health and Social Sciences, Hong Kong Polytechnic University , Hong Kong , Hong Kong Special Administrative Region, China
| | - Hin Fung Tsang
- Department of Health Technology and Informatics, Faculty of Health and Social Sciences, Hong Kong Polytechnic University , Hong Kong , Hong Kong Special Administrative Region, China
| | - Joel Johnson Leung
- Department of Health Technology and Informatics, Faculty of Health and Social Sciences, Hong Kong Polytechnic University , Hong Kong , Hong Kong Special Administrative Region, China
| | - William Chi Shing Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital , Kowloon , Hong Kong Special Administrative Region, China
| | - Man Kee Maggie Chu
- Division of Life Science, The Hong Kong University of Science and Technology , Clear Water Bay , Hong Kong Special Administrative Region, China
| | - Elaine Yue Ling Wong
- Department of Health Technology and Informatics, Faculty of Health and Social Sciences, Hong Kong Polytechnic University , Hong Kong , Hong Kong Special Administrative Region, China
| | - Sze Chuen Cesar Wong
- Department of Health Technology and Informatics, Faculty of Health and Social Sciences, Hong Kong Polytechnic University , Hong Kong , Hong Kong Special Administrative Region, China
| |
Collapse
|
23
|
Yan J, Yang B, Lin S, Xing R, Lu Y. Downregulation of miR-142-5p promotes tumor metastasis through directly regulating CYR61 expression in gastric cancer. Gastric Cancer 2019; 22:302-313. [PMID: 30178386 DOI: 10.1007/s10120-018-0872-4] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2018] [Accepted: 08/18/2018] [Indexed: 02/07/2023]
Abstract
BACKGROUND Recurrence is a primary cause of gastric cancer (GC)-related deaths. We reported previously that low expression of miR-142-5p could predict recurrence in GC. The present study aimed to investigate the function and mechanism of miR-142-5p in metastasis of GC. METHODS MiR-142-5p expression was detected in 101 GC samples by qRT-PCR. Its clinical significance was statistically analyzed. The roles of miR-142-5p and its candidate target gene CYR61 in metastasis were determined both in vivo and in vitro. RESULTS MiR-142-5p downregulation was significantly associated with the recurrence (P = 0.031) and poor prognosis of GC (P = 0.043). MiR-142-5p inhibited cancer cell migration and invasion both in vitro and in vivo. CYR61 was identified as a novel direct target of miR-142-5p by bioinformatics analysis of target prediction and luciferase reporter assay. The re-expression and knockdown of CYR61 could, respectively, rescue the effects induced by miR-142-5p overexpression and knockdown. MiR-142-5p attenuated GC cell migration and invasion, at least partially, by inactivation of the canonical Wnt/β-catenin signaling pathway through CYR61. CONCLUSIONS The newly identified miR-142-5p-CYR61-Wnt/β-catenin axis partially illustrates the molecular mechanism of GC recurrence and represents a novel prognosis biomarker for GC.
Collapse
Affiliation(s)
- Jing Yan
- Laboratory of Molecular Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital and Institute, 52 Fucheng Road, Haidian District, Beijing, 100142, China
| | - Bing Yang
- Laboratory of Molecular Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital and Institute, 52 Fucheng Road, Haidian District, Beijing, 100142, China
| | - Shuye Lin
- Laboratory of Molecular Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital and Institute, 52 Fucheng Road, Haidian District, Beijing, 100142, China
| | - Rui Xing
- Laboratory of Molecular Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital and Institute, 52 Fucheng Road, Haidian District, Beijing, 100142, China.
| | - Youyong Lu
- Laboratory of Molecular Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital and Institute, 52 Fucheng Road, Haidian District, Beijing, 100142, China.
| |
Collapse
|
24
|
Zhao L, Yang XR, Han X. MicroRNA-146b induces the PI3K/Akt/NF-κB signaling pathway to reduce vascular inflammation and apoptosis in myocardial infarction by targeting PTEN. Exp Ther Med 2018; 17:1171-1181. [PMID: 30679990 PMCID: PMC6328856 DOI: 10.3892/etm.2018.7087] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2018] [Accepted: 07/13/2018] [Indexed: 02/06/2023] Open
Abstract
The aim of the present study was to investigate the function of microRNA-146b on myocardial infarction and the mechanism. An MTT assay, Annexin V/propidium iodide (PI) apoptosis assay, ELISA kits, western blot analysis and a caspase-3/8 activity assay were used to measure cell growth, vascular apoptosis inflammatory factors, and the B-cell lymphoma 2-associated X protein (Bax), phosphatase and tensin homolog (PTEN), phosphoinositide 3-kinase (PI3K)/Akt/nuclear factor (NF)-κB signaling pathway. The expression of microRNA-146b was downregulated in the myocardial infarction rat model, compared with the control group. In an in vitro model of myocardial infarction, the downregulation of microRNA-146b increased inflammatory factors, vascular apoptosis, caspase-3/8 activity and the protein expression of Bax. MicroRNA-146b reduced vascular apoptosis, caspase-3/8 activity and the protein expression of Bax. MicroRNA-146b also regulated the PI3K/Akt/NF-κB signaling pathway to mediate vascular inflammation and apoptosis in myocardial infarction by PTEN. A PI3K inhibitor decreased the effect of microRNA-146b on vascular inflammation and apoptosis following myocardial infarction. In conclusion, microRNA-146b mediated vascular inflammation and apoptosis in patients with myocardial infarction, which may be associated with activation of the PI3K/Akt/NF-κB signaling pathway by PTEN.
Collapse
Affiliation(s)
- Li Zhao
- Department of Internal Medicine, Jining No. 1 People's Hospital, Jining, Shandong 272111, P.R. China
| | - Xue Rong Yang
- Department of Nursing, Jining No. 1 People's Hospital, Jining, Shandong 272111, P.R. China
| | - Xu Han
- Health Care Unit, Jining No. 1 People's Hospital, Jining, Shandong 272111, P.R. China
| |
Collapse
|
25
|
Campayo M, Navarro A, Benítez JC, Santasusagna S, Ferrer C, Monzó M, Cirera L. miR-21, miR-99b and miR-375 combination as predictive response signature for preoperative chemoradiotherapy in rectal cancer. PLoS One 2018; 13:e0206542. [PMID: 30388154 PMCID: PMC6214543 DOI: 10.1371/journal.pone.0206542] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Accepted: 10/15/2018] [Indexed: 12/29/2022] Open
Abstract
Introduction Preoperative chemoradiotherapy (CRT) is a standard treatment for locally advanced rectal cancer patients. Despite the benefits of CRT, its use in non-responder patients can be associated with increased toxicities and surgical resection delay. The identification of CRT response biomarkers, such as microRNAs, could improve the management of these patients. We have studied the microRNA expression in pretreatment endoscopy biopsies from rectal cancer patients treated with CRT to identify potential microRNAs able to predict CRT response and clinical outcome of these patients. Material and methods RNA from pretreatment endoscopy biopsies from 96 rectal cancer patients treated with preoperative CRT were studied. Pathological response was graded according to the tumor regression grade (TRG) Dworak classification. In the screening phase, 377 miRNAs were studied in 12 patients with extreme responses (TRG0-1 vs TRG4). The potential role as predictive biomarkers for CRT response, disease-free survival (DFS) and overall survival (OS) of the miRNAs identified in the screening phase were validated in the whole cohort. Results In the screening phase, an 8-miRNAs CRT-response signature was identified: let-7b, let-7e, miR-21, miR-99b, miR-183, miR-328, miR-375 and miR-483-5p. In the validation phase, miR-21, miR-99b and miR-375 emerged as CRT response-related miRNAs while miR-328 and let-7e emerged as prognostic markers for DFS and OS. Interestingly, ROC curve analysis showed that the combination of miR-21, miR-99b and miR-375 had the best capacity to distinguish patients with maximum response (TRG4) from others. Conclusions miR-21, miR-99b and miR-375 could add valuable information for individualizing treatment in locally advanced rectal cancer patients.
Collapse
Affiliation(s)
- Marc Campayo
- Department of Medical Oncology, Hospital Universitari Mutua Terrassa, University of Barcelona, Terrassa, Barcelona, Spain
- * E-mail:
| | - Alfons Navarro
- Molecular Oncology and Embryology Laboratory, Human Anatomy Unit, Faculty of Medicine and Health Sciences, University of Barcelona, IDIBAPS, Barcelona, Spain
| | - Jose Carlos Benítez
- Department of Medical Oncology, Hospital Universitari Mutua Terrassa, University of Barcelona, Terrassa, Barcelona, Spain
| | - Sandra Santasusagna
- Molecular Oncology and Embryology Laboratory, Human Anatomy Unit, Faculty of Medicine and Health Sciences, University of Barcelona, IDIBAPS, Barcelona, Spain
| | - Carme Ferrer
- Department of Pathology, Hospital Universitari Mutua Terrassa, University of Barcelona, Terrassa, Barcelona, Spain
| | - Mariano Monzó
- Molecular Oncology and Embryology Laboratory, Human Anatomy Unit, Faculty of Medicine and Health Sciences, University of Barcelona, IDIBAPS, Barcelona, Spain
| | - Luis Cirera
- Department of Medical Oncology, Hospital Universitari Mutua Terrassa, University of Barcelona, Terrassa, Barcelona, Spain
| |
Collapse
|
26
|
Liu X, Cai H, Sheng W, Huang H, Long Z, Wang Y. microRNAs expression profile related with response to preoperative radiochemotherapy in patients with locally advanced gastric cancer. BMC Cancer 2018; 18:1048. [PMID: 30373600 PMCID: PMC6206758 DOI: 10.1186/s12885-018-4967-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 10/17/2018] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND It is urgent to find some biochemical markers for predicting the radiochemotherapy sensitivity. microRNAs have a huge potential as a predictive biomarker in gastric cancer. The current study aims to identify the microRNAs related to the radiochemotherapy sensitivity in gastric cancer. METHODS From April 2012 to August 2014, 40 patients with locally advanced gastric cancer were included into the clinical trial in the Fudan University Shanghai Cancer Center. The lesion specimens of 15 patients were obtained by gastroendoscopy before treatment, and the RNA was extracted. microRNAs array was used to identify the microRNAs with different expression level between sensitive group and non-sensitive group. The microRNAs identified in the array were further confirmed by TaqMan Real-time PCR. RESULTS 2006 microRNAs were identified by microRNA array, including 302 highly expressed microRNAs and 1704 lowly expressed microRNAs between non-sensitive group and sensitive group. According to the statistical significance (p < 0.05) and expression level (more than twofold or less than 0.5 times), 9 microRNAs were identified. Finally, we chose 6 microRNAs like miR-16-2-3p, miR-340-5p, miR-338-3p, miR-142-3p, miR-142-5p and miR-582-5p to determine the sensitive group and non-sensitive group. TaqMan Real-time PCR confirmed the results of microRNA array. CONCLUSIONS microRNA array can be used to select the microRNAs associated with radiochemotherapy sensitivity in gastric cancer. miR-338-3p and miR-142-3p may be promising predictive biomarkers for such patients. TRIAL REGISTRATION Trial Registration number: NCT03013010 . Name of registry: Phase II Study of Neoadjuvant Chemotherapy Wtih S1 + Oxaliplatin (SOX) Regimen Followed by Chemoradiation Concurrent With S-1 in Patients With Potentially Resectable Gastric Carcinoma. Date registered: December 31, 2013. The trial was prospectively registered.
Collapse
Affiliation(s)
- Xiaowen Liu
- Department of Gastric Surgery, Fudan University Shanghai Cancer Center, 270 Dong An Road, Shanghai, 200032, People's Republic of China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Hong Cai
- Department of Gastric Surgery, Fudan University Shanghai Cancer Center, 270 Dong An Road, Shanghai, 200032, People's Republic of China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Weiqi Sheng
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.,Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
| | - Hua Huang
- Department of Gastric Surgery, Fudan University Shanghai Cancer Center, 270 Dong An Road, Shanghai, 200032, People's Republic of China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Ziwen Long
- Department of Gastric Surgery, Fudan University Shanghai Cancer Center, 270 Dong An Road, Shanghai, 200032, People's Republic of China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Yanong Wang
- Department of Gastric Surgery, Fudan University Shanghai Cancer Center, 270 Dong An Road, Shanghai, 200032, People's Republic of China. .,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
27
|
Wang J, Sun X. MicroRNA-375 inhibits the proliferation, migration and invasion of kidney cancer cells by triggering apoptosis and modulation of PDK1 expression. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2018; 62:227-233. [PMID: 30098579 DOI: 10.1016/j.etap.2018.08.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2018] [Revised: 07/28/2018] [Accepted: 08/01/2018] [Indexed: 06/08/2023]
Abstract
Kidney cancer is one of the deadly cancers and is the cause of significant number of deaths worldwide. The treatments used for the treatment of kidney cancer are limited and associated with number of side effects. Therefore, there is need for the development of new drug options or to identify novel therapeutic targets for the treatment of kidney cancer. In this study we investigated the potential of miR-375 as the therapeutic target for the treatment of Kidney cancer. The results revealed that miR-375 is significantly downregulated in the Kidney cancer cells. To investigate the role therapeutic potential of miR-375, one kidney cancer cell line (A-498) was selected for further experimentation. It was observed that overexpression of miR-375 inhibits A-498 kidney cancer proliferation by induction of apoptosis. In addition, overexpression of miR-375 causes suppression of migration and invasion of the A-498 kidney cancers cells. Bioinformatic analysis revealed PDK1 to be putative target of miR-375 in Kidney cancer cells. The western blot analysis revealed the expression of PDK1 to be significantly upregulated in Kidney cancer cells and overexpression of miR-375 in A-498 cells caused inhibition of PDK1 preventing the phosphorylation of AKT (Thr308 and Ser473). Additionally, inhibition of PDK1 had similar effects as that of miR-375 overexpression on cell proliferation of A-498 kidney cancer cells. The inhibition of miR-375 expression could not rescue the effects of PDK-1 suppression on A-498 cell proliferation. In contrary, overexpression of PKD1 in A-498 cells transfected with miR-375 mimics could nullify the effects of miR-375 on proliferation of the A-498 cells. Taken together, we conclude that miR-375 regulates cell proliferation, migration and invasion of A-498 kidney cancer cells and may prove to be an important therapeutic target.
Collapse
Affiliation(s)
- Jinling Wang
- Department of Kidney, The Affiliated Hospital of Weifang Medical University, Weifang, Shandong Province, China
| | - Xiuju Sun
- Department of Kidney, The Affiliated Hospital of Weifang Medical University, Weifang, Shandong Province, China.
| |
Collapse
|
28
|
NGS-identified circulating miR-375 as a potential regulating component of myocardial infarction associated network. J Mol Cell Cardiol 2018; 121:173-179. [PMID: 30025897 DOI: 10.1016/j.yjmcc.2018.07.129] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2018] [Revised: 07/13/2018] [Accepted: 07/14/2018] [Indexed: 12/14/2022]
Abstract
Acute myocardial infarction (MI), the most severe type of coronary heart disease, is a leading cause of disability and mortality worldwide. In order to investigate the involvement of miRNAs in the pathologic processes related to MI, we performed the analysis of circulating miRNAs - stable short noncoding RNA molecules - in the peripheral blood plasma of MI patients compared to healthy controls (all persons were men and lived in European Russia) using next generation sequencing. We observed 20 miRNAs, which levels in plasma more than two-fold differed in MI patients (p < 0.05). Among them miR-208b and miR-375 passed threshold for multiple corrections (FC = 49.2, FDR-adjusted p-value = 0.0078 and FC = -6.4, FDR-adjusted p-value = 0.00076, respectively); these data were then validated using RT-qPCR (FC = 5.3, p-value = 0.028 and FC = -2.1, p-value = 0.0039, respectively). While for miR-208b we reidentified earlier observations, miR-375 was found to be associated with MI for the first time. To investigate the reasons for which miR-375 holds a special place among circulating miRNAs in MI, enrichment and network analyses of miR-375 target genes and their interactions were carried out. PIK3CA and TP53 genes, regulated by miR-375, were identified as the key players of MI disease module.
Collapse
|
29
|
Wu S, Chen H. Anti-Condyloma acuminata mechanism of microRNAs-375 modulates HPV in cervical cancer cells via the UBE3A and IGF-1R pathway. Oncol Lett 2018; 16:3241-3247. [PMID: 30127920 DOI: 10.3892/ol.2018.8983] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 11/02/2017] [Indexed: 11/06/2022] Open
Abstract
The present study aimed to identify the probable anti-Condyloma acuminata (CA) mechanism of microRNA-375 (miRNA-375) in human papillomavirus (HPV). Firstly, the overexpression of miRNA-375 significantly suppressed cell proliferation, increased lactate dehydrogenase activity and induced apoptosis in HPV-18(+) cervical cancer cells. The overexpression of miRNA-375 significantly increased caspase-3 and caspase-9 activities, induced B-cell lymphoma 2 (Bcl-2)/Bcl-2-associated X protein, tumor protein 53 and cyclin-dependent kinase inhibitor 1 protein expression and suppressed cyclin D1 and survivin protein expression in HPV-18(+) cervical cancer cells. The overexpression of miRNA-375 significantly suppressed the levels of protein expression of ubiquitin-protein ligase E3A (UBE3A) and Insulin-like growth factor-1 receptor (IGF-1R) in HPV-18(+) cervical cancer cells. To conclude, it was identified that the probable anti-CA mechanism of miRNA-375 modulates HPV through the UBE3A and IGF-1R pathway in cervical cancer cells.
Collapse
Affiliation(s)
- Shuying Wu
- Department of Dermatology, Tianjin Union Medical Center, Tianjin 300121, P.R. China
| | - Hong Chen
- Department of Dermatology, Tianjin Union Medical Center, Tianjin 300121, P.R. China
| |
Collapse
|
30
|
MicroRNA-196b enhances the radiosensitivity of SNU-638 gastric cancer cells by targeting RAD23B. Biomed Pharmacother 2018; 105:362-369. [PMID: 29864624 DOI: 10.1016/j.biopha.2018.05.111] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2017] [Revised: 05/21/2018] [Accepted: 05/23/2018] [Indexed: 01/05/2023] Open
Abstract
Gastric cancer is characterized by resistance to ionizing radiation. The development of resistance to radiotherapy in gastric cancer patients is one of the obstacles to effective radiotherapy. MicroRNAs are small well-conserved non-coding RNA species that regulate post-transcriptional activation. Our study aimed to investigate the role of miR-196b in radiation-induced gastric cancer. In the present study, we found that miR-196b expression was significantly reduced following radiation. The ectopic miR-196b expression sensitized SNU-638 gastric cancer cells and increased γ-H2AX foci upon radiation treatment. Bioinformatics analysis suggested that the DNA repair protein RAD23B was a putative target gene of miR-196b. Overexpression of miR-196b suppressed RAD23B expression in SNU-638 cells. Reporter assays further showed that miR-196b inhibited RAD23B 3'-UTR luciferase activity. Knockdown of RAD23B by small interfering RNA transfection closely mimicked the outcomes of miR-196b transfection, leading to impaired DNA damage repair in gastric cancer cells. Our results show that miR-196b improved radiosensitivity of SNU-638 cells by targeting RAD23B. Our data indicate that miR-196b is a potential target to enhance the effect of radiation treatment on gastric cancer cells. These findings will provide evidence for a new therapeutic target in radiotherapy.
Collapse
|
31
|
Wu YC, Liu X, Wang JL, Chen XL, Lei L, Han J, Jiang YS, Ling ZQ. Soft-shelled turtle peptide modulates microRNA profile in human gastric cancer AGS cells. Oncol Lett 2017; 15:3109-3120. [PMID: 29435044 DOI: 10.3892/ol.2017.7692] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Accepted: 07/14/2017] [Indexed: 12/15/2022] Open
Abstract
Cancer prevention using natural micronutrition on epigenetic mechanisms primarily revolves around plant extracts. However, the role of macronutrition, including animal peptides, on epigenetic modification in cancer has been elusive. In traditional Chinese medicine, the soft-shelled turtle has a long-history of being a functional food that strengthens immunity through unknown mechanisms. The present study aimed to investigate the impact of soft-shelled turtle peptide on microRNA (miRNA) expression in gastric cancer (GC) cells and to analyze the potential anticancer mechanisms for GC. Affymetrix GeneChip miRNA 3.0 Array and quantitative polymerase chain reaction were used to detect the miRNA expression profile in human GC AGS cells treated with the soft-shelled turtle peptide. The results demonstrated that 101 miRNAs (49 upregulated miRNAs and 52 downregulated miRNAs) were significantly differentially expressed in the AGS cells following soft-shelled turtle peptide treatment. Several tumor suppressor miRNAs were upregulated markedly, including miRNA-375, let-7d, miRNA-429, miRNA-148a/148b and miRNA-34a. Pathway analysis indicated that soft-shelled turtle peptide may function with anticancer properties through the Hippo signaling pathway and the forkhead box O signaling pathway. Therefore, these results demonstrated that soft-shelled turtle peptide has the capacity to influence cancer-related pathways through the regulation of miRNA expression in GC cells.
Collapse
Affiliation(s)
- Yi-Chen Wu
- Zhejiang Cancer Research Institute, Zhejiang Province Cancer Hospital, Zhejiang Cancer Center, Hangzhou, Zhejiang 310022, P.R. China
| | - Xiang Liu
- Zhejiang Cancer Research Institute, Zhejiang Province Cancer Hospital, Zhejiang Cancer Center, Hangzhou, Zhejiang 310022, P.R. China
| | - Jiu-Li Wang
- Zhejiang Cancer Research Institute, Zhejiang Province Cancer Hospital, Zhejiang Cancer Center, Hangzhou, Zhejiang 310022, P.R. China
| | - Xiang-Liu Chen
- Zhejiang Cancer Research Institute, Zhejiang Province Cancer Hospital, Zhejiang Cancer Center, Hangzhou, Zhejiang 310022, P.R. China
| | - Lan Lei
- Zhejiang Cancer Research Institute, Zhejiang Province Cancer Hospital, Zhejiang Cancer Center, Hangzhou, Zhejiang 310022, P.R. China
| | - Jing Han
- Zhejiang Cancer Research Institute, Zhejiang Province Cancer Hospital, Zhejiang Cancer Center, Hangzhou, Zhejiang 310022, P.R. China
| | - You-Shui Jiang
- Zhejiang Agricultural Group Co., Ltd., Hangzhou, Zhejiang 310021, P.R. China
| | - Zhi-Qiang Ling
- Zhejiang Cancer Research Institute, Zhejiang Province Cancer Hospital, Zhejiang Cancer Center, Hangzhou, Zhejiang 310022, P.R. China
| |
Collapse
|
32
|
MiR-375 attenuates injury of cerebral ischemia/reperfusion via targetting Ctgf. Biosci Rep 2017; 37:BSR20171242. [PMID: 29187583 PMCID: PMC5741829 DOI: 10.1042/bsr20171242] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 11/19/2017] [Accepted: 11/29/2017] [Indexed: 11/17/2022] Open
Abstract
Ischemic stroke is the leading cause of disability and deaths worldwide. MiRNAs have been shown to play an important role in development and pathogenesis of the nervous system. However, the precise function and mechanism of miRNAs are not fully understood in the brain injury induced by ischemia/reperfusion (I/R). Herein, our study showed that miR-375 expression was significantly down-regulated in the rat I/R brain. With the in vivo and in vitro I/R stroke models, we found that miR-375 mimic provides significant protection from injury to cerebral I/R, which is reflected by reduced infarct volumes and cell apoptosis, and increased proliferation and migration of PC12 cells. Mechanistically, our findings showed that miR-375 binds to 3′-UTR region of Ctgf mRNA, subsequently leading to the decreased expression of Ctgf in the I/R brain. Furthermore, we showed that miR-375/Ctgf-mediated protective effects are associated with p21/PI3K/Akt signaling pathways. Our findings thus provide a new insight into the mechanism of cerebral I/R injury and pave a potential new way for the therapy of cerebral I/R injury.
Collapse
|
33
|
De Santis R, Santini L, Colantoni A, Peruzzi G, de Turris V, Alfano V, Bozzoni I, Rosa A. FUS Mutant Human Motoneurons Display Altered Transcriptome and microRNA Pathways with Implications for ALS Pathogenesis. Stem Cell Reports 2017; 9:1450-1462. [PMID: 28988989 PMCID: PMC5830977 DOI: 10.1016/j.stemcr.2017.09.004] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Revised: 09/05/2017] [Accepted: 09/06/2017] [Indexed: 12/13/2022] Open
Abstract
The FUS gene has been linked to amyotrophic lateral sclerosis (ALS). FUS is a ubiquitous RNA-binding protein, and the mechanisms leading to selective motoneuron loss downstream of ALS-linked mutations are largely unknown. We report the transcriptome analysis of human purified motoneurons, obtained from FUS wild-type or mutant isogenic induced pluripotent stem cells (iPSCs). Gene ontology analysis of differentially expressed genes identified significant enrichment of pathways previously associated to sporadic ALS and other neurological diseases. Several microRNAs (miRNAs) were also deregulated in FUS mutant motoneurons, including miR-375, involved in motoneuron survival. We report that relevant targets of miR-375, including the neural RNA-binding protein ELAVL4 and apoptotic factors, are aberrantly increased in FUS mutant motoneurons. Characterization of transcriptome changes in the cell type primarily affected by the disease contributes to the definition of the pathogenic mechanisms of FUS-linked ALS.
Collapse
Affiliation(s)
- Riccardo De Santis
- Center for Life Nano Science, Istituto Italiano di Tecnologia, Viale Regina Elena 291, 00161 Rome, Italy; Department of Biology and Biotechnology Charles Darwin, Sapienza University of Rome, P.le A. Moro 5, 00185 Rome, Italy
| | - Laura Santini
- Department of Biology and Biotechnology Charles Darwin, Sapienza University of Rome, P.le A. Moro 5, 00185 Rome, Italy
| | - Alessio Colantoni
- Department of Biology and Biotechnology Charles Darwin, Sapienza University of Rome, P.le A. Moro 5, 00185 Rome, Italy
| | - Giovanna Peruzzi
- Center for Life Nano Science, Istituto Italiano di Tecnologia, Viale Regina Elena 291, 00161 Rome, Italy
| | - Valeria de Turris
- Center for Life Nano Science, Istituto Italiano di Tecnologia, Viale Regina Elena 291, 00161 Rome, Italy
| | - Vincenzo Alfano
- Department of Biology and Biotechnology Charles Darwin, Sapienza University of Rome, P.le A. Moro 5, 00185 Rome, Italy
| | - Irene Bozzoni
- Center for Life Nano Science, Istituto Italiano di Tecnologia, Viale Regina Elena 291, 00161 Rome, Italy; Department of Biology and Biotechnology Charles Darwin, Sapienza University of Rome, P.le A. Moro 5, 00185 Rome, Italy; Institute Pasteur Fondazione Cenci-Bolognetti, Sapienza University of Rome, P.le A. Moro 5, 00185 Rome, Italy
| | - Alessandro Rosa
- Center for Life Nano Science, Istituto Italiano di Tecnologia, Viale Regina Elena 291, 00161 Rome, Italy; Department of Biology and Biotechnology Charles Darwin, Sapienza University of Rome, P.le A. Moro 5, 00185 Rome, Italy.
| |
Collapse
|
34
|
He J, Feng X, Hua J, Wei L, Lu Z, Wei W, Cai H, Wang B, Shi W, Ding N, Li H, Zhang Y, Wang J. miR-300 regulates cellular radiosensitivity through targeting p53 and apaf1 in human lung cancer cells. Cell Cycle 2017; 16:1943-1953. [PMID: 28895780 DOI: 10.1080/15384101.2017.1367070] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
microRNAs (miRNAs) play a crucial role in mediation of the cellular sensitivity to ionizing radiation (IR). Previous studies revealed that miR-300 was involved in the cellular response to IR or chemotherapy drug. However, whether miR-300 could regulate the DNA damage responses induced by extrinsic genotoxic stress in human lung cancer and the underlying mechanism remain unknown. In this study, the expression of miR-300 was examined in lung cancer cells treated with IR, and the effects of miR-300 on DNA damage repair, cell cycle arrest, apoptosis and senescence induced by IR were investigated. It was found that IR induced upregulation of endogenous miR-300, and ectopic expression of miR-300 by transfected with miR-300 mimics not only greatly enhanced the cellular DNA damage repair ability but also substantially abrogated the G2 cell cycle arrest and apoptosis induced by IR. Bioinformatic analysis predicted that p53 and apaf1 were potential targets of miR-300, and the luciferase reporter assay showed that miR-300 significantly suppressed the luciferase activity through binding to the 3'-UTR of p53 or apaf1 mRNA. In addition, overexpression of miR-300 significantly reduced p53/apaf1 and/or IR-induced p53/apaf1 protein expression levels. Flow cytomertry analysis and colony formation assay showed that miR-300 desensitized lung cancer cells to IR by suppressing p53-dependent G2 cell cycle arrest, apoptosis and senescence. These data demonstrate that miR-300 regulates the cellular sensitivity to IR through targeting p53 and apaf1 in lung cancer cells.
Collapse
Affiliation(s)
- Jinpeng He
- a Key Laboratory of Space Radiobiology of Gansu Province & Key Laboratory of Heavy Ion Radiation Biology and Medicine, Institute of Modern Physics , Chinese Academy of Sciences , Lanzhou , China
| | - Xiu Feng
- a Key Laboratory of Space Radiobiology of Gansu Province & Key Laboratory of Heavy Ion Radiation Biology and Medicine, Institute of Modern Physics , Chinese Academy of Sciences , Lanzhou , China.,b School of Pharmacy , Lanzhou University , Lanzhou , China
| | - Junrui Hua
- a Key Laboratory of Space Radiobiology of Gansu Province & Key Laboratory of Heavy Ion Radiation Biology and Medicine, Institute of Modern Physics , Chinese Academy of Sciences , Lanzhou , China
| | - Li Wei
- c Clinical Lab & General Surgery Department , Gansu Provincial Hospital , Lanzhou , China
| | - Zhiwei Lu
- d Major Disease Prevention and Control of Molecular Medicine and Traditional Chinese Medicine Research in Gansu Provincial Key Laboratory , Gansu University of Chinese Medicine , Lanzhou , China
| | - Wenjun Wei
- a Key Laboratory of Space Radiobiology of Gansu Province & Key Laboratory of Heavy Ion Radiation Biology and Medicine, Institute of Modern Physics , Chinese Academy of Sciences , Lanzhou , China.,e University of Chinese Academy of Sciences , Beijing , China
| | - Hui Cai
- c Clinical Lab & General Surgery Department , Gansu Provincial Hospital , Lanzhou , China
| | - Bing Wang
- a Key Laboratory of Space Radiobiology of Gansu Province & Key Laboratory of Heavy Ion Radiation Biology and Medicine, Institute of Modern Physics , Chinese Academy of Sciences , Lanzhou , China.,e University of Chinese Academy of Sciences , Beijing , China
| | - Wengui Shi
- a Key Laboratory of Space Radiobiology of Gansu Province & Key Laboratory of Heavy Ion Radiation Biology and Medicine, Institute of Modern Physics , Chinese Academy of Sciences , Lanzhou , China.,e University of Chinese Academy of Sciences , Beijing , China
| | - Nan Ding
- a Key Laboratory of Space Radiobiology of Gansu Province & Key Laboratory of Heavy Ion Radiation Biology and Medicine, Institute of Modern Physics , Chinese Academy of Sciences , Lanzhou , China
| | - He Li
- a Key Laboratory of Space Radiobiology of Gansu Province & Key Laboratory of Heavy Ion Radiation Biology and Medicine, Institute of Modern Physics , Chinese Academy of Sciences , Lanzhou , China.,e University of Chinese Academy of Sciences , Beijing , China
| | - Yanan Zhang
- a Key Laboratory of Space Radiobiology of Gansu Province & Key Laboratory of Heavy Ion Radiation Biology and Medicine, Institute of Modern Physics , Chinese Academy of Sciences , Lanzhou , China
| | - Jufang Wang
- a Key Laboratory of Space Radiobiology of Gansu Province & Key Laboratory of Heavy Ion Radiation Biology and Medicine, Institute of Modern Physics , Chinese Academy of Sciences , Lanzhou , China
| |
Collapse
|
35
|
Hao NB, He YF, Li XQ, Wang K, Wang RL. The role of miRNA and lncRNA in gastric cancer. Oncotarget 2017; 8:81572-81582. [PMID: 29113415 PMCID: PMC5655310 DOI: 10.18632/oncotarget.19197] [Citation(s) in RCA: 171] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Accepted: 06/20/2017] [Indexed: 12/14/2022] Open
Abstract
Gastric cancer is one of the most common cancers and has the highest mortality rate worldwide. It is worthwhile to explore the mechanism of gastric cancer progression. An increasing number of studies have found that non-coding RNAs including miRNA and lncRNA play important roles in gastric cancer progression. This review summarized the role of ectopic miRNA in gastric cancer proliferation, growth, migration, invasion and apoptosis. Meantime, aberrantly expressed miRNA also received a great deal of attention as potential biomarker for gastric cancer diagnosis and therapy. Over the last decade, lncRNA was considered to regulate gastric cancer progression at the transcript and post-transcript level. At the transcript level, lncRNA induced gastric cancer progression by changing chromatin modification and mRNA stabilization to regulate mRNA and miRNA expression. Furthermore, lncRNA regulated gastric cancer progression by completely combining with miRNA to produce ceRNA or promote protein stabilization at the post-transcript level. Greater attention of miRNA and lncRNA in gastric cancer can provide new insight of mechanism of cancer development and may be acted as a new anticancer target.
Collapse
Affiliation(s)
- Ning-Bo Hao
- Department of Gastroenterology, General Hospital of the PLA Rocket Force, Beijing, China
| | - Ya-Fei He
- Intensive Medical Center, 302 Hospital of PLA, Beijing, China
| | - Xiao-Qin Li
- Department of Ophthalmology, General Hospital of the PLA Rocket Force, Beijing, China
| | - Kai Wang
- New Era Stoke Care and Research Institute, General Hospital of the PLA Rocket Force, Beijing, China
| | - Rui-Ling Wang
- Department of Gastroenterology, General Hospital of the PLA Rocket Force, Beijing, China
| |
Collapse
|
36
|
MicroRNAs as Key Effectors in the p53 Network. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2017; 333:51-90. [PMID: 28729028 DOI: 10.1016/bs.ircmb.2017.04.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The guardian of the genome p53 is embedded in a fine-spun network of MicroRNAs. p53 is able to activate or repress directly the transcription of MicroRNAs that are participating in the tumor-suppressive mission of p53. On the other hand, the expression of p53 is under tight control of MicroRNAs that are either targeting directly p53 or factors that are modifying its protein level or activity. Although the most important function of p53 is suggested to be transcriptional regulation, there are several nontranscriptional functions described. One of those regards the modulation of MicroRNA biogenesis. Wild-type p53 is increasing the maturation of selected MicroRNAs from the primary transcript to the precursor MiRNA by interacting with the Microprocessor complex. Furthermore, p53 is modulating the mRNA accessibility for certain MicroRNAs by association with the RISC complex and transcriptional regulation of RNA-binding proteins. In this way p53 is able to remodel the MiRNA-mRNA interaction network. As wild-type p53 is employing MicroRNAs to suppress cancer development, gain-of-function mutant p53 proteins use MicroRNAs to confer oncogenic properties like chemoresistance and the ability to drive metastasis. Like its wild-type counterpart mutant p53 is able to regulate MicroRNAs transcriptionally and posttranscriptionally. Mutant p53 affects the MiRNA processing at two cleavage steps through interfering with the Microprocessor complex and by downregulating Dicer and KSRP, a modulator of MiRNA biogenesis. Thus, MicroRNAs are essential components in the p53 pathway, contributing substantially to combat or enhance tumor development depending on the wild-type or mutant p53 context.
Collapse
|
37
|
Szatmári T, Kis D, Bogdándi EN, Benedek A, Bright S, Bowler D, Persa E, Kis E, Balogh A, Naszályi LN, Kadhim M, Sáfrány G, Lumniczky K. Extracellular Vesicles Mediate Radiation-Induced Systemic Bystander Signals in the Bone Marrow and Spleen. Front Immunol 2017; 8:347. [PMID: 28396668 PMCID: PMC5366932 DOI: 10.3389/fimmu.2017.00347] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Accepted: 03/10/2017] [Indexed: 12/02/2022] Open
Abstract
Radiation-induced bystander effects refer to the induction of biological changes in cells not directly hit by radiation implying that the number of cells affected by radiation is larger than the actual number of irradiated cells. Recent in vitro studies suggest the role of extracellular vesicles (EVs) in mediating radiation-induced bystander signals, but in vivo investigations are still lacking. Here, we report an in vivo study investigating the role of EVs in mediating radiation effects. C57BL/6 mice were total-body irradiated with X-rays (0.1, 0.25, 2 Gy), and 24 h later, EVs were isolated from the bone marrow (BM) and were intravenously injected into unirradiated (so-called bystander) animals. EV-induced systemic effects were compared to radiation effects in the directly irradiated animals. Similar to direct radiation, EVs from irradiated mice induced complex DNA damage in EV-recipient animals, manifested in an increased level of chromosomal aberrations and the activation of the DNA damage response. However, while DNA damage after direct irradiation increased with the dose, EV-induced effects peaked at lower doses. A significantly reduced hematopoietic stem cell pool in the BM as well as CD4+ and CD8+ lymphocyte pool in the spleen was detected in mice injected with EVs isolated from animals irradiated with 2 Gy. These EV-induced alterations were comparable to changes present in the directly irradiated mice. The pool of TLR4-expressing dendritic cells was different in the directly irradiated mice, where it increased after 2 Gy and in the EV-recipient animals, where it strongly decreased in a dose-independent manner. A panel of eight differentially expressed microRNAs (miRNA) was identified in the EVs originating from both low- and high-dose-irradiated mice, with a predicted involvement in pathways related to DNA damage repair, hematopoietic, and immune system regulation, suggesting a direct involvement of these pathways in mediating radiation-induced systemic effects. In conclusion, we proved the role of EVs in transmitting certain radiation effects, identified miRNAs carried by EVs potentially responsible for these effects, and showed that the pattern of changes was often different in the directly irradiated and EV-recipient bystander mice, suggesting different mechanisms.
Collapse
Affiliation(s)
- Tünde Szatmári
- Division of Radiation Medicine, National Public Health Centre, National Research Directorate for Radiobiology and Radiohygiene , Budapest , Hungary
| | - Dávid Kis
- Division of Radiation Medicine, National Public Health Centre, National Research Directorate for Radiobiology and Radiohygiene , Budapest , Hungary
| | - Enikő Noémi Bogdándi
- Division of Radiation Medicine, National Public Health Centre, National Research Directorate for Radiobiology and Radiohygiene , Budapest , Hungary
| | - Anett Benedek
- Division of Radiation Medicine, National Public Health Centre, National Research Directorate for Radiobiology and Radiohygiene , Budapest , Hungary
| | - Scott Bright
- Genomic Instability Group, Department of Biological and Medical Sciences, Oxford Brookes University , Oxford , UK
| | - Deborah Bowler
- Genomic Instability Group, Department of Biological and Medical Sciences, Oxford Brookes University , Oxford , UK
| | - Eszter Persa
- Division of Radiation Medicine, National Public Health Centre, National Research Directorate for Radiobiology and Radiohygiene , Budapest , Hungary
| | - Enikő Kis
- Division of Radiation Medicine, National Public Health Centre, National Research Directorate for Radiobiology and Radiohygiene , Budapest , Hungary
| | - Andrea Balogh
- Division of Radiation Medicine, National Public Health Centre, National Research Directorate for Radiobiology and Radiohygiene , Budapest , Hungary
| | - Lívia N Naszályi
- Research Group for Molecular Biophysics, Hungarian Academy of Sciences, Semmelweis University , Budapest , Hungary
| | - Munira Kadhim
- Genomic Instability Group, Department of Biological and Medical Sciences, Oxford Brookes University , Oxford , UK
| | - Géza Sáfrány
- Division of Radiation Medicine, National Public Health Centre, National Research Directorate for Radiobiology and Radiohygiene , Budapest , Hungary
| | - Katalin Lumniczky
- Division of Radiation Medicine, National Public Health Centre, National Research Directorate for Radiobiology and Radiohygiene , Budapest , Hungary
| |
Collapse
|
38
|
He J, Tian N, Yang Y, Jin L, Feng X, Hua J, Lin S, Wang B, Li H, Wang J. miR-185 enhances the inhibition of proliferation and migration induced by ionizing radiation in melanoma. Oncol Lett 2017; 13:2442-2448. [PMID: 28454417 DOI: 10.3892/ol.2017.5699] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Accepted: 12/02/2016] [Indexed: 12/14/2022] Open
Abstract
Melanoma is an aggressive malignancy that is increasingly common and exhibits a poor patient survival rate. Radiotherapy is the primary option for patients with melanoma, particularly those who are not candidates for surgery; however, the therapeutic effect is limited due to the relative radioresistance of melanoma to ionizing radiation (IR). It has been reported that microRNAs (miRNAs) serve a vital role in determining the radiosensitivity of tumors; however, little is known concerning the radiosensitization of melanoma using miRNA. In the present study, the radiosensitization effect of miRNA 185 (miR-185), which has been demonstrated to reduce renal cancer radioresistance, was investigated in B16 cells, a skin melanoma cell line derived from C57/BL mice, was investigated. Cell proliferation and scratch wound healing assays were used to determine the proliferative and migratory abilities of B16 cells. Annexin V/propidium iodide double staining was used to determine the apoptosis induced by IR. A tumor formation assay was performed to determine the radiosensitization effect of miR-185 on melanoma cells in vivo. Proliferation marker protein Ki-67, and hematoxylin and eosin staining were used to assess the proliferative activity and histological changes, respectively. The results of the present study demonstrated that miR-185 suppresses cellular proliferation and migration, and enhances IR-induced apoptosis, and the inhibition of proliferation and migration, in vitro and in vivo, which provides an insight into understanding the radiosensitization of melanoma using miRNA.
Collapse
Affiliation(s)
- Jinpeng He
- Gansu Key Laboratory of Space Radiobiology, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, Gansu 730000, P.R. China.,Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, Gansu 730000, P.R. China
| | - Ning Tian
- Gansu Key Laboratory of Space Radiobiology, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, Gansu 730000, P.R. China.,School of Pharmacy, Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| | - Yanli Yang
- Department of Pathology, Lanzhou General Hospital, Lanzhou Command of the Chinese People's Liberation Army, Lanzhou, Gansu 730050, P.R. China
| | - Liangliang Jin
- Department of Pathology, Lanzhou General Hospital, Lanzhou Command of the Chinese People's Liberation Army, Lanzhou, Gansu 730050, P.R. China
| | - Xiu Feng
- Gansu Key Laboratory of Space Radiobiology, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, Gansu 730000, P.R. China.,School of Pharmacy, Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| | - Junrui Hua
- Gansu Key Laboratory of Space Radiobiology, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, Gansu 730000, P.R. China.,Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, Gansu 730000, P.R. China
| | - Sulan Lin
- Gansu Key Laboratory of Space Radiobiology, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, Gansu 730000, P.R. China.,University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Bing Wang
- Gansu Key Laboratory of Space Radiobiology, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, Gansu 730000, P.R. China.,University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - He Li
- Gansu Key Laboratory of Space Radiobiology, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, Gansu 730000, P.R. China.,University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Jufang Wang
- Gansu Key Laboratory of Space Radiobiology, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, Gansu 730000, P.R. China.,Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, Gansu 730000, P.R. China
| |
Collapse
|
39
|
Jeppsson S, Srinivasan S, Chandrasekharan B. Neuropeptide Y (NPY) promotes inflammation-induced tumorigenesis by enhancing epithelial cell proliferation. Am J Physiol Gastrointest Liver Physiol 2017; 312:G103-G111. [PMID: 27856419 PMCID: PMC5338605 DOI: 10.1152/ajpgi.00410.2015] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Revised: 11/10/2016] [Accepted: 11/10/2016] [Indexed: 02/07/2023]
Abstract
UNLABELLED We have demonstrated that neuropeptide Y (NPY), abundantly produced by enteric neurons, is an important regulator of intestinal inflammation. However, the role of NPY in the progression of chronic inflammation to tumorigenesis is unknown. We investigated whether NPY could modulate epithelial cell proliferation and apoptosis, and thus regulate tumorigenesis. Repeated cycles of dextran sodium sulfate (DSS) were used to model inflammation-induced tumorigenesis in wild-type (WT) and NPY knockout (NPY-/-) mice. Intestinal epithelial cell lines (T84) were used to assess the effects of NPY (0.1 µM) on epithelial proliferation and apoptosis in vitro. DSS-WT mice exhibited enhanced intestinal inflammation, polyp size, and polyp number (7.5 ± 0.8) compared with DSS-NPY-/- mice (4 ± 0.5, P < 0.01). Accordingly, DSS-WT mice also showed increased colonic epithelial proliferation (PCNA, Ki67) and reduced apoptosis (TUNEL) compared with DSS-NPY-/- mice. The apoptosis regulating microRNA, miR-375, was significantly downregulated in the colon of DSS-WT (2-fold, P < 0.01) compared with DSS-NPY-/--mice. In vitro studies indicated that NPY promotes cell proliferation (increase in PCNA and β-catenin, P < 0.05) via phosphatidyl-inositol-3-kinase (PI3-K)-β-catenin signaling, suppressed miR-375 expression, and reduced apoptosis (increase in phospho-Bad). NPY-treated cells also displayed increased c-Myc and cyclin D1, and reduction in p21 (P < 0.05). Addition of miR-375 inhibitor to cells already treated with NPY did not further enhance the effects induced by NPY alone. Our findings demonstrate a novel regulation of inflammation-induced tumorigenesis by NPY-epithelial cross talk as mediated by activation of PI3-K signaling and downregulation of miR-375. NEW & NOTEWORTHY Our work exemplifies a novel role of neuropeptide Y (NPY) in regulating inflammation-induced tumorigenesis via two modalities: first by enhanced proliferation (PI3-K/pAkt), and second by downregulation of microRNA-375 (miR-375)-dependent apoptosis in intestinal epithelial cells. Our data establish the existence of a microRNA-mediated cross talk between enteric neurons producing NPY and intestinal epithelial cells, and the potential of neuropeptide-regulated miRNAs as potential therapeutic molecules for the management of inflammation-associated tumors in the gut.
Collapse
Affiliation(s)
- Sabrina Jeppsson
- 1Division of Digestive Diseases, Department of Medicine, Emory University, Atlanta, Georgia;
| | - Shanthi Srinivasan
- 1Division of Digestive Diseases, Department of Medicine, Emory University, Atlanta, Georgia; ,2Veterans Affairs Medical Center, Decatur, Atlanta, Georgia; and
| | - Bindu Chandrasekharan
- Division of Digestive Diseases, Department of Medicine, Emory University, Atlanta, Georgia; .,Georgia Institute of Technology, Atlanta, Georgia
| |
Collapse
|
40
|
Fang Y, Zhang L, Li Z, Li Y, Huang C, Lu X. MicroRNAs in DNA Damage Response, Carcinogenesis, and Chemoresistance. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2017; 333:1-49. [DOI: 10.1016/bs.ircmb.2017.03.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
41
|
He M, Zhou W, Li C, Guo M. MicroRNAs, DNA Damage Response, and Cancer Treatment. Int J Mol Sci 2016; 17:ijms17122087. [PMID: 27973455 PMCID: PMC5187887 DOI: 10.3390/ijms17122087] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Revised: 11/23/2016] [Accepted: 12/07/2016] [Indexed: 02/07/2023] Open
Abstract
As a result of various stresses, lesions caused by DNA-damaging agents occur constantly in each cell of the human body. Generally, DNA damage is recognized and repaired by the DNA damage response (DDR) machinery, and the cells survive. When repair fails, the genomic integrity of the cell is disrupted—a hallmark of cancer. In addition, the DDR plays a dual role in cancer development and therapy. Cancer radiotherapy and chemotherapy are designed to eliminate cancer cells by inducing DNA damage, which in turn can promote tumorigenesis. Over the past two decades, an increasing number of microRNAs (miRNAs), small noncoding RNAs, have been identified as participating in the processes regulating tumorigenesis and responses to cancer treatment with radiation therapy or genotoxic chemotherapies, by modulating the DDR. The purpose of this review is to summarize the recent findings on how miRNAs regulate the DDR and discuss the therapeutic functions of miRNAs in cancer in the context of DDR regulation.
Collapse
Affiliation(s)
- Mingyang He
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan 430072, China.
| | - Weiwei Zhou
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan 430072, China.
| | - Chuang Li
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan 430072, China.
| | - Mingxiong Guo
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan 430072, China.
| |
Collapse
|
42
|
Hashimoto N, Tanaka T. Role of miRNAs in the pathogenesis and susceptibility of diabetes mellitus. J Hum Genet 2016; 62:141-150. [PMID: 27928162 DOI: 10.1038/jhg.2016.150] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Revised: 10/23/2016] [Accepted: 11/04/2016] [Indexed: 12/16/2022]
Abstract
MicroRNAs (miRNAs) are noncoding RNAs of ~22 nucleotides that regulate gene expression post-transcriptionally by binding to the 3' untranslated region of messenger RNA (mRNAs), resulting in inhibition of translation or mRNA degradation. miRNAs have a key role in fine-tuning cellular functions such as proliferation, differentiation and apoptosis, and they are involved in carcinogenesis, glucose homeostasis, inflammation and other biological processes. In this review, we focus on the role of miRNAs in the pathophysiology of the metabolic disease and diabetes mellitus, the hallmark of which is hyperglycemia caused by defective insulin secretion and/or action. A growing number of studies have revealed the association between miRNAs and the processes of insulin production and secretion in pancreatic β cells. In addition, aberrant expression of miRNAs in skeletal muscle, adipose tissue and liver has also been reported. Intriguingly, the tumor suppressor p53 has been implicated in the pathogenesis of diabetes in association with a number of miRNAs, suggesting that a p53/miRNA pathway might be a therapeutic target. Moreover, data from genome-wide association studies have revealed that several miRNA target sequences overlap type 2 diabetes susceptibility loci. Finally, the recent discovery of circulating miRNAs associated with diabetes onset/progression suggests the potential use of miRNAs as biomarkers.
Collapse
Affiliation(s)
- Naoko Hashimoto
- Department of Clinical Cell Biology and Medicine, Graduate School of Medicine, Chiba University, Chiba, Japan.,Division of Diabetes, Endocrinology and Metabolism, Chiba University Hospital, Chiba, Japan.,AMED-CREST, AMED, Japan Agency for Medical Research and Development, Tokyo, Japan
| | - Tomoaki Tanaka
- Division of Diabetes, Endocrinology and Metabolism, Chiba University Hospital, Chiba, Japan.,AMED-CREST, AMED, Japan Agency for Medical Research and Development, Tokyo, Japan.,Department of Molecular Diagnosis, Graduate School of Medicine, Chiba University, Chiba, Japan
| |
Collapse
|
43
|
Molecular Mechanisms of p53 Deregulation in Cancer: An Overview in Multiple Myeloma. Int J Mol Sci 2016; 17:ijms17122003. [PMID: 27916892 PMCID: PMC5187803 DOI: 10.3390/ijms17122003] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Revised: 11/14/2016] [Accepted: 11/22/2016] [Indexed: 12/12/2022] Open
Abstract
The p53 pathway is inactivated in the majority of human cancers. Although this perturbation frequently occurs through the mutation or deletion of p53 itself, there are other mechanisms that can attenuate the pathway and contribute to tumorigenesis. For example, overexpression of important p53 negative regulators, such as murine double minute 2 (MDM2) or murine double minute 4 (MDM4), epigenetic deregulation, or even alterations in TP53 mRNA splicing. In this work, we will review the different mechanisms of p53 pathway inhibition in cancer with special focus on multiple myeloma (MM), the second most common hematological malignancy, with low incidence of p53 mutations/deletions but growing evidence of indirect p53 pathway deregulation. Translational implications for MM and cancer prognosis and treatment are also reviewed.
Collapse
|
44
|
Majidinia M, Yousefi B. DNA damage response regulation by microRNAs as a therapeutic target in cancer. DNA Repair (Amst) 2016; 47:1-11. [DOI: 10.1016/j.dnarep.2016.09.003] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Accepted: 09/23/2016] [Indexed: 12/12/2022]
|
45
|
Guo Y, An R, Zhao R, Sun Y, Liu M, Tian L. miR-375 exhibits a more effective tumor-suppressor function in laryngeal squamous carcinoma cells by regulating KLF4 expression compared with simple co-transfection of miR-375 and miR-206. Oncol Rep 2016; 36:952-60. [PMID: 27279635 DOI: 10.3892/or.2016.4852] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Accepted: 02/26/2016] [Indexed: 11/06/2022] Open
Abstract
MicroRNAs (miRNAs) are reported to be important regulators of cancer-related processes, and function either as oncogenes or as tumor-suppressor genes. It was found that miR-375 was downregulated in samples of laryngeal squamous cell carcinomas (LSCCs) as compared to the level noted in adjacent non-tumor tissues, and it was inversely correlated with T grade, lymph node metastases and clinical tumor stage. Overexpression of miR-375 led to a decreased protein level of Krüppel-like factor 4 (KLF4) and marked suppression of the proliferation and invasion, and induced apoptosis of LSCC cell line Hep-2 using Cell Counting Kit-8, Transwell chamber and cell cycle assays. In addition, we examined the influence of the upregulation of miR-206 alone and upregulation of both miR-375 and miR-206 on the expression of KLF4 and Hep-2 cell behavior. The results showed that compared with the function of miR-375 in tumor suppression by regulating KLF4, co-transfection of miR-375 and miR-206 exhibited a less effective inhibitory effect not only on tumor cell proliferation and invasion, but also on tumor cell apoptosis. Taken together, miR-375 is possibly a tumor suppressor in LSCC by regulating KLF4. In addition, simple overexpression of several miRNAs did not entail higher efficacy than a single miRNA, similar to co-transfecions of miR-375 and miR-206.
Collapse
Affiliation(s)
- Yan Guo
- Service of Head and Neck Surgery, Department of Otolaryngology-Head and Neck Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| | - Ran An
- Service of Head and Neck Surgery, Department of Otolaryngology-Head and Neck Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| | - Rui Zhao
- Service of Laryngology, Department of Otolaryngology-Head and Neck Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| | - Yanan Sun
- Service of Head and Neck Surgery, Department of Otolaryngology-Head and Neck Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| | - Ming Liu
- Service of Head and Neck Surgery, Department of Otolaryngology-Head and Neck Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| | - Linli Tian
- Service of Head and Neck Surgery, Department of Otolaryngology-Head and Neck Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| |
Collapse
|
46
|
Expression and Function of miR-155 in Diseases of the Gastrointestinal Tract. Int J Mol Sci 2016; 17:ijms17050709. [PMID: 27187359 PMCID: PMC4881531 DOI: 10.3390/ijms17050709] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Revised: 04/25/2016] [Accepted: 05/03/2016] [Indexed: 12/30/2022] Open
Abstract
MicroRNAs (miRNAs) are a type of small noncoding RNA that can regulate the expression of target genes under physiological and pathophysiological conditions. miR-155 is a multifunctional miRNA with inflammation-related and oncogenic roles. In particular, the dysregulation of miR-155 has been strongly implicated in Helicobacter pylori-related gastric disease, inflammatory bowel disease, and colorectal cancer in addition to being involved in molecular changes of important targets and signaling pathways. This review focuses on the expression and function of miR-155 during inflammation and carcinogenesis and its potential use as an effective therapeutic target for certain gastrointestinal diseases.
Collapse
|
47
|
Larrea E, Sole C, Manterola L, Goicoechea I, Armesto M, Arestin M, Caffarel MM, Araujo AM, Araiz M, Fernandez-Mercado M, Lawrie CH. New Concepts in Cancer Biomarkers: Circulating miRNAs in Liquid Biopsies. Int J Mol Sci 2016; 17:ijms17050627. [PMID: 27128908 PMCID: PMC4881453 DOI: 10.3390/ijms17050627] [Citation(s) in RCA: 174] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2016] [Revised: 04/18/2016] [Accepted: 04/18/2016] [Indexed: 12/19/2022] Open
Abstract
The effective and efficient management of cancer patients relies upon early diagnosis and/or the monitoring of treatment, something that is often difficult to achieve using standard tissue biopsy techniques. Biological fluids such as blood hold great possibilities as a source of non-invasive cancer biomarkers that can act as surrogate markers to biopsy-based sampling. The non-invasive nature of these “liquid biopsies” ultimately means that cancer detection may be earlier and that the ability to monitor disease progression and/or treatment response represents a paradigm shift in the treatment of cancer patients. Below, we review one of the most promising classes of circulating cancer biomarkers: microRNAs (miRNAs). In particular, we will consider their history, the controversy surrounding their origin and biology, and, most importantly, the hurdles that remain to be overcome if they are really to become part of future clinical practice.
Collapse
Affiliation(s)
- Erika Larrea
- Molecular Oncology, Biodonostia Research Institute, 20014 San Sebastián, Spain.
| | - Carla Sole
- Molecular Oncology, Biodonostia Research Institute, 20014 San Sebastián, Spain.
| | - Lorea Manterola
- Molecular Oncology, Biodonostia Research Institute, 20014 San Sebastián, Spain.
| | - Ibai Goicoechea
- Molecular Oncology, Biodonostia Research Institute, 20014 San Sebastián, Spain.
| | - María Armesto
- Molecular Oncology, Biodonostia Research Institute, 20014 San Sebastián, Spain.
| | - María Arestin
- Molecular Oncology, Biodonostia Research Institute, 20014 San Sebastián, Spain.
| | - María M Caffarel
- Molecular Oncology, Biodonostia Research Institute, 20014 San Sebastián, Spain.
- IKERBASQUE, Basque Foundation for Science, 48013 Bilbao, Spain.
| | - Angela M Araujo
- Molecular Oncology, Biodonostia Research Institute, 20014 San Sebastián, Spain.
| | - María Araiz
- Hematology Department, Donostia Hospital, 20014 San Sebastián, Spain.
| | | | - Charles H Lawrie
- Molecular Oncology, Biodonostia Research Institute, 20014 San Sebastián, Spain.
- IKERBASQUE, Basque Foundation for Science, 48013 Bilbao, Spain.
- Nuffield Department of Clinical Laboratory Sciences, University of Oxford, Oxford OX3 9DU, UK.
| |
Collapse
|
48
|
Smid D, Kulda V, Srbecka K, Kubackova D, Dolezal J, Daum O, Kucera R, Topolcan O, Treska V, Skalicky T, Pesta M. Tissue microRNAs as predictive markers for gastric cancer patients undergoing palliative chemotherapy. Int J Oncol 2016; 48:2693-703. [PMID: 27081844 DOI: 10.3892/ijo.2016.3484] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Accepted: 03/09/2016] [Indexed: 11/05/2022] Open
Abstract
MicroRNAs have the potential to become valuable predictive markers for gastric cancer. Samples of biopsy tissue, routinely taken from gastric cancer patients undergoing palliative chemotherapy, constitute suitable material for microRNA profiling with the aim of predicting the effect of chemotherapy. Our study group consisted of 54 patients, all of whom underwent palliative chemotherapy based on 5-fluorouracil (5-FU) or 5-FU in combination with platinum derivatives between 2000 and 2013. The expression of 29 selected microRNAs and genes BRCA1, ERCC1, RRM1 and TS, in gastric cancer tissue macrodissected from FFPE tissue samples, was measured by quantitative RT-PCR. The relationship between gene expression levels and time to progression (TTP) and overall survival (OS) was analysed. From the set of the 29 microRNAs of interest, we found high expression of miR-150, miR-342-3p, miR-181b, miR-221, miR-224 and low levels of miR-520h relate to shorter TTP. High levels of miR-150, miR-192, miR-224, miR-375 and miR-342-3p related to shorter OS. In routinely available FFPE tissue samples, we found 6 miRNAs with a relation to TTP, which may serve as predictors of the effectiveness of palliative treatment in gastric cancer patients. These miRNAs could also help in deciding whether to indicate palliative chemotherapy.
Collapse
Affiliation(s)
- David Smid
- Department of Surgery, Faculty of Medicine in Pilsen, Charles University in Prague, Pilsen 30460, Czech Republic
| | - Vlastimil Kulda
- Department of Medical Chemistry and Biochemistry, Faculty of Medicine in Pilsen, Charles University in Prague, Pilsen 30166, Czech Republic
| | - Kristyna Srbecka
- Department of Medical Chemistry and Biochemistry, Faculty of Medicine in Pilsen, Charles University in Prague, Pilsen 30166, Czech Republic
| | - Dasa Kubackova
- Department of Surgery, Faculty of Medicine in Pilsen, Charles University in Prague, Pilsen 30460, Czech Republic
| | - Jan Dolezal
- Department of Surgery, Faculty of Medicine in Pilsen, Charles University in Prague, Pilsen 30460, Czech Republic
| | - Ondrej Daum
- Department of Pathology, Faculty of Medicine in Pilsen, Charles University in Prague, Pilsen 30599, Czech Republic
| | - Radek Kucera
- Department of Nuclear Medicine-Immunoanalytic Laboratory, University Hospital in Pilsen, Pilsen 30599, Czech Republic
| | - Ondrej Topolcan
- Department of Nuclear Medicine-Immunoanalytic Laboratory, University Hospital in Pilsen, Pilsen 30599, Czech Republic
| | - Vladislav Treska
- Department of Surgery, Faculty of Medicine in Pilsen, Charles University in Prague, Pilsen 30460, Czech Republic
| | - Tomas Skalicky
- Department of Surgery, Faculty of Medicine in Pilsen, Charles University in Prague, Pilsen 30460, Czech Republic
| | - Martin Pesta
- Department of Biology, Faculty of Medicine in Pilsen, Charles University in Prague, Pilsen 32600, Czech Republic
| |
Collapse
|
49
|
Hellweg CE, Spitta LF, Henschenmacher B, Diegeler S, Baumstark-Khan C. Transcription Factors in the Cellular Response to Charged Particle Exposure. Front Oncol 2016; 6:61. [PMID: 27047795 PMCID: PMC4800317 DOI: 10.3389/fonc.2016.00061] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 03/03/2016] [Indexed: 12/23/2022] Open
Abstract
Charged particles, such as carbon ions, bear the promise of a more effective cancer therapy. In human spaceflight, exposure to charged particles represents an important risk factor for chronic and late effects such as cancer. Biological effects elicited by charged particle exposure depend on their characteristics, e.g., on linear energy transfer (LET). For diverse outcomes (cell death, mutation, transformation, and cell-cycle arrest), an LET dependency of the effect size was observed. These outcomes result from activation of a complex network of signaling pathways in the DNA damage response, which result in cell-protective (DNA repair and cell-cycle arrest) or cell-destructive (cell death) reactions. Triggering of these pathways converges among others in the activation of transcription factors, such as p53, nuclear factor κB (NF-κB), activated protein 1 (AP-1), nuclear erythroid-derived 2-related factor 2 (Nrf2), and cAMP responsive element binding protein (CREB). Depending on dose, radiation quality, and tissue, p53 induces apoptosis or cell-cycle arrest. In low LET radiation therapy, p53 mutations are often associated with therapy resistance, while the outcome of carbon ion therapy seems to be independent of the tumor's p53 status. NF-κB is a central transcription factor in the immune system and exhibits pro-survival effects. Both p53 and NF-κB are activated after ionizing radiation exposure in an ataxia telangiectasia mutated (ATM)-dependent manner. The NF-κB activation was shown to strongly depend on charged particles' LET, with a maximal activation in the LET range of 90-300 keV/μm. AP-1 controls proliferation, senescence, differentiation, and apoptosis. Nrf2 can induce cellular antioxidant defense systems, CREB might also be involved in survival responses. The extent of activation of these transcription factors by charged particles and their interaction in the cellular radiation response greatly influences the destiny of the irradiated and also neighboring cells in the bystander effect.
Collapse
Affiliation(s)
- Christine E. Hellweg
- Cellular Biodiagnostics, Department of Radiation Biology, Institute of Aerospace Medicine, German Aerospace Centre (DLR), Cologne, Germany
| | - Luis F. Spitta
- Cellular Biodiagnostics, Department of Radiation Biology, Institute of Aerospace Medicine, German Aerospace Centre (DLR), Cologne, Germany
| | - Bernd Henschenmacher
- Cellular Biodiagnostics, Department of Radiation Biology, Institute of Aerospace Medicine, German Aerospace Centre (DLR), Cologne, Germany
| | - Sebastian Diegeler
- Cellular Biodiagnostics, Department of Radiation Biology, Institute of Aerospace Medicine, German Aerospace Centre (DLR), Cologne, Germany
| | - Christa Baumstark-Khan
- Cellular Biodiagnostics, Department of Radiation Biology, Institute of Aerospace Medicine, German Aerospace Centre (DLR), Cologne, Germany
| |
Collapse
|
50
|
Hu H, Zhao X, Jin Z, Hou M. Hsa-let-7g miRNA regulates the anti-tumor effects of gastric cancer cells under oxidative stress through the expression of DDR genes. J Toxicol Sci 2016; 40:329-38. [PMID: 25972194 DOI: 10.2131/jts.40.329] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Oxidative stress is linked to increased risk of gastric cancer (GC). Recent reports have found that hsa-let-7 g microRNA (miRNA) has properties of anti-tumor and resistance to damages induced by oxidized low-density lipoprotein (ox-LDL). Dysregulation of hsa-let-7 g was present in GC in vivo and in vitro under exogenous stress. However, we didn't know whether there are regulatory mechanisms of hsa-let-7 g in GC under oxidative stress. This study was aimed at investigating the effects of hsa-let-7 g microRNA (miRNA) on GC under oxidative stress. The results showed that H2O2 induced the increase of DNA damage response (DDR) genes (ATM, H2AX and Chk1) and downregulation of hsa-let-7 g in GC cells. Further study confirmed Hsa-let-7 g caused the apoptosis and loss of proliferation in GC cells exposed to H2O2 associated with repression of DDR system. Yet, we found let-7 g didn't target DDR genes (ATM, H2AX and Chk1) directly. In addition, data revealed hsa-let-7 g miRNA increased the sensitivity of GC to X-rays involving in ATM regulation as well according to application of X-rays (another DDR inducer). In conclusion, Hsa-let-7 g miRNA increased the sensitivity of GC to oxidative stress by repression activation of DDR indirectly. Let-7 g improved the effects of X-rays on GC cells involving in DDR regulation as well.
Collapse
Affiliation(s)
- Haiqing Hu
- Department of Gastroenterology and Hepatology, the Affiliated Hospital of Inner Mongolia Medical University
| | | | | | | |
Collapse
|