1
|
Mouro Pinto R, Murtha R, Azevedo A, Douglas C, Kovalenko M, Ulloa J, Crescenti S, Burch Z, Oliver E, Vitalo A, Mota-Silva E, Riggs MJ, Correia K, Elezi E, Demelo B, Carroll JB, Gillis T, Gusella JF, MacDonald ME, Wheeler VC. Identification of genetic modifiers of Huntington's disease somatic CAG repeat instability by in vivo CRISPR-Cas9 genome editing. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.08.597823. [PMID: 38895438 PMCID: PMC11185783 DOI: 10.1101/2024.06.08.597823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Huntington's disease (HD), one of >50 inherited repeat expansion disorders (Depienne and Mandel, 2021), is a dominantly-inherited neurodegenerative disease caused by a CAG expansion in HTT (The Huntington's Disease Collaborative Research Group, 1993). Inherited CAG repeat length is the primary determinant of age of onset, with human genetic studies underscoring that the property driving disease is the CAG length-dependent propensity of the repeat to further expand in brain (Swami et al ., 2009; GeM-HD, 2015; Hensman Moss et al ., 2017; Ciosi et al ., 2019; GeM-HD, 2019; Hong et al ., 2021). Routes to slowing somatic CAG expansion therefore hold great promise for disease-modifying therapies. Several DNA repair genes, notably in the mismatch repair (MMR) pathway, modify somatic expansion in HD mouse models (Wheeler and Dion, 2021). To identify novel modifiers of somatic expansion, we have used CRISPR-Cas9 editing in HD knock-in mice to enable in vivo screening of expansion-modifier candidates at scale. This has included testing of HD onset modifier genes emerging from human genome-wide association studies (GWAS), as well as interactions between modifier genes, thereby providing new insight into pathways underlying CAG expansion and potential therapeutic targets.
Collapse
|
2
|
Du D, Yang Y, Zhang Y, Wang G, Chen L, Guan X, Rasmussen LJ, Liu D. MRE11A: a novel negative regulator of human DNA mismatch repair. Cell Mol Biol Lett 2024; 29:37. [PMID: 38486171 PMCID: PMC10938699 DOI: 10.1186/s11658-024-00547-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 02/08/2024] [Indexed: 03/17/2024] Open
Abstract
BACKGROUND DNA mismatch repair (MMR) is a highly conserved pathway that corrects DNA replication errors, the loss of which is attributed to the development of various types of cancers. Although well characterized, MMR factors remain to be identified. As a 3'-5' exonuclease and endonuclease, meiotic recombination 11 homolog A (MRE11A) is implicated in multiple DNA repair pathways. However, the role of MRE11A in MMR is unclear. METHODS Initially, short-term and long-term survival assays were used to measure the cells' sensitivity to N-methyl-N'-nitro-N-nitrosoguanidine (MNNG). Meanwhile, the level of apoptosis was also determined by flow cytometry after MNNG treatment. Western blotting and immunofluorescence assays were used to evaluate the DNA damage within one cell cycle after MNNG treatment. Next, a GFP-heteroduplex repair assay and microsatellite stability test were used to measure the MMR activities in cells. To investigate the mechanisms, western blotting, the GFP-heteroduplex repair assay, and chromatin immunoprecipitation were used. RESULTS We show that knockdown of MRE11A increased the sensitivity of HeLa cells to MNNG treatment, as well as the MNNG-induced DNA damage and apoptosis, implying a potential role of MRE11 in MMR. Moreover, we found that MRE11A was largely recruited to chromatin and negatively regulated the DNA damage signals within the first cell cycle after MNNG treatment. We also showed that knockdown of MRE11A increased, while overexpressing MRE11A decreased, MMR activity in HeLa cells, suggesting that MRE11A negatively regulates MMR activity. Furthermore, we show that recruitment of MRE11A to chromatin requires MLH1 and that MRE11A competes with PMS2 for binding to MLH1. This decreases PMS2 levels in whole cells and on chromatin, and consequently comprises MMR activity. CONCLUSIONS Our findings reveal that MRE11A is a negative regulator of human MMR.
Collapse
Affiliation(s)
- Demin Du
- Department of Human Anatomy and Histoembryology, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Yueyan Yang
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Yuanyuan Zhang
- Department of Human Anatomy and Histoembryology, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Guanxiong Wang
- Department of Human Anatomy and Histoembryology, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Liying Chen
- Department of Human Anatomy and Histoembryology, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Xiaowei Guan
- Department of Human Anatomy and Histoembryology, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Lene Juel Rasmussen
- Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, 2200, Copenhagen, Denmark.
| | - Dekang Liu
- Department of Human Anatomy and Histoembryology, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| |
Collapse
|
3
|
Wang S, Lee K, Gray S, Zhang Y, Tang C, Morrish R, Tosti E, van Oers J, Amin MR, Cohen P, MacCarthy T, Roa S, Scharff M, Edelmann W, Chahwan R. Role of EXO1 nuclease activity in genome maintenance, the immune response and tumor suppression in Exo1D173A mice. Nucleic Acids Res 2022; 50:8093-8106. [PMID: 35849338 PMCID: PMC9371890 DOI: 10.1093/nar/gkac616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 05/30/2022] [Accepted: 06/30/2022] [Indexed: 11/14/2022] Open
Abstract
DNA damage response pathways rely extensively on nuclease activity to process DNA intermediates. Exonuclease 1 (EXO1) is a pleiotropic evolutionary conserved DNA exonuclease involved in various DNA repair pathways, replication, antibody diversification, and meiosis. But, whether EXO1 facilitates these DNA metabolic processes through its enzymatic or scaffolding functions remains unclear. Here, we dissect the contribution of EXO1 enzymatic versus scaffolding activity by comparing Exo1DA/DA mice expressing a proven nuclease-dead mutant form of EXO1 to entirely EXO1-deficient Exo1-/- and EXO1 wild type Exo1+/+ mice. We show that Exo1DA/DA and Exo1-/- mice are compromised in canonical DNA repair processing, suggesting that the EXO1 enzymatic role is important for error-free DNA mismatch and double-strand break repair pathways. However, in non-canonical repair pathways, EXO1 appears to have a more nuanced function. Next-generation sequencing of heavy chain V region in B cells showed the mutation spectra of Exo1DA/DA mice to be intermediate between Exo1+/+ and Exo1-/- mice, suggesting that both catalytic and scaffolding roles of EXO1 are important for somatic hypermutation. Similarly, while overall class switch recombination in Exo1DA/DA and Exo1-/- mice was comparably defective, switch junction analysis suggests that EXO1 might fulfill an additional scaffolding function downstream of class switching. In contrast to Exo1-/- mice that are infertile, meiosis progressed normally in Exo1DA/DA and Exo1+/+ cohorts, indicating that a structural but not the nuclease function of EXO1 is critical for meiosis. However, both Exo1DA/DA and Exo1-/- mice displayed similar mortality and cancer predisposition profiles. Taken together, these data demonstrate that EXO1 has both scaffolding and enzymatic functions in distinct DNA repair processes and suggest a more composite and intricate role for EXO1 in DNA metabolic processes and disease.
Collapse
Affiliation(s)
- Shanzhi Wang
- Department of Cell Biology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, NY 10461, USA
- Current position: Department of Chemistry, University of Arkansas at Little Rock, Little Rock, AR 72204, USA
| | - Kyeryoung Lee
- Department of Cell Biology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, NY 10461, USA
| | - Stephen Gray
- Department of Biomedical Sciences, Cornell University, NY 14853, USA
- Current position: School of Life Sciences, University of Nottingham, Nottingham NG7 2UH, UK
| | - Yongwei Zhang
- Department of Cell Biology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, NY 10461, USA
| | - Catherine Tang
- Department of Applied Mathematics and Statistics, Stony Brook University, Stony Brook, NY, USA
| | - Rikke B Morrish
- Current position: School of Physics and Astronomy, University of Exeter, Exeter EX4 4QD, UK
| | - Elena Tosti
- Department of Cell Biology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, NY 10461, USA
| | - Johanna van Oers
- Department of Cell Biology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, NY 10461, USA
| | - Mohammad Ruhul Amin
- Department of Computer and Information Science, Fordham University, Bronx, NY, USA
| | - Paula E Cohen
- Department of Biomedical Sciences, Cornell University, NY 14853, USA
| | - Thomas MacCarthy
- Department of Applied Mathematics and Statistics, Stony Brook University, Stony Brook, NY, USA
| | - Sergio Roa
- Department of Biochemistry and Genetics, University of Navarra, 31008Pamplona, Spain
- Centro de Investigacion Biomedica en Red de Cancer (CIBERONC), Instituto de Salud Carlos III, Madrid, Spain
- Navarra Institute for Health Research (IdiSNA), Pamplona, Spain
| | - Matthew D Scharff
- Department of Cell Biology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, NY 10461, USA
| | - Winfried Edelmann
- Department of Cell Biology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, NY 10461, USA
| | - Richard Chahwan
- Institute of Experimental Immunology, University of Zurich, Zurich 8057, Switzerland
| |
Collapse
|
4
|
Kratz K, Artola-Borán M, Kobayashi-Era S, Koh G, Oliveira G, Kobayashi S, Oliveira A, Zou X, Richter J, Tsuda M, Sasanuma H, Takeda S, Loizou JI, Sartori AA, Nik-Zainal S, Jiricny J. FANCD2-Associated Nuclease 1 Partially Compensates for the Lack of Exonuclease 1 in Mismatch Repair. Mol Cell Biol 2021; 41:e0030321. [PMID: 34228493 PMCID: PMC8384067 DOI: 10.1128/mcb.00303-21] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 06/28/2021] [Indexed: 11/20/2022] Open
Abstract
Germline mutations in the mismatch repair (MMR) genes MSH2, MSH6, MLH1, and PMS2 are linked to cancer of the colon and other organs, characterized by microsatellite instability and a large increase in mutation frequency. Unexpectedly, mutations in EXO1, encoding the only exonuclease genetically implicated in MMR, are not linked to familial cancer and cause a substantially weaker mutator phenotype. This difference could be explained if eukaryotic cells possessed additional exonucleases redundant with EXO1. Analysis of the MLH1 interactome identified FANCD2-associated nuclease 1 (FAN1), a novel enzyme with biochemical properties resembling EXO1. We now show that FAN1 efficiently substitutes for EXO1 in MMR assays and that this functional complementation is modulated by its interaction with MLH1. FAN1 also contributes to MMR in vivo; cells lacking both EXO1 and FAN1 have an MMR defect and display resistance to N-methyl-N-nitrosourea (MNU) and 6-thioguanine (TG). Moreover, FAN1 loss amplifies the mutational profile of EXO1-deficient cells, suggesting that the two nucleases act redundantly in the same antimutagenic pathway. However, the increased drug resistance and mutator phenotype of FAN1/EXO1-deficient cells are less prominent than those seen in cells lacking MSH6 or MLH1. Eukaryotic cells thus apparently possess additional mechanisms that compensate for the loss of EXO1.
Collapse
Affiliation(s)
- Katja Kratz
- Institute of Molecular Cancer Research, University of Zurich, Zurich, Switzerland
| | - Mariela Artola-Borán
- Institute of Molecular Cancer Research, University of Zurich, Zurich, Switzerland
| | - Saho Kobayashi-Era
- Institute of Molecular Cancer Research, University of Zurich, Zurich, Switzerland
- Institute of Biochemistry of the ETH Zurich, Zurich, Switzerland
| | - Gene Koh
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, United Kingdom
- Academic Department of Medical Genetics, The Clinical School, University of Cambridge, Cambridge, United Kingdom
- MRC Cancer Unit, The Clinical School, University of Cambridge, Cambridge, United Kingdom
| | - Goncalo Oliveira
- Institute of Cancer Research, Department of Medicine I, Comprehensive Cancer Centre, Medical University of Vienna, Vienna, Austria
| | - Shunsuke Kobayashi
- Institute of Molecular Cancer Research, University of Zurich, Zurich, Switzerland
- Institute of Biochemistry of the ETH Zurich, Zurich, Switzerland
| | - Andreia Oliveira
- Institute of Molecular Cancer Research, University of Zurich, Zurich, Switzerland
- Institute of Biochemistry of the ETH Zurich, Zurich, Switzerland
| | - Xueqing Zou
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, United Kingdom
- Academic Department of Medical Genetics, The Clinical School, University of Cambridge, Cambridge, United Kingdom
- MRC Cancer Unit, The Clinical School, University of Cambridge, Cambridge, United Kingdom
| | - Julia Richter
- Institute of Biochemistry of the ETH Zurich, Zurich, Switzerland
| | - Masataka Tsuda
- Department of Radiation Genetics, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Hiroyuki Sasanuma
- Department of Radiation Genetics, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Shunichi Takeda
- Department of Radiation Genetics, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Joanna I. Loizou
- Institute of Cancer Research, Department of Medicine I, Comprehensive Cancer Centre, Medical University of Vienna, Vienna, Austria
| | | | - Serena Nik-Zainal
- Academic Department of Medical Genetics, The Clinical School, University of Cambridge, Cambridge, United Kingdom
- MRC Cancer Unit, The Clinical School, University of Cambridge, Cambridge, United Kingdom
| | - Josef Jiricny
- Institute of Molecular Cancer Research, University of Zurich, Zurich, Switzerland
- Institute of Biochemistry of the ETH Zurich, Zurich, Switzerland
| |
Collapse
|
5
|
Porro A, Mohiuddin M, Zurfluh C, Spegg V, Dai J, Iehl F, Ropars V, Collotta G, Fishwick KM, Mozaffari NL, Guérois R, Jiricny J, Altmeyer M, Charbonnier JB, Pearson CE, Sartori AA. FAN1-MLH1 interaction affects repair of DNA interstrand cross-links and slipped-CAG/CTG repeats. SCIENCE ADVANCES 2021; 7:7/31/eabf7906. [PMID: 34330701 PMCID: PMC8324060 DOI: 10.1126/sciadv.abf7906] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 06/15/2021] [Indexed: 05/05/2023]
Abstract
FAN1, a DNA structure-specific nuclease, interacts with MLH1, but the repair pathways in which this complex acts are unknown. FAN1 processes DNA interstrand crosslinks (ICLs) and FAN1 variants are modifiers of the neurodegenerative Huntington's disease (HD), presumably by regulating HD-causing CAG repeat expansions. Here, we identify specific amino acid residues in two adjacent FAN1 motifs that are critical for MLH1 binding. Disruption of the FAN1-MLH1 interaction confers cellular hypersensitivity to ICL damage and defective repair of CAG/CTG slip-outs, intermediates of repeat expansion mutations. FAN1-S126 phosphorylation, which hinders FAN1-MLH1 association, is cell cycle-regulated by cyclin-dependent kinase activity and attenuated upon ICL induction. Our data highlight the FAN1-MLH1 complex as a phosphorylation-regulated determinant of ICL response and repeat stability, opening novel paths to modify cancer and neurodegeneration.
Collapse
Affiliation(s)
- Antonio Porro
- Institute of Molecular Cancer Research, University of Zurich, Zurich, Switzerland
| | - Mohiuddin Mohiuddin
- Program of Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Christina Zurfluh
- Institute of Molecular Cancer Research, University of Zurich, Zurich, Switzerland
| | - Vincent Spegg
- Department of Molecular Mechanisms of Disease, University of Zurich, Zurich, Switzerland
| | - Jingqi Dai
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France
| | - Florence Iehl
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France
| | - Virginie Ropars
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France
| | - Giulio Collotta
- Institute of Molecular Cancer Research, University of Zurich, Zurich, Switzerland
| | - Keri M Fishwick
- Institute of Molecular Cancer Research, University of Zurich, Zurich, Switzerland
| | - Nour L Mozaffari
- Institute of Molecular Cancer Research, University of Zurich, Zurich, Switzerland
| | - Raphaël Guérois
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France
| | - Josef Jiricny
- Institute of Molecular Cancer Research, University of Zurich, Zurich, Switzerland
| | - Matthias Altmeyer
- Department of Molecular Mechanisms of Disease, University of Zurich, Zurich, Switzerland
| | - Jean-Baptiste Charbonnier
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France
| | - Christopher E Pearson
- Program of Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada.
- Program of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Alessandro A Sartori
- Institute of Molecular Cancer Research, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
6
|
Zhao X, Kumari D, Miller CJ, Kim GY, Hayward B, Vitalo AG, Pinto RM, Usdin K. Modifiers of Somatic Repeat Instability in Mouse Models of Friedreich Ataxia and the Fragile X-Related Disorders: Implications for the Mechanism of Somatic Expansion in Huntington's Disease. J Huntingtons Dis 2021; 10:149-163. [PMID: 33579860 PMCID: PMC7990428 DOI: 10.3233/jhd-200423] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Huntington's disease (HD) is one of a large group of human disorders that are caused by expanded DNA repeats. These repeat expansion disorders can have repeat units of different size and sequence that can be located in any part of the gene and, while the pathological consequences of the expansion can differ widely, there is evidence to suggest that the underlying mutational mechanism may be similar. In the case of HD, the expanded repeat unit is a CAG trinucleotide located in exon 1 of the huntingtin (HTT) gene, resulting in an expanded polyglutamine tract in the huntingtin protein. Expansion results in neuronal cell death, particularly in the striatum. Emerging evidence suggests that somatic CAG expansion, specifically expansion occurring in the brain during the lifetime of an individual, contributes to an earlier disease onset and increased severity. In this review we will discuss mouse models of two non-CAG repeat expansion diseases, specifically the Fragile X-related disorders (FXDs) and Friedreich ataxia (FRDA). We will compare and contrast these models with mouse and patient-derived cell models of various other repeat expansion disorders and the relevance of these findings for somatic expansion in HD. We will also describe additional genetic factors and pathways that modify somatic expansion in the FXD mouse model for which no comparable data yet exists in HD mice or humans. These additional factors expand the potential druggable space for diseases like HD where somatic expansion is a significant contributor to disease impact.
Collapse
Affiliation(s)
- Xiaonan Zhao
- Laboratory of Cell and Molecular Biology, National Institutes of Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Daman Kumari
- Laboratory of Cell and Molecular Biology, National Institutes of Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Carson J Miller
- Laboratory of Cell and Molecular Biology, National Institutes of Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Geum-Yi Kim
- Laboratory of Cell and Molecular Biology, National Institutes of Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Bruce Hayward
- Laboratory of Cell and Molecular Biology, National Institutes of Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Antonia G Vitalo
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA.,Department of Neurology, Harvard Medical School, Boston, MA, USA
| | - Ricardo Mouro Pinto
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA.,Department of Neurology, Harvard Medical School, Boston, MA, USA.,Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Karen Usdin
- Laboratory of Cell and Molecular Biology, National Institutes of Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
7
|
Deshmukh AL, Porro A, Mohiuddin M, Lanni S, Panigrahi GB, Caron MC, Masson JY, Sartori AA, Pearson CE. FAN1, a DNA Repair Nuclease, as a Modifier of Repeat Expansion Disorders. J Huntingtons Dis 2021; 10:95-122. [PMID: 33579867 PMCID: PMC7990447 DOI: 10.3233/jhd-200448] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
FAN1 encodes a DNA repair nuclease. Genetic deficiencies, copy number variants, and single nucleotide variants of FAN1 have been linked to karyomegalic interstitial nephritis, 15q13.3 microdeletion/microduplication syndrome (autism, schizophrenia, and epilepsy), cancer, and most recently repeat expansion diseases. For seven CAG repeat expansion diseases (Huntington's disease (HD) and certain spinocerebellar ataxias), modification of age of onset is linked to variants of specific DNA repair proteins. FAN1 variants are the strongest modifiers. Non-coding disease-delaying FAN1 variants and coding disease-hastening variants (p.R507H and p.R377W) are known, where the former may lead to increased FAN1 levels and the latter have unknown effects upon FAN1 functions. Current thoughts are that ongoing repeat expansions in disease-vulnerable tissues, as individuals age, promote disease onset. Fan1 is required to suppress against high levels of ongoing somatic CAG and CGG repeat expansions in tissues of HD and FMR1 transgenic mice respectively, in addition to participating in DNA interstrand crosslink repair. FAN1 is also a modifier of autism, schizophrenia, and epilepsy. Coupled with the association of these diseases with repeat expansions, this suggests a common mechanism, by which FAN1 modifies repeat diseases. Yet how any of the FAN1 variants modify disease is unknown. Here, we review FAN1 variants, associated clinical effects, protein structure, and the enzyme's attributed functional roles. We highlight how variants may alter its activities in DNA damage response and/or repeat instability. A thorough awareness of the FAN1 gene and FAN1 protein functions will reveal if and how it may be targeted for clinical benefit.
Collapse
Affiliation(s)
- Amit L. Deshmukh
- Program of Genetics & Genome Biology, The Hospital for Sick Children, The Peter Gilgan Centre for Research and Learning, Toronto, Ontario, Canada
| | - Antonio Porro
- Institute of Molecular Cancer Research, University of Zurich, Zurich, Switzerland
| | - Mohiuddin Mohiuddin
- Program of Genetics & Genome Biology, The Hospital for Sick Children, The Peter Gilgan Centre for Research and Learning, Toronto, Ontario, Canada
| | - Stella Lanni
- Program of Genetics & Genome Biology, The Hospital for Sick Children, The Peter Gilgan Centre for Research and Learning, Toronto, Ontario, Canada
| | - Gagan B. Panigrahi
- Program of Genetics & Genome Biology, The Hospital for Sick Children, The Peter Gilgan Centre for Research and Learning, Toronto, Ontario, Canada
| | - Marie-Christine Caron
- Department of Molecular Biology, Medical Biochemistry and Pathology; Laval University Cancer Research Center, Québec City, Quebec, Canada
- Genome Stability Laboratory, CHU de Québec Research Center, HDQ Pavilion, Oncology Division, Québec City, Quebec, Canada
| | - Jean-Yves Masson
- Department of Molecular Biology, Medical Biochemistry and Pathology; Laval University Cancer Research Center, Québec City, Quebec, Canada
- Genome Stability Laboratory, CHU de Québec Research Center, HDQ Pavilion, Oncology Division, Québec City, Quebec, Canada
| | | | - Christopher E. Pearson
- Program of Genetics & Genome Biology, The Hospital for Sick Children, The Peter Gilgan Centre for Research and Learning, Toronto, Ontario, Canada
- University of Toronto, Program of Molecular Genetics, Toronto, Ontario, Canada
| |
Collapse
|
8
|
Khristich AN, Mirkin SM. On the wrong DNA track: Molecular mechanisms of repeat-mediated genome instability. J Biol Chem 2020; 295:4134-4170. [PMID: 32060097 PMCID: PMC7105313 DOI: 10.1074/jbc.rev119.007678] [Citation(s) in RCA: 171] [Impact Index Per Article: 34.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Expansions of simple tandem repeats are responsible for almost 50 human diseases, the majority of which are severe, degenerative, and not currently treatable or preventable. In this review, we first describe the molecular mechanisms of repeat-induced toxicity, which is the connecting link between repeat expansions and pathology. We then survey alternative DNA structures that are formed by expandable repeats and review the evidence that formation of these structures is at the core of repeat instability. Next, we describe the consequences of the presence of long structure-forming repeats at the molecular level: somatic and intergenerational instability, fragility, and repeat-induced mutagenesis. We discuss the reasons for gender bias in intergenerational repeat instability and the tissue specificity of somatic repeat instability. We also review the known pathways in which DNA replication, transcription, DNA repair, and chromatin state interact and thereby promote repeat instability. We then discuss possible reasons for the persistence of disease-causing DNA repeats in the genome. We describe evidence suggesting that these repeats are a payoff for the advantages of having abundant simple-sequence repeats for eukaryotic genome function and evolvability. Finally, we discuss two unresolved fundamental questions: (i) why does repeat behavior differ between model systems and human pedigrees, and (ii) can we use current knowledge on repeat instability mechanisms to cure repeat expansion diseases?
Collapse
Affiliation(s)
| | - Sergei M Mirkin
- Department of Biology, Tufts University, Medford, Massachusetts 02155.
| |
Collapse
|
9
|
He D, Li T, Sheng M, Yang B. Exonuclease 1 (Exo1) Participates in Mammalian Non-Homologous End Joining and Contributes to Drug Resistance in Ovarian Cancer. Med Sci Monit 2020; 26:e918751. [PMID: 32167078 PMCID: PMC7092659 DOI: 10.12659/msm.918751] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Background Exonuclease 1 (Exo1) participates in a variety of DNA damage repair, including mismatch repair, nucleotide excision repair, and homologous recombination. Genetic study in yeast indicates a role of Exo1 in non-homologous end joining (NHEJ), acting as a regulator for accuracy repairing DNA. This study aimed to investigate the effects of human Exo1 in NHEJ and drug resistance in ovarian cells. Material/Methods Ectopic expression of Exo1 was carried out using pcDNA3.1-EXO1 plasmid in SKOV3 cells. GST-tagged human Exo1 was purified using pTXB1-gst-EXO1 and the his-tagged-Ku was collected using pET15b.his.Ku. Exo1 and Ku70 proteins expressed in bacteria were harvested and purified. DNA-protein binding was examined using affinity capture assay. The cells were treated using drugs for 72 hours. Then, the viabilities of cells were evaluated with sulforhodamine B cell viability analysis. The protein expression was evaluated using western blot assay. Results As expected, human cells that deficient of Exo1 were sensitive to ionizing radiation and DNA damaging drugs (cisplatin and doxorubicin). Cisplatin resistant ovarian cancer cell line and Exo1 deficient cell lines were successfully generated. Exo1 interacts with NHEJ required factor Ku70 and affects NHEJ efficiency. We observed that Exo1 expression level was upregulated in drug resistant cell line and knockdown of Exo1 in drug resistant cells sensitized cells to cisplatin and doxorubicin. Conclusions Exo1 participated in mammalian non-homologous end joining and contributed to drug resistance in ovarian cancer.
Collapse
Affiliation(s)
- Dongyun He
- Department of Gynaecology and Obstetrics, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China (mainland)
| | - Tao Li
- Department of Anesthesiology, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China (mainland)
| | - Minjia Sheng
- Department of Gynaecology and Obstetrics, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China (mainland)
| | - Ben Yang
- Department of Ophthalmology, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China (mainland)
| |
Collapse
|
10
|
Rikitake M, Fujikane R, Obayashi Y, Oka K, Ozaki M, Hidaka M. MLH1-mediated recruitment of FAN1 to chromatin for the induction of apoptosis triggered by O 6 -methylguanine. Genes Cells 2020; 25:175-186. [PMID: 31955481 DOI: 10.1111/gtc.12748] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 01/10/2020] [Accepted: 01/10/2020] [Indexed: 01/03/2023]
Abstract
O6 -Methylguanines (O6 -meG), which are produced in DNA by the action of alkylating agents, are mutagenic and cytotoxic, and induce apoptosis in a mismatch repair (MMR) protein-dependent manner. To understand the molecular mechanism of O6 -meG-induced apoptosis, we performed functional analyses of FANCD2 and FANCI-associated nuclease 1 (FAN1), which was identified as an interacting partner of MLH1. Immunoprecipitation analyses showed that FAN1 interacted with both MLH1 and MSH2 after treatment with N-methyl-N-nitrosourea (MNU), indicating the formation of a FAN1-MMR complex. In comparison with control cells, FAN1-knockdown cells were more resistant to MNU, and the appearances of a sub-G1 population and caspase-9 activation were suppressed. FAN1 formed nuclear foci in an MLH1-dependent manner after MNU treatment, and some were colocalized with both MLH1 foci and single-stranded DNA (ssDNA) created at damaged sites. Under the same condition, FANCD2 also formed nuclear foci, although it was dispensable for the formation of FAN1 foci and ssDNA. MNU-induced formation of ssDNA was dramatically suppressed in FAN1-knockdown cells. We therefore propose that FAN1 is loaded on chromatin through the interaction with MLH1 and produces ssDNA by its exonuclease activity, which contributes to the activation of the DNA damage response followed by the induction of apoptosis triggered by O6 -meG.
Collapse
Affiliation(s)
- Mihoko Rikitake
- Department of Physiological Science and Molecular Biology, Fukuoka Dental College, Fukuoka, Japan.,Department of Oral Growth and Development, Fukuoka Dental College, Fukuoka, Japan
| | - Ryosuke Fujikane
- Department of Physiological Science and Molecular Biology, Fukuoka Dental College, Fukuoka, Japan.,Oral Medicine Research Center, Fukuoka Dental College, Fukuoka, Japan
| | - Yuko Obayashi
- Department of Physiological Science and Molecular Biology, Fukuoka Dental College, Fukuoka, Japan.,Department of Oral and Maxillofacial Surgery, Fukuoka Dental College, Fukuoka, Japan
| | - Kyoko Oka
- Department of Oral Growth and Development, Fukuoka Dental College, Fukuoka, Japan
| | - Masao Ozaki
- Department of Oral Growth and Development, Fukuoka Dental College, Fukuoka, Japan
| | - Masumi Hidaka
- Department of Physiological Science and Molecular Biology, Fukuoka Dental College, Fukuoka, Japan.,Oral Medicine Research Center, Fukuoka Dental College, Fukuoka, Japan
| |
Collapse
|
11
|
Goold R, Flower M, Moss DH, Medway C, Wood-Kaczmar A, Andre R, Farshim P, Bates GP, Holmans P, Jones L, Tabrizi SJ. FAN1 modifies Huntington's disease progression by stabilizing the expanded HTT CAG repeat. Hum Mol Genet 2019; 28:650-661. [PMID: 30358836 PMCID: PMC6360275 DOI: 10.1093/hmg/ddy375] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 10/15/2018] [Accepted: 10/16/2018] [Indexed: 11/13/2022] Open
Abstract
Huntington's disease (HD) is an inherited neurodegenerative disease caused by an expanded CAG repeat in the huntingtin (HTT) gene. CAG repeat length explains around half of the variation in age at onset (AAO) but genetic variation elsewhere in the genome accounts for a significant proportion of the remainder. Genome-wide association studies have identified a bidirectional signal on chromosome 15, likely underlain by FANCD2- and FANCI-associated nuclease 1 (FAN1), a nuclease involved in DNA interstrand cross link repair. Here we show that increased FAN1 expression is significantly associated with delayed AAO and slower progression of HD, suggesting FAN1 is protective in the context of an expanded HTT CAG repeat. FAN1 overexpression in human cells reduces CAG repeat expansion in exogenously expressed mutant HTT exon 1, and in patient-derived stem cells and differentiated medium spiny neurons, FAN1 knockdown increases CAG repeat expansion. The stabilizing effects are FAN1 concentration and CAG repeat length-dependent. We show that FAN1 binds to the expanded HTT CAG repeat DNA and its nuclease activity is not required for protection against CAG repeat expansion. These data shed new mechanistic insights into how the genetic modifiers of HD act to alter disease progression and show that FAN1 affects somatic expansion of the CAG repeat through a nuclease-independent mechanism. This provides new avenues for therapeutic interventions in HD and potentially other triplet repeat disorders.
Collapse
Affiliation(s)
- Robert Goold
- UCL Huntington’s Disease Centre,Department of Neurodegenerative Disease, Queen Square Institute of Neurology, University College London,Queen Square, London WC1N 3BG, UK
| | - Michael Flower
- UCL Huntington’s Disease Centre,Department of Neurodegenerative Disease, Queen Square Institute of Neurology, University College London,Queen Square, London WC1N 3BG, UK
| | - Davina Hensman Moss
- UCL Huntington’s Disease Centre,Department of Neurodegenerative Disease, Queen Square Institute of Neurology, University College London,Queen Square, London WC1N 3BG, UK
| | - Chris Medway
- Medical Research Council Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, CF24 4HQ, UK
| | - Alison Wood-Kaczmar
- UCL Huntington’s Disease Centre,Department of Neurodegenerative Disease, Queen Square Institute of Neurology, University College London,Queen Square, London WC1N 3BG, UK
| | - Ralph Andre
- UCL Huntington’s Disease Centre,Department of Neurodegenerative Disease, Queen Square Institute of Neurology, University College London,Queen Square, London WC1N 3BG, UK
| | - Pamela Farshim
- UCL Huntington’s Disease Centre,Department of Neurodegenerative Disease, Queen Square Institute of Neurology, University College London,Queen Square, London WC1N 3BG, UK
| | - Gill P Bates
- UCL Huntington’s Disease Centre,Department of Neurodegenerative Disease, Queen Square Institute of Neurology, University College London,Queen Square, London WC1N 3BG, UK
- UK Dementia Research Institute, University College London, WC1N 3BG, UK
| | - Peter Holmans
- Medical Research Council Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, CF24 4HQ, UK
| | - Lesley Jones
- Medical Research Council Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, CF24 4HQ, UK
| | - Sarah J Tabrizi
- UCL Huntington’s Disease Centre,Department of Neurodegenerative Disease, Queen Square Institute of Neurology, University College London,Queen Square, London WC1N 3BG, UK
- UK Dementia Research Institute, University College London, WC1N 3BG, UK
| |
Collapse
|
12
|
Human Exonuclease 1 (EXO1) Regulatory Functions in DNA Replication with Putative Roles in Cancer. Int J Mol Sci 2018; 20:ijms20010074. [PMID: 30585186 PMCID: PMC6337416 DOI: 10.3390/ijms20010074] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 12/12/2018] [Accepted: 12/19/2018] [Indexed: 12/11/2022] Open
Abstract
Human exonuclease 1 (EXO1), a 5'→3' exonuclease, contributes to the regulation of the cell cycle checkpoints, replication fork maintenance, and post replicative DNA repair pathways. These processes are required for the resolution of stalled or blocked DNA replication that can lead to replication stress and potential collapse of the replication fork. Failure to restart the DNA replication process can result in double-strand breaks, cell-cycle arrest, cell death, or cellular transformation. In this review, we summarize the involvement of EXO1 in the replication, DNA repair pathways, cell cycle checkpoints, and the link between EXO1 and cancer.
Collapse
|
13
|
MutLγ promotes repeat expansion in a Fragile X mouse model while EXO1 is protective. PLoS Genet 2018; 14:e1007719. [PMID: 30312299 PMCID: PMC6200270 DOI: 10.1371/journal.pgen.1007719] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 10/24/2018] [Accepted: 09/26/2018] [Indexed: 12/19/2022] Open
Abstract
The Fragile X-related disorders (FXDs) are Repeat Expansion Diseases resulting from an expansion of a CGG-repeat tract at the 5’ end of the FMR1 gene. The mechanism responsible for this unusual mutation is not fully understood. We have previously shown that mismatch repair (MMR) complexes, MSH2/MSH3 (MutSβ) and MSH2/MSH6 (MutSα), together with Polβ, a DNA polymerase important for base excision repair (BER), are important for expansions in a mouse model of these disorders. Here we show that MLH1/MLH3 (MutLγ), a protein complex that can act downstream of MutSβ in MMR, is also required for all germ line and somatic expansions. However, exonuclease I (EXO1), which acts downstream of MutL proteins in MMR, is not required. In fact, a null mutation in Exo1 results in more extensive germ line and somatic expansions than is seen in Exo1+/+ animals. Furthermore, mice homozygous for a point mutation (D173A) in Exo1 that eliminates its nuclease activity but retains its native conformation, shows a level of expansion that is intermediate between Exo1+/+and Exo1-/- animals. Thus, our data suggests that expansion of the FX repeat in this mouse model occurs via a MutLγ-dependent, EXO1-independent pathway, with EXO1 protecting against expansion both in a nuclease-dependent and a nuclease-independent manner. Our data thus have implications for the expansion mechanism and add to our understanding of the genetic factors that may be modifiers of expansion risk in humans. The Fragile X-related disorders arise from expansion of a tandem repeat or microsatellite consisting of CGG-repeat units. The expansion mutation is not well understood, but our previous data suggests that MutSα and MutSβ, mismatch repair (MMR) proteins that normally protect the genome against microsatellite instability, are actually responsible for these mutations in a knockin mouse model of these disorders. In this manuscript we describe the role in expansion of two proteins that act downstream of the MutS proteins in MMR, MutLγ and EXO1. Our data suggests that expansion occurs via a MutLγ-dependent, EXO1-independent pathway, with EXO1 playing both a nuclease-dependent and a nuclease-independent role in preventing expansions.
Collapse
|
14
|
Zhao XN, Usdin K. FAN1 protects against repeat expansions in a Fragile X mouse model. DNA Repair (Amst) 2018; 69:1-5. [PMID: 29990673 PMCID: PMC6119480 DOI: 10.1016/j.dnarep.2018.07.001] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 07/03/2018] [Accepted: 07/03/2018] [Indexed: 10/28/2022]
Abstract
The Fragile X-related disorders (FXDs) are members of a large group of human neurological or neurodevelopmental conditions known as the Repeat Expansion Diseases. The mutation responsible for all of these diseases is an expansion in the size of a disease-specific tandem repeat tract. However, the underlying cause of this unusual mutation is unknown. Genome-wide association studies have identified single nucleotide polymorphisms (SNPs) in the vicinity of the FAN1 (MIM* 613534) gene that are associated with variations in the age at onset of a number of Repeat Expansion Diseases. FAN1 is a nuclease that has both 5'-3' exonuclease and 5' flap endonuclease activities. Here we show in a model for the FXDs that Fan1-/- mice have expansions that, in some tissues including brain, are 2-3 times as extensive as they are in Fan1+/+ mice. However, no effect of the loss of FAN1 was apparent for germ line expansions. Thus, FAN1 plays an important role in protecting against somatic expansions but is either not involved in protecting against intergenerational repeat expansions or is redundant with other related enzymes. However, since loss of FAN1 results in increased expansions in brain and other somatic tissue, FAN1 polymorphisms may be important disease modifiers in those Repeat Expansion Diseases in which somatic expansion contributes to age at onset or disease severity.
Collapse
Affiliation(s)
- Xiao-Nan Zhao
- Section on Gene Structure and Disease, Laboratory of Cell and Molecular Biology, National Institute of Diabetes, Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, 20892, United States.
| | - Karen Usdin
- Section on Gene Structure and Disease, Laboratory of Cell and Molecular Biology, National Institute of Diabetes, Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, 20892, United States.
| |
Collapse
|
15
|
DNA mismatch repair and its many roles in eukaryotic cells. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2017; 773:174-187. [PMID: 28927527 DOI: 10.1016/j.mrrev.2017.07.001] [Citation(s) in RCA: 123] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Revised: 07/01/2017] [Accepted: 07/06/2017] [Indexed: 02/06/2023]
Abstract
DNA mismatch repair (MMR) is an important DNA repair pathway that plays critical roles in DNA replication fidelity, mutation avoidance and genome stability, all of which contribute significantly to the viability of cells and organisms. MMR is widely-used as a diagnostic biomarker for human cancers in the clinic, and as a biomarker of cancer susceptibility in animal model systems. Prokaryotic MMR is well-characterized at the molecular and mechanistic level; however, MMR is considerably more complex in eukaryotic cells than in prokaryotic cells, and in recent years, it has become evident that MMR plays novel roles in eukaryotic cells, several of which are not yet well-defined or understood. Many MMR-deficient human cancer cells lack mutations in known human MMR genes, which strongly suggests that essential eukaryotic MMR components/cofactors remain unidentified and uncharacterized. Furthermore, the mechanism by which the eukaryotic MMR machinery discriminates between the parental (template) and the daughter (nascent) DNA strand is incompletely understood and how cells choose between the EXO1-dependent and the EXO1-independent subpathways of MMR is not known. This review summarizes recent literature on eukaryotic MMR, with emphasis on the diverse cellular roles of eukaryotic MMR proteins, the mechanism of strand discrimination and cross-talk/interactions between and co-regulation of MMR and other DNA repair pathways in eukaryotic cells. The main conclusion of the review is that MMR proteins contribute to genome stability through their ability to recognize and promote an appropriate cellular response to aberrant DNA structures, especially when they arise during DNA replication. Although the molecular mechanism of MMR in the eukaryotic cell is still not completely understood, increased used of single-molecule analyses in the future may yield new insight into these unsolved questions.
Collapse
|
16
|
Keijzers G, Liu D, Rasmussen LJ. Exonuclease 1 and its versatile roles in DNA repair. Crit Rev Biochem Mol Biol 2016; 51:440-451. [PMID: 27494243 DOI: 10.1080/10409238.2016.1215407] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Exonuclease 1 (EXO1) is a multifunctional 5' → 3' exonuclease and a DNA structure-specific DNA endonuclease. EXO1 plays roles in DNA replication, DNA mismatch repair (MMR) and DNA double-stranded break repair (DSBR) in lower and higher eukaryotes and contributes to meiosis, immunoglobulin maturation, and micro-mediated end-joining in higher eukaryotes. In human cells, EXO1 is also thought to play a role in telomere maintenance. Mutations in the human EXO1 gene correlate with increased susceptibility to some cancers. This review summarizes recent studies on the enzymatic functions and biological roles of EXO1, its possible protective role against cancer and aging, and regulation of EXO1 by posttranslational modification.
Collapse
Affiliation(s)
- Guido Keijzers
- a Department of Cellular and Molecular Medicine , Center for Healthy Aging, University of Copenhagen , Copenhagen , Denmark
| | - Dekang Liu
- a Department of Cellular and Molecular Medicine , Center for Healthy Aging, University of Copenhagen , Copenhagen , Denmark
| | - Lene Juel Rasmussen
- a Department of Cellular and Molecular Medicine , Center for Healthy Aging, University of Copenhagen , Copenhagen , Denmark
| |
Collapse
|
17
|
Piekna-Przybylska D, Bambara RA, Balakrishnan L. Acetylation regulates DNA repair mechanisms in human cells. Cell Cycle 2016; 15:1506-17. [PMID: 27104361 DOI: 10.1080/15384101.2016.1176815] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The p300-mediated acetylation of enzymes involved in DNA repair and replication has been previously shown to stimulate or inhibit their activities in reconstituted systems. To explore the role of acetylation on DNA repair in cells we constructed plasmid substrates carrying inactivating damages in the EGFP reporter gene, which should be repaired in cells through DNA mismatch repair (MMR) or base excision repair (BER) mechanisms. We analyzed efficiency of repair within these plasmid substrates in cells exposed to deacetylase and acetyltransferase inhibitors, and also in cells deficient in p300 acetyltransferase. Our results indicate that protein acetylation improves DNA mismatch repair in MMR-proficient HeLa cells and also in MMR-deficient HCT116 cells. Moreover, results suggest that stimulated repair of mismatches in MMR-deficient HCT116 cells is done though a strand-displacement synthesis mechanism described previously for Okazaki fragments maturation and also for the EXOI-independent pathway of MMR. Loss of p300 reduced repair of mismatches in MMR-deficient cells, but did not have evident effects on BER mechanisms, including the long patch BER pathway. Hypoacetylation of the cells in the presence of acetyltransferase inhibitor, garcinol generally reduced efficiency of BER of 8-oxoG damage, indicating that some steps in the pathway are stimulated by acetylation.
Collapse
Affiliation(s)
- Dorota Piekna-Przybylska
- a Department of Microbiology and Immunology , School of Medicine and Dentistry, University of Rochester , Rochester , NY , USA
| | - Robert A Bambara
- a Department of Microbiology and Immunology , School of Medicine and Dentistry, University of Rochester , Rochester , NY , USA
| | - Lata Balakrishnan
- b Department of Biology , Indiana University-Purdue University Indianapolis , Indianapolis , IN , USA
| |
Collapse
|
18
|
Rall M, Kraft D, Volcic M, Cucu A, Nasonova E, Taucher-Scholz G, Bönig H, Wiesmüller L, Fournier C. Impact of Charged Particle Exposure on Homologous DNA Double-Strand Break Repair in Human Blood-Derived Cells. Front Oncol 2015; 5:250. [PMID: 26618143 PMCID: PMC4641431 DOI: 10.3389/fonc.2015.00250] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Accepted: 10/26/2015] [Indexed: 12/12/2022] Open
Abstract
Ionizing radiation generates DNA double-strand breaks (DSB) which, unless faithfully repaired, can generate chromosomal rearrangements in hematopoietic stem and/or progenitor cells (HSPC), potentially priming the cells towards a leukemic phenotype. Using an enhanced green fluorescent protein (EGFP)-based reporter system, we recently identified differences in the removal of enzyme-mediated DSB in human HSPC versus mature peripheral blood lymphocytes (PBL), particularly regarding homologous DSB repair (HR). Assessment of chromosomal breaks via premature chromosome condensation or γH2AX foci indicated similar efficiency and kinetics of radiation-induced DSB formation and rejoining in PBL and HSPC. Prolonged persistence of chromosomal breaks was observed for higher LET charged particles which are known to induce more complex DNA damage compared to X-rays. Consistent with HR deficiency in HSPC observed in our previous study, we noticed here pronounced focal accumulation of 53BP1 after X-ray and carbon ion exposure (intermediate LET) in HSPC versus PBL. For higher LET, 53BP1 foci kinetics was similarly delayed in PBL and HSPC suggesting similar failure to repair complex DNA damage. Data obtained with plasmid reporter systems revealed a dose- and LET-dependent HR increase after X-ray, carbon ion and higher LET exposure, particularly in HR-proficient immortalized and primary lymphocytes, confirming preferential use of conservative HR in PBL for intermediate LET damage repair. HR measured adjacent to the leukemia-associated MLL breakpoint cluster sequence in reporter lines revealed dose dependency of potentially leukemogenic rearrangements underscoring the risk of leukemia-induction by radiation treatment.
Collapse
Affiliation(s)
- Melanie Rall
- Department of Obstetrics and Gynaecology, Ulm University, Ulm, Germany
| | - Daniela Kraft
- Department of Biophysics, GSI Helmholtz Center for Heavy Ion Research, Darmstadt, Germany
| | - Meta Volcic
- Department of Obstetrics and Gynaecology, Ulm University, Ulm, Germany
| | - Aljona Cucu
- Department of Biophysics, GSI Helmholtz Center for Heavy Ion Research, Darmstadt, Germany
| | - Elena Nasonova
- Department of Biophysics, GSI Helmholtz Center for Heavy Ion Research, Darmstadt, Germany
| | - Gisela Taucher-Scholz
- Department of Biophysics, GSI Helmholtz Center for Heavy Ion Research, Darmstadt, Germany
| | - Halvard Bönig
- German Red Cross Blood Service Baden-Wuerttemberg – Hessen, Institute for Transfusion Medicine and Immunohematology, Johann Wolfgang Goethe-University Hospital, Frankfurt, Germany
| | - Lisa Wiesmüller
- Department of Obstetrics and Gynaecology, Ulm University, Ulm, Germany
- *Correspondence: Lisa Wiesmüller, ; Claudia Fournier,
| | - Claudia Fournier
- Department of Biophysics, GSI Helmholtz Center for Heavy Ion Research, Darmstadt, Germany
- *Correspondence: Lisa Wiesmüller, ; Claudia Fournier,
| |
Collapse
|
19
|
Seguí N, Mina LB, Lázaro C, Sanz-Pamplona R, Pons T, Navarro M, Bellido F, López-Doriga A, Valdés-Mas R, Pineda M, Guinó E, Vidal A, Soto JL, Caldés T, Durán M, Urioste M, Rueda D, Brunet J, Balbín M, Blay P, Iglesias S, Garré P, Lastra E, Sánchez-Heras AB, Valencia A, Moreno V, Pujana MÁ, Villanueva A, Blanco I, Capellá G, Surrallés J, Puente XS, Valle L. Germline Mutations in FAN1 Cause Hereditary Colorectal Cancer by Impairing DNA Repair. Gastroenterology 2015; 149:563-6. [PMID: 26052075 DOI: 10.1053/j.gastro.2015.05.056] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Revised: 04/28/2015] [Accepted: 05/28/2015] [Indexed: 12/02/2022]
Abstract
Identification of genes associated with hereditary cancers facilitates management of patients with family histories of cancer. We performed exome sequencing of DNA from 3 individuals from a family with colorectal cancer who met the Amsterdam criteria for risk of hereditary nonpolyposis colorectal cancer. These individuals had mismatch repair-proficient tumors and each carried nonsense variant in the FANCD2/FANCI-associated nuclease 1 gene (FAN1), which encodes a nuclease involved in DNA inter-strand cross-link repair. We sequenced FAN1 in 176 additional families with histories of colorectal cancer and performed in vitro functional analyses of the mutant forms of FAN1 identified. We detected FAN1 mutations in approximately 3% of families who met the Amsterdam criteria and had mismatch repair-proficient cancers with no previously associated mutations. These findings link colorectal cancer predisposition to the Fanconi anemia DNA repair pathway, supporting the connection between genome integrity and cancer risk.
Collapse
Affiliation(s)
- Nuria Seguí
- Hereditary Cancer Program, Catalan Institute of Oncology, IDIBELL, Hospitalet de Llobregat, Spain
| | - Leonardo B Mina
- Genome Instability and DNA Repair Group, Department of Genetics and Microbiology, Universitat Autònoma de Barcelona, and Center for Biomedical Network Research on Rare Diseases (CIBERER), Barcelona, Spain
| | - Conxi Lázaro
- Hereditary Cancer Program, Catalan Institute of Oncology, IDIBELL, Hospitalet de Llobregat, Spain
| | - Rebeca Sanz-Pamplona
- Unit of Biomarkers and Susceptibility, Catalan Institute of Oncology, IDIBELL and CIBERESP, Hospitalet de Llobregat, Spain
| | - Tirso Pons
- Structural Biology and Biocomputing Program, Spanish National Cancer Research Center (CNIO), Madrid, Spain
| | - Matilde Navarro
- Hereditary Cancer Program, Catalan Institute of Oncology, IDIBELL, Hospitalet de Llobregat, Spain
| | - Fernando Bellido
- Hereditary Cancer Program, Catalan Institute of Oncology, IDIBELL, Hospitalet de Llobregat, Spain
| | - Adriana López-Doriga
- Unit of Biomarkers and Susceptibility, Catalan Institute of Oncology, IDIBELL and CIBERESP, Hospitalet de Llobregat, Spain
| | - Rafael Valdés-Mas
- Departamento de Bioquímica y Biología Molecular, Instituto Universitario de Oncología del Principado de Asturias, Universidad de Oviedo, Oviedo, Spain
| | - Marta Pineda
- Hereditary Cancer Program, Catalan Institute of Oncology, IDIBELL, Hospitalet de Llobregat, Spain
| | - Elisabet Guinó
- Unit of Biomarkers and Susceptibility, Catalan Institute of Oncology, IDIBELL and CIBERESP, Hospitalet de Llobregat, Spain
| | - August Vidal
- Department of Pathology, Bellvitge University Hospital, IDIBELL, Hospitalet de Llobregat, Spain
| | - José Luís Soto
- Molecular Genetics Laboratory, Elche University Hospital, Elche, Spain
| | - Trinidad Caldés
- Laboratorio de Oncología Molecular, Servicio de Oncología Médica, Hospital Clínico San Carlos, Madrid, Spain
| | - Mercedes Durán
- Instituto de Biología y Genética Molecular, IBGM-UVA-CSIC, Valladolid, Spain
| | - Miguel Urioste
- Familial Cancer Clinical Unit, Human Cancer Genetics Program, Spanish National Cancer Centre and Center for Biomedical Network Research on Rare Diseases, Madrid, Spain
| | - Daniel Rueda
- Molecular Biology Laboratory, 12 de Octubre University Hospital, Madrid, Spain
| | - Joan Brunet
- Hereditary Cancer Program, Catalan Institute of Oncology, IDIBGi, Girona, Spain
| | - Milagros Balbín
- Laboratorio de Oncología Molecular, Instituto Universitario de Oncología del Principado de Asturias, Hospital Universitario Central de Asturias, Oviedo, Spain
| | - Pilar Blay
- Familial Cancer Unit, Department of Medical Oncology, Instituto Universitario de Oncología del Principado de Asturias, Hospital Universitario Central de Asturias, Oviedo, Spain
| | - Silvia Iglesias
- Hereditary Cancer Program, Catalan Institute of Oncology, IDIBELL, Hospitalet de Llobregat, Spain
| | - Pilar Garré
- Laboratorio de Oncología Molecular, Servicio de Oncología Médica, Hospital Clínico San Carlos, Madrid, Spain
| | - Enrique Lastra
- Department of Oncology, Hospital General Yagüe, Burgos, Spain
| | | | - Alfonso Valencia
- Structural Biology and Biocomputing Program, Spanish National Cancer Research Center (CNIO), Madrid, Spain
| | - Victor Moreno
- Unit of Biomarkers and Susceptibility, Catalan Institute of Oncology, IDIBELL and CIBERESP, Hospitalet de Llobregat, Spain; Department of Clinical Sciences, Faculty of Medicine, University of Barcelona, Barcelona, Spain
| | - Miguel Ángel Pujana
- Translational Research Laboratory, Catalan Institute of Oncology, IDIBELL, Hospitalet de Llobregat, Spain
| | - Alberto Villanueva
- Translational Research Laboratory, Catalan Institute of Oncology, IDIBELL, Hospitalet de Llobregat, Spain
| | - Ignacio Blanco
- Hereditary Cancer Program, Catalan Institute of Oncology, IDIBELL, Hospitalet de Llobregat, Spain
| | - Gabriel Capellá
- Hereditary Cancer Program, Catalan Institute of Oncology, IDIBELL, Hospitalet de Llobregat, Spain
| | - Jordi Surrallés
- Genome Instability and DNA Repair Group, Department of Genetics and Microbiology, Universitat Autònoma de Barcelona, and Center for Biomedical Network Research on Rare Diseases (CIBERER), Barcelona, Spain
| | - Xose S Puente
- Departamento de Bioquímica y Biología Molecular, Instituto Universitario de Oncología del Principado de Asturias, Universidad de Oviedo, Oviedo, Spain
| | - Laura Valle
- Hereditary Cancer Program, Catalan Institute of Oncology, IDIBELL, Hospitalet de Llobregat, Spain.
| |
Collapse
|
20
|
NF-κB-dependent DNA damage-signaling differentially regulates DNA double-strand break repair mechanisms in immature and mature human hematopoietic cells. Leukemia 2015; 29:1543-54. [PMID: 25652738 DOI: 10.1038/leu.2015.28] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Revised: 12/30/2014] [Accepted: 01/21/2015] [Indexed: 12/13/2022]
Abstract
Hematopoietic stem and progenitor cells (HSPC), that is, the cell population giving rise not only to all mature hematopoietic lineages but also the presumed target for leukemic transformation, can transmit (adverse) genetic events, such as are acquired from chemotherapy or ionizing radiation. Data on the repair of DNA double-strand-breaks (DSB) and its accuracy in HSPC are scarce, in part contradictory, and mostly obtained in murine models. We explored the activity, quality and molecular components of DSB repair in human HSPC as compared with mature peripheral blood lymphocytes (PBL). To consider chemotherapy/radiation-induced compensatory proliferation, we established cycling HSPC cultures. Comparison of pathway-specific repair activities using reporter systems revealed that HSPC were severely compromised in non-homologous end joining and homologous recombination but not microhomology-mediated end joining. We observed a more pronounced radiation-induced accumulation of nuclear 53BP1 in HSPC relative to PBL, despite evidence for comparable DSB formation from cytogenetic analysis and γH2AX signal quantification, supporting differential pathway usage. Functional screening excluded a major influence of phosphatidylinositol-3-OH-kinase (ATM/ATR/DNA-PK)- and p53-signaling as well as chromatin remodeling. We identified diminished NF-κB signaling as the molecular component underlying the observed differences between HSPC and PBL, limiting the expression of DSB repair genes and bearing the risk of an inaccurate repair.
Collapse
|