1
|
Kuse R, Ishii K. Flexible Attachment and Detachment of Centromeres and Telomeres to and from Chromosomes. Biomolecules 2023; 13:1016. [PMID: 37371596 DOI: 10.3390/biom13061016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 06/15/2023] [Accepted: 06/18/2023] [Indexed: 06/29/2023] Open
Abstract
Accurate transmission of genomic information across multiple cell divisions and generations, without any losses or errors, is fundamental to all living organisms. To achieve this goal, eukaryotes devised chromosomes. Eukaryotic genomes are represented by multiple linear chromosomes in the nucleus, each carrying a centromere in the middle, a telomere at both ends, and multiple origins of replication along the chromosome arms. Although all three of these DNA elements are indispensable for chromosome function, centromeres and telomeres possess the potential to detach from the original chromosome and attach to new chromosomal positions, as evident from the events of telomere fusion, centromere inactivation, telomere healing, and neocentromere formation. These events seem to occur spontaneously in nature but have not yet been elucidated clearly, because they are relatively infrequent and sometimes detrimental. To address this issue, experimental setups have been developed using model organisms such as yeast. In this article, we review some of the key experiments that provide clues as to the extent to which these paradoxical and elusive features of chromosomally indispensable elements may become valuable in the natural context.
Collapse
Affiliation(s)
- Riku Kuse
- Laboratory of Chromosome Function and Regulation, Graduate School of Engineering, Kochi University of Technology, Kochi 782-8502, Japan
| | - Kojiro Ishii
- Laboratory of Chromosome Function and Regulation, Graduate School of Engineering, Kochi University of Technology, Kochi 782-8502, Japan
| |
Collapse
|
2
|
Metcalfe NB, Olsson M. How telomere dynamics are influenced by the balance between mitochondrial efficiency, reactive oxygen species production and DNA damage. Mol Ecol 2022; 31:6040-6052. [PMID: 34435398 DOI: 10.1111/mec.16150] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 08/02/2021] [Accepted: 08/23/2021] [Indexed: 01/31/2023]
Abstract
It is well known that oxidative stress is a major cause of DNA damage and telomere attrition. Most endogenous reactive oxygen species (ROS) are produced in the mitochondria, producing a link between mitochondrial function, DNA integrity and telomere dynamics. In this review we will describe how ROS production, rates of damage to telomeric DNA and DNA repair are dynamic processes. The rate of ROS production depends on mitochondrial features such as the level of inner membrane uncoupling and the proportion of time that ATP is actively being produced. However, the efficiency of ATP production (the ATP/O ratio) is positively related to the rate of ROS production, so leading to a trade-off between the body's energy requirements and its need to prevent oxidative stress. Telomeric DNA is especially vulnerable to oxidative damage due to features such as its high guanine content; while repair to damaged telomere regions is possible through a range of mechanisms, these can result in more rapid telomere shortening. There is increasing evidence that mitochondrial efficiency varies over time and with environmental context, as do rates of DNA repair. We argue that telomere dynamics can only be understood by appreciating that the optimal solution to the trade-off between energetic efficiency and telomere protection will differ between individuals and will change over time, depending on resource availability, energetic demands and life history strategy.
Collapse
Affiliation(s)
- Neil B Metcalfe
- Institute of Biodiversity, Animal Health & Comparative Medicine, University of Glasgow, Glasgow, UK
| | - Mats Olsson
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
3
|
Bian L, Meng Y, Zhang M, Li D. MRE11-RAD50-NBS1 complex alterations and DNA damage response: implications for cancer treatment. Mol Cancer 2019; 18:169. [PMID: 31767017 PMCID: PMC6878665 DOI: 10.1186/s12943-019-1100-5] [Citation(s) in RCA: 135] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2019] [Accepted: 11/08/2019] [Indexed: 01/26/2023] Open
Abstract
Genome instability is a hallmark of cancer cells and can be accelerated by defects in cellular responses to DNA damage. This feature of malignant cells opens new avenues for tumor targeted therapy. MRE11-RAD50-NBS1 complex plays a crucial role in sensing and repair of DNA damage. Through interacting with other important players of DNA damage response, MRE11-RAD50-NBS1 complex is engaged in various DNA damage repair pathways. Mutations in any member of this complex may lead to hypersensitivity to genotoxic agents and predisposition to malignancy. It is assumed that the defects in the complex may contribute to tumorigenesis and that treatments targeting the defect may be beneficial to cancer patients. Here, we summarized the recent research findings of the role of MRE11-RAD50-NBS1 complex in tumorigenesis, cancer treatment and discussed the potential approaches of targeting this complex to treat cancer.
Collapse
Affiliation(s)
- Lei Bian
- Department of Radiation Oncology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yiling Meng
- Department of Radiation Oncology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Meichao Zhang
- Department of Radiation Oncology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Dong Li
- Department of Radiation Oncology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.
| |
Collapse
|
4
|
Li Y, Shen Y, Jin K, Wen Z, Cao W, Wu B, Wen R, Tian L, Berry GJ, Goronzy JJ, Weyand CM. The DNA Repair Nuclease MRE11A Functions as a Mitochondrial Protector and Prevents T Cell Pyroptosis and Tissue Inflammation. Cell Metab 2019; 30:477-492.e6. [PMID: 31327667 PMCID: PMC7093039 DOI: 10.1016/j.cmet.2019.06.016] [Citation(s) in RCA: 110] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 02/06/2019] [Accepted: 06/19/2019] [Indexed: 02/07/2023]
Abstract
In the autoimmune disease rheumatoid arthritis (RA), CD4+ T cells promote pro-inflammatory effector functions by shunting glucose away from glycolysis and ATP production. Underlying mechanisms remain unknown, and here we implicate the DNA repair nuclease MRE11A in the cells' bioenergetic failure. MRE11A deficiency in RA T cells disrupted mitochondrial oxygen consumption and suppressed ATP generation. Also, MRE11A loss of function caused leakage of mitochondrial DNA (mtDNA) into the cytosol, triggering inflammasome assembly, caspase-1 activation, and pyroptotic cell death. Caspase-1 activation was frequent in lymph-node-residing T cells in RA patients. In vivo, pharmacologic and genetic inhibition of MRE11A resulted in tissue deposition of mtDNA, caspase-1 proteolysis, and aggressive tissue inflammation. Conversely, MRE11A overexpression restored mitochondrial fitness and shielded tissue from inflammatory attack. Thus, the nuclease MRE11A regulates a mitochondrial protection program, and MRE11A deficiency leads to DNA repair defects, energy production, and failure and loss of tissue homeostasis.
Collapse
Affiliation(s)
- Yinyin Li
- Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Yi Shen
- Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Ke Jin
- Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Zhenke Wen
- Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Wenqiang Cao
- Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Bowen Wu
- Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Ru Wen
- Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Lu Tian
- Department of Biomedical Data Science, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Gerald J Berry
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Jorg J Goronzy
- Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Cornelia M Weyand
- Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
5
|
Ramamurthy B, Cohen S, Canales M, Coffman FD. Three-Dimensional Cellular Raman Analysis: Evidence of Highly Ordered Lipids Within Cell Nuclei. J Histochem Cytochem 2018; 66:889-902. [PMID: 30138043 DOI: 10.1369/0022155418794125] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Striking levels of spatial organization exist among and within interphase cell chromosomes, raising the possibility that other nuclear molecular components may also be organized in ways that facilitate nuclear function. To further examine molecular distributions and organization within cell nuclei, we utilized Raman spectroscopy to map distributions of molecular components, with a focus on cellular lipids. Although the vast majority of cellular lipids are associated with membranes, mapping the 2870/2850 cm-1 lipid peak ratios revealed that the most highly ordered lipids within interphase cells are found within cell nuclei. This finding was seen in cells from multiple tissue types, noncancerous cells, and in cancer cell lines of different metastatic potential. These highly ordered lipids colocalize with nuclear chromatin, are present throughout the nuclear volume, and remain colocalized with chromatin through mitosis, when the nuclear envelope has dissociated. Phosphatidylinositol is a major component of the highly ordered lipids. The presence of phosphatidylinositol and other lipids in the nuclear interior is well established, but their highly ordered packing has not been reported and represents a unique finding. The molecular interactions involved in the formation and maintenance of these highly ordered lipids, and their potential effects on nuclear activities, remain to be discovered.
Collapse
Affiliation(s)
- Bhagavathi Ramamurthy
- Center for Biophysical Pathology, Newark, New Jersey.,Department of Biology, Delaware State University, Dover, Delaware
| | - Stanley Cohen
- Center for Biophysical Pathology, Newark, New Jersey.,Department of Pathology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania
| | | | - Frederick D Coffman
- Center for Biophysical Pathology, Newark, New Jersey.,Department of Health Informatics and Department of Primary Care, Rutgers, The State University of New Jersey, Newark, New Jersey
| |
Collapse
|
6
|
Syed A, Tainer JA. The MRE11-RAD50-NBS1 Complex Conducts the Orchestration of Damage Signaling and Outcomes to Stress in DNA Replication and Repair. Annu Rev Biochem 2018; 87:263-294. [PMID: 29709199 PMCID: PMC6076887 DOI: 10.1146/annurev-biochem-062917-012415] [Citation(s) in RCA: 272] [Impact Index Per Article: 45.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Genomic instability in disease and its fidelity in health depend on the DNA damage response (DDR), regulated in part from the complex of meiotic recombination 11 homolog 1 (MRE11), ATP-binding cassette-ATPase (RAD50), and phosphopeptide-binding Nijmegen breakage syndrome protein 1 (NBS1). The MRE11-RAD50-NBS1 (MRN) complex forms a multifunctional DDR machine. Within its network assemblies, MRN is the core conductor for the initial and sustained responses to DNA double-strand breaks, stalled replication forks, dysfunctional telomeres, and viral DNA infection. MRN can interfere with cancer therapy and is an attractive target for precision medicine. Its conformations change the paradigm whereby kinases initiate damage sensing. Delineated results reveal kinase activation, posttranslational targeting, functional scaffolding, conformations storing binding energy and enabling access, interactions with hub proteins such as replication protein A (RPA), and distinct networks at DNA breaks and forks. MRN biochemistry provides prototypic insights into how it initiates, implements, and regulates multifunctional responses to genomic stress.
Collapse
Affiliation(s)
- Aleem Syed
- Department of Molecular and Cellular Oncology, The University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030, USA; ,
| | - John A Tainer
- Department of Molecular and Cellular Oncology, The University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030, USA; ,
- Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| |
Collapse
|
7
|
Etoposide-induced DNA damage affects multiple cellular pathways in addition to DNA damage response. Oncotarget 2018; 9:24122-24139. [PMID: 29844877 PMCID: PMC5963631 DOI: 10.18632/oncotarget.24517] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2017] [Accepted: 02/10/2018] [Indexed: 02/06/2023] Open
Abstract
DNA damage response (DDR) coordinates lesion repair and checkpoint activation. DDR is intimately connected with transcription. However, the relationship between DDR and transcription has not been clearly established. We report here RNA-sequencing analyses of MCF7 cells containing double-strand breaks induced by etoposide. While etoposide does not apparently cause global changes in mRNA abundance, it altered some gene expression. At the setting of fold alteration ≥ 2 and false discovery rate (FDR) ≤ 0.001, FDR < 0.05, or p < 0.05, etoposide upregulated 96, 268, or 860 genes and downregulated 41, 133, or 503 genes in MCF7 cells. Among these differentially expressed genes (DEGs), the processes of biogenesis, metabolism, cell motility, signal transduction, and others were affected; the pathways of Ras GTPase activity, RNA binding, cytokine-mediated signaling, kinase regulatory activity, protein binding, and translation were upregulated, and those pathways related to coated vesicle, calmodulin binding, and microtubule-based movement were downregulated. We further identified RABL6, RFTN2, FAS-AS1, and TCEB3CL as new DDR-affected genes in MCF7 and T47D cells. By metabolic labelling using 4-thiouridine, we observed dynamic alterations in the transcription of these genes in etoposide-treated MCF7 and T47D cells. During 0-2 hour etoposide treatment, RABL6 transcription was robustly increased at 0.5 and 1 hour in MCF7 cells and at 2 hours in T47D cells, while FAS-AS1 transcription was dramatically and steadily elevated in both cell lines. Taken together, we demonstrate dynamic alterations in transcription and that these changes affect multiple cellular processes in etoposide-induced DDR.
Collapse
|
8
|
Westmoreland JW, Mihalevic MJ, Bernstein KA, Resnick MA. The global role for Cdc13 and Yku70 in preventing telomere resection across the genome. DNA Repair (Amst) 2017; 62:8-17. [PMID: 29247743 DOI: 10.1016/j.dnarep.2017.11.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Revised: 11/25/2017] [Accepted: 11/28/2017] [Indexed: 12/28/2022]
Abstract
Yeast Cdc13 protein (related to human CTC1) maintains telomere stability by preventing 5'-3' end resection. While Cdc13 and Yku70/Yku80 proteins appear to prevent excessive resection, their combined contribution to maintenance of telomere ends across the genome and their relative roles at specific ends of different chromosomes have not been addressable because Cdc13 and Yku70/Yku80 double mutants are sickly. Using our PFGE-shift approach where large resected molecules have slower pulse field gel electrophoresis mobilities, along with methods for maintaining viable double mutants, we address end-resection on most chromosomes as well as telomere end differences. In this global approach to looking at ends of most chromosomes, we identify chromosomes with 1-end resections and end-preferences. We also identify chromosomes with resection at both ends, previously not possible. 10-20% of chromosomes exhibit PFGE-shift when cdc13-1 cells are switched to restrictive temperature (37 °C). In yku70Δ cdc13-1 mutants, there is a telomere resection "storm" with approximately half the chromosomes experiencing at least 1-end resection, ∼10 kb/telomere, due to exonuclease1 and many exhibiting 2-end resection. Unlike for random internal chromosome breaks, resection of telomere ends is not coordinated. Telomere restitution at permissive temperature is rapid (<1 h) in yku70Δ cdc13-1 cells. Surprisingly, survival can be high although strain background dependent. Given large amount of resected telomeres, we examined associated proteins. Up to 90% of cells have ≥1 Rfa1 (RPA) focus and 60% have multiple foci when ∼30-40 telomeres/cell are resected. The ends are dispersed in the nucleus suggesting wide distribution of resected telomeres across nuclear space. The previously reported Rad52 nuclear centers of repair for random DSBs also appear in cells with many resected telomere ends, suggesting a Rad52 commonality to the organization of single strand ends and/or limitation on interactions of single-strand ends with Rad52.
Collapse
Affiliation(s)
- James W Westmoreland
- Chromosome Stability Group, Laboratory of Molecular Genetics, National Institute of Environmental Health Sciences (NIEHS), National Institutes of Health, Research Triangle Park, NC 27709, United States
| | - Michael J Mihalevic
- University of Pittsburgh School of Medicine, 5117 Centre Avenue, Pittsburgh, PA 15213, United States
| | - Kara A Bernstein
- University of Pittsburgh School of Medicine, 5117 Centre Avenue, Pittsburgh, PA 15213, United States
| | - Michael A Resnick
- Chromosome Stability Group, Laboratory of Molecular Genetics, National Institute of Environmental Health Sciences (NIEHS), National Institutes of Health, Research Triangle Park, NC 27709, United States.
| |
Collapse
|
9
|
Lapetina DL, Ptak C, Roesner UK, Wozniak RW. Yeast silencing factor Sir4 and a subset of nucleoporins form a complex distinct from nuclear pore complexes. J Cell Biol 2017; 216:3145-3159. [PMID: 28883038 PMCID: PMC5626528 DOI: 10.1083/jcb.201609049] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2016] [Revised: 05/26/2017] [Accepted: 07/31/2017] [Indexed: 11/22/2022] Open
Abstract
Lapetina et al. identify a protein interaction network involved in the association of chromatin with the nuclear envelope. This network includes a telomere tether, a silencing factor, a SUMO E3 ligase, and an array of nucleoporins that together form a complex distinct from nuclear pore complexes. Interactions occurring at the nuclear envelope (NE)–chromatin interface influence both NE structure and chromatin organization. Insights into the functions of NE–chromatin interactions have come from the study of yeast subtelomeric chromatin and its association with the NE, including the identification of various proteins necessary for tethering subtelomeric chromatin to the NE and the silencing of resident genes. Here we show that four of these proteins—the silencing factor Sir4, NE-associated Esc1, the SUMO E3 ligase Siz2, and the nuclear pore complex (NPC) protein Nup170—physically and functionally interact with one another and a subset of NPC components (nucleoporins or Nups). Importantly, this group of Nups is largely restricted to members of the inner and outer NPC rings, but it lacks numerous others including cytoplasmically and nucleoplasmically positioned Nups. We propose that this Sir4-associated Nup complex is distinct from holo-NPCs and that it plays a role in subtelomeric chromatin organization and NE tethering.
Collapse
Affiliation(s)
- Diego L Lapetina
- Department of Cell Biology, University of Alberta, Edmonton, Alberta, Canada
| | - Christopher Ptak
- Department of Cell Biology, University of Alberta, Edmonton, Alberta, Canada
| | - Ulyss K Roesner
- Department of Cell Biology, University of Alberta, Edmonton, Alberta, Canada
| | - Richard W Wozniak
- Department of Cell Biology, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
10
|
Wang Z, Deng Z, Tutton S, Lieberman PM. The Telomeric Response to Viral Infection. Viruses 2017; 9:v9080218. [PMID: 28792463 PMCID: PMC5580475 DOI: 10.3390/v9080218] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2017] [Revised: 08/06/2017] [Accepted: 08/06/2017] [Indexed: 12/16/2022] Open
Abstract
The ends of linear genomes, whether viral or cellular, can elicit potent DNA damage and innate immune signals. DNA viruses entering the nucleus share many features with telomeres in their ability to either suppress or co-opt these pathways. Here, we review some of the common mechanisms that viruses and telomeres use to manage the DNA damage and innate immune response pathways. We highlight recent studies on the role of the telomere repeat-containing RNA (TERRA) in response to viral infection. We discuss how TERRA can be activated through a p53-response element embedded in a retrotransposon-like repeat found in human subtelomeres. We consider how TERRA can function as a danger signal when secreted in extracellular vesicles to induce inflammatory cytokines in neighboring cells. These findings suggest that TERRA may be part of the innate immune response to viral infection, and support the hypothesis that telomeres and viruses utilize common mechanisms to maintain genome integrity and regulate innate immunity.
Collapse
Affiliation(s)
- Zhuo Wang
- The Wistar Institute, Philadelphia, PA 19104, USA.
| | - Zhong Deng
- The Wistar Institute, Philadelphia, PA 19104, USA.
| | - Steve Tutton
- The Wistar Institute, Philadelphia, PA 19104, USA.
| | | |
Collapse
|
11
|
Jalal D, Chalissery J, Hassan AH. Genome maintenance in Saccharomyces cerevisiae: the role of SUMO and SUMO-targeted ubiquitin ligases. Nucleic Acids Res 2017; 45:2242-2261. [PMID: 28115630 PMCID: PMC5389695 DOI: 10.1093/nar/gkw1369] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Accepted: 01/02/2017] [Indexed: 01/08/2023] Open
Abstract
The genome of the cell is often exposed to DNA damaging agents and therefore requires an intricate well-regulated DNA damage response (DDR) to overcome its deleterious effects. The DDR needs proper regulation for its timely activation, repression, as well as appropriate choice of repair pathway. Studies in Saccharomyces cerevisiae have advanced our understanding of the DNA damage response, as well as the mechanisms the cell employs to maintain genome stability and how these mechanisms are regulated. Eukaryotic cells utilize post-translational modifications as a means for fine-tuning protein functions. Ubiquitylation and SUMOylation involve the attachment of small protein molecules onto proteins to modulate function or protein–protein interactions. SUMO in particular, was shown to act as a molecular glue when DNA damage occurs, facilitating the assembly of large protein complexes in repair foci. In other instances, SUMOylation alters a protein's biochemical activities, and interactions. SUMO-targeted ubiquitin ligases (STUbLs) are enzymes that target SUMOylated proteins for ubiquitylation and subsequent degradation, providing a function for the SUMO modification in the regulation and disassembly of repair complexes. Here, we discuss the major contributions of SUMO and STUbLs in the regulation of DNA damage repair pathways as well as in the maintenance of critical regions of the genome, namely rDNA regions, telomeres and the 2 μm circle in budding yeast.
Collapse
Affiliation(s)
- Deena Jalal
- Department of Biochemistry, College of Medicine and Health Sciences, United Arab Emirates University, P.O. Box 17666, Al-Ain, UAE
| | - Jisha Chalissery
- Department of Biochemistry, College of Medicine and Health Sciences, United Arab Emirates University, P.O. Box 17666, Al-Ain, UAE
| | - Ahmed H Hassan
- Department of Biochemistry, College of Medicine and Health Sciences, United Arab Emirates University, P.O. Box 17666, Al-Ain, UAE
| |
Collapse
|
12
|
Lawrimore J, Barry TM, Barry RM, York AC, Friedman B, Cook DM, Akialis K, Tyler J, Vasquez P, Yeh E, Bloom K. Microtubule dynamics drive enhanced chromatin motion and mobilize telomeres in response to DNA damage. Mol Biol Cell 2017; 28:1701-1711. [PMID: 28450453 PMCID: PMC5469612 DOI: 10.1091/mbc.e16-12-0846] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Revised: 03/28/2017] [Accepted: 04/18/2017] [Indexed: 12/13/2022] Open
Abstract
Mechanisms that drive DNA damage-induced chromosome mobility include relaxation of external tethers to the nuclear envelope and internal chromatin–chromatin tethers. Together with microtubule dynamics, these can mobilize the genome in response to DNA damage. Chromatin exhibits increased mobility on DNA damage, but the biophysical basis for this behavior remains unknown. To explore the mechanisms that drive DNA damage–induced chromosome mobility, we use single-particle tracking of tagged chromosomal loci during interphase in live yeast cells together with polymer models of chromatin chains. Telomeres become mobilized from sites on the nuclear envelope and the pericentromere expands after exposure to DNA-damaging agents. The magnitude of chromatin mobility induced by a single double-strand break requires active microtubule function. These findings reveal how relaxation of external tethers to the nuclear envelope and internal chromatin–chromatin tethers, together with microtubule dynamics, can mobilize the genome in response to DNA damage.
Collapse
Affiliation(s)
- Josh Lawrimore
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Timothy M Barry
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Raymond M Barry
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Alyssa C York
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Brandon Friedman
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Diana M Cook
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Kristen Akialis
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Jolien Tyler
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Paula Vasquez
- Department of Mathematics, University of South Carolina, Columbia, SC 29208
| | - Elaine Yeh
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Kerry Bloom
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| |
Collapse
|
13
|
Seeber A, Gasser SM. Chromatin organization and dynamics in double-strand break repair. Curr Opin Genet Dev 2016; 43:9-16. [PMID: 27810555 DOI: 10.1016/j.gde.2016.10.005] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Accepted: 10/17/2016] [Indexed: 01/17/2023]
Abstract
Chromatin is organized and segmented into a landscape of domains that serve multiple purposes. In contrast to transcription, which is controlled by defined sequences at distinct sites, DNA damage can occur anywhere. Repair accordingly must occur everywhere, yet it is inevitably affected by its chromatin environment. In this review, we summarize recent work investigating how changes in chromatin organization facilitate and/or guide DNA double-strand break repair. In addition, we examine new live cell studies on the dynamics of chromatin and the mechanisms that regulate its movement.
Collapse
Affiliation(s)
- Andrew Seeber
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, CH-4058 Basel, Switzerland; University of Basel, Faculty of Natural Sciences, Klingelbergstrasse 50, CH-4056 Basel, Switzerland
| | - Susan M Gasser
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, CH-4058 Basel, Switzerland; University of Basel, Faculty of Natural Sciences, Klingelbergstrasse 50, CH-4056 Basel, Switzerland.
| |
Collapse
|
14
|
Replication-Associated Recombinational Repair: Lessons from Budding Yeast. Genes (Basel) 2016; 7:genes7080048. [PMID: 27548223 PMCID: PMC4999836 DOI: 10.3390/genes7080048] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Revised: 08/05/2016] [Accepted: 08/09/2016] [Indexed: 12/23/2022] Open
Abstract
Recombinational repair processes multiple types of DNA lesions. Though best understood in the repair of DNA breaks, recombinational repair is intimately linked to other situations encountered during replication. As DNA strands are decorated with many types of blocks that impede the replication machinery, a great number of genomic regions cannot be duplicated without the help of recombinational repair. This replication-associated recombinational repair employs both the core recombination proteins used for DNA break repair and the specialized factors that couple replication with repair. Studies from multiple organisms have provided insights into the roles of these specialized factors, with the findings in budding yeast being advanced through use of powerful genetics and methods for detecting DNA replication and repair intermediates. In this review, we summarize recent progress made in this organism, ranging from our understanding of the classical template switch mechanisms to gap filling and replication fork regression pathways. As many of the protein factors and biological principles uncovered in budding yeast are conserved in higher eukaryotes, these findings are crucial for stimulating studies in more complex organisms.
Collapse
|
15
|
Finding a place in the SUN: telomere maintenance in a diverse nuclear landscape. Curr Opin Cell Biol 2016; 40:145-152. [PMID: 27064212 DOI: 10.1016/j.ceb.2016.03.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Revised: 03/15/2016] [Accepted: 03/18/2016] [Indexed: 11/21/2022]
Abstract
Telomeres function in the context of a complex nuclear milieu in which telomeres tend to occupy distinct subnuclear regions. Indeed, regulation of the subnuclear positioning of telomeres is conserved from yeast to human, raising the age-old question: to what extent is location important for function? In mitotically dividing cells, the positioning of telomeres affects their epigenetic state and influences telomere processing and synthesis. In meiotic cells, telomere location is important for homologue pairing, centromere assembly and spindle formation. Here we focus on recent insights into the functions of telomere positioning in maintaining genome integrity.
Collapse
|
16
|
Shukla HD, Mahmood J, Vujaskovic Z. Integrated proteo-genomic approach for early diagnosis and prognosis of cancer. Cancer Lett 2015; 369:28-36. [DOI: 10.1016/j.canlet.2015.08.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Revised: 08/05/2015] [Accepted: 08/05/2015] [Indexed: 12/28/2022]
|