1
|
Jeayeng S, Thongsroy J, Chuaijit S. Caenorhabditis elegans as a Model to Study Aging and Photoaging. Biomolecules 2024; 14:1235. [PMID: 39456168 PMCID: PMC11505728 DOI: 10.3390/biom14101235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 09/23/2024] [Accepted: 09/25/2024] [Indexed: 10/28/2024] Open
Abstract
Caenorhabditis elegans (C. elegans) has emerged as an outstanding model organism for investigating the aging process due to its shortened lifespan, well-defined genome, and accessibility of potent genetic tools. This review presents the current findings on chronological aging and photoaging in C. elegans, exploring the elaborate molecular pathways that control these processes. The progression of chronological aging is characterized by a gradual deterioration of physiological functions and is influenced by an interaction of genetic and environmental factors, including the insulin/insulin-like signaling (IIS) pathway. In contrast, photoaging is characterized by increased oxidative stress, DNA damage, and activation of stress response pathways induced by UV exposure. Although the genetic mechanisms of chronological aging in C. elegans have been characterized by extensive research, the pathways regulating photoaging are comparatively less well-studied. Here, we provide an overview of the current understanding of aging research, including the crucial genes and genetic pathways involved in the aging and photoaging processes of C. elegans. Understanding the complex interactions between these factors will provide invaluable insights into the molecular mechanisms underlying chronological aging and photoaging and may lead to novel therapeutic approaches and further studies for promoting healthy aging in humans.
Collapse
Affiliation(s)
- Saowanee Jeayeng
- Department of Medical Sciences, School of Medicine, Walailak University, Nakhon Si Thammarat 80161, Thailand; (S.J.); (J.T.)
- Research Center in Tropical Pathobiology, Walailak University, Nakhon Si Thammarat 80161, Thailand
| | - Jirapan Thongsroy
- Department of Medical Sciences, School of Medicine, Walailak University, Nakhon Si Thammarat 80161, Thailand; (S.J.); (J.T.)
- Research Center in Tropical Pathobiology, Walailak University, Nakhon Si Thammarat 80161, Thailand
| | - Sirithip Chuaijit
- Department of Medical Sciences, School of Medicine, Walailak University, Nakhon Si Thammarat 80161, Thailand; (S.J.); (J.T.)
- Research Center in Tropical Pathobiology, Walailak University, Nakhon Si Thammarat 80161, Thailand
| |
Collapse
|
2
|
Ropert B, Gallrein C, Schumacher B. DNA repair deficiencies and neurodegeneration. DNA Repair (Amst) 2024; 138:103679. [PMID: 38640601 DOI: 10.1016/j.dnarep.2024.103679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 04/03/2024] [Accepted: 04/11/2024] [Indexed: 04/21/2024]
Abstract
Neurodegenerative diseases are the second most prevalent cause of death in industrialized countries. Alzheimer's Disease is the most widespread and also most acknowledged form of dementia today. Together with Parkinson's Disease they account for over 90 % cases of neurodegenerative disorders caused by proteopathies. Far less known are the neurodegenerative pathologies in DNA repair deficiency syndromes. Such diseases like Cockayne - or Werner Syndrome are described as progeroid syndromes - diseases that cause the premature ageing of the affected persons, and there are clear implications of such diseases in neurologic dysfunction and degeneration. In this review, we aim to draw the attention on commonalities between proteopathy-associated neurodegeneration and neurodegeneration caused by DNA repair defects and discuss how mitochondria are implicated in the development of both disorder classes. Furthermore, we highlight how nematodes are a valuable and indispensable model organism to study conserved neurodegenerative processes in a fast-forward manner.
Collapse
Affiliation(s)
- Baptiste Ropert
- Institute for Genome Stability in Aging and Disease, Medical Faculty, University and University Hospital of Cologne, Joseph-Stelzmann-Str. 26, Cologne 50931, Germany; Cologne Excellence Cluster for Cellular Stress Responses in Aging-Associated Diseases (CECAD), Center for Molecular Medicine Cologne (CMMC), University of Cologne, Joseph-Stelzmann-Str. 26, Cologne 50931, Germany
| | - Christian Gallrein
- Institute for Genome Stability in Aging and Disease, Medical Faculty, University and University Hospital of Cologne, Joseph-Stelzmann-Str. 26, Cologne 50931, Germany; Cologne Excellence Cluster for Cellular Stress Responses in Aging-Associated Diseases (CECAD), Center for Molecular Medicine Cologne (CMMC), University of Cologne, Joseph-Stelzmann-Str. 26, Cologne 50931, Germany; Leibniz Institute on Aging - Fritz Lipmann Institute (FLI), Beutenbergstraße 11, Jena 07745, Germany
| | - Björn Schumacher
- Institute for Genome Stability in Aging and Disease, Medical Faculty, University and University Hospital of Cologne, Joseph-Stelzmann-Str. 26, Cologne 50931, Germany; Cologne Excellence Cluster for Cellular Stress Responses in Aging-Associated Diseases (CECAD), Center for Molecular Medicine Cologne (CMMC), University of Cologne, Joseph-Stelzmann-Str. 26, Cologne 50931, Germany.
| |
Collapse
|
3
|
Zhao L, Li Z, Huang B, Mi D, Xu D, Sun Y. Integrating evolutionarily conserved mechanism of response to radiation for exploring novel Caenorhabditis elegans radiation-responsive genes for estimation of radiation dose associated with spaceflight. CHEMOSPHERE 2024; 351:141148. [PMID: 38211791 DOI: 10.1016/j.chemosphere.2024.141148] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 12/09/2023] [Accepted: 01/06/2024] [Indexed: 01/13/2024]
Abstract
During space exploration, space radiation is widely recognized as an inescapable perilous stressor, owing to its capacity to induce genomic DNA damage and escalate the likelihood of detrimental health outcomes. Rapid and reliable estimation of space radiation dose holds paramount significance in accurately assessing the health risks associated with spaceflight. However, the identification of space radiation-responsive genes, with their potential to serve as early indicators for diagnosing radiation dose associated with spaceflight, continues to pose a significant challenge. In this study, based on the evolutionarily conserved mechanism of radiation response, an in silico analysis method of homologous comparison was performed to identify the Caenorhabditis elegans orthologues of human radiation-responsive genes with possible roles in the major processes of response to radiation, and thereby to explore the potential C. elegans radiation-responsive genes for evaluating the levels of space radiation exposure. The results showed that there were 60 known C. elegans radiation-responsive genes and 211 C. elegans orthologues of human radiation-responsive genes implicated in the major processes of response to radiation. Through an investigation of all available transcriptomic datasets obtained from space-flown C. elegans, it was observed that the expression levels of the majority of these putative C. elegans radiation-responsive genes identified in this study were notably changed across various spaceflight conditions. Furthermore, this study indicated that within the identified genes, 19 known C. elegans radiation-responsive genes and 40 newly identified C. elegans orthologues of human radiation-responsive genes exhibited a remarkable positive correlation with the duration of spaceflight. Moreover, a noteworthy presence of substantial multi-collinearity among the majority of these identified genes was observed. This observation lends support to the possibility of treating each identified gene as an independent indicator of radiation dose in space. Ultimately, a subset of 15 potential radiation-responsive genes was identified, presenting the most promising indicators for estimation of radiation dose associated with spaceflight in C. elegans.
Collapse
Affiliation(s)
- Lei Zhao
- Institute of Environmental Systems Biology, College of Environmental Science and Engineering, Dalian Maritime University, Dalian, 116026, Liaoning, China.
| | - Zejun Li
- Institute of Environmental Systems Biology, College of Environmental Science and Engineering, Dalian Maritime University, Dalian, 116026, Liaoning, China
| | - Baohang Huang
- Institute of Environmental Systems Biology, College of Environmental Science and Engineering, Dalian Maritime University, Dalian, 116026, Liaoning, China
| | - Dong Mi
- College of Science, Dalian Maritime University, Dalian, 116026, Liaoning, China
| | - Dan Xu
- Institute of Environmental Systems Biology, College of Environmental Science and Engineering, Dalian Maritime University, Dalian, 116026, Liaoning, China
| | - Yeqing Sun
- Institute of Environmental Systems Biology, College of Environmental Science and Engineering, Dalian Maritime University, Dalian, 116026, Liaoning, China.
| |
Collapse
|
4
|
Caenorhabditis elegans as a Model System to Study Human Neurodegenerative Disorders. Biomolecules 2023; 13:biom13030478. [PMID: 36979413 PMCID: PMC10046667 DOI: 10.3390/biom13030478] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 02/18/2023] [Accepted: 03/01/2023] [Indexed: 03/08/2023] Open
Abstract
In recent years, advances in science and technology have improved our quality of life, enabling us to tackle diseases and increase human life expectancy. However, longevity is accompanied by an accretion in the frequency of age-related neurodegenerative diseases, creating a growing burden, with pervasive social impact for human societies. The cost of managing such chronic disorders and the lack of effective treatments highlight the need to decipher their molecular and genetic underpinnings, in order to discover new therapeutic targets. In this effort, the nematode Caenorhabditis elegans serves as a powerful tool to recapitulate several disease-related phenotypes and provides a highly malleable genetic model that allows the implementation of multidisciplinary approaches, in addition to large-scale genetic and pharmacological screens. Its anatomical transparency allows the use of co-expressed fluorescent proteins to track the progress of neurodegeneration. Moreover, the functional conservation of neuronal processes, along with the high homology between nematode and human genomes, render C. elegans extremely suitable for the study of human neurodegenerative disorders. This review describes nematode models used to study neurodegeneration and underscores their contribution in the effort to dissect the molecular basis of human diseases and identify novel gene targets with therapeutic potential.
Collapse
|
5
|
Thijssen KL, van der Woude M, Davó-Martínez C, Dekkers DHW, Sabatella M, Demmers JAA, Vermeulen W, Lans H. C. elegans TFIIH subunit GTF-2H5/TTDA is a non-essential transcription factor indispensable for DNA repair. Commun Biol 2021; 4:1336. [PMID: 34824371 PMCID: PMC8617094 DOI: 10.1038/s42003-021-02875-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 11/09/2021] [Indexed: 11/08/2022] Open
Abstract
The 10-subunit TFIIH complex is vital to transcription and nucleotide excision repair. Hereditary mutations in its smallest subunit, TTDA/GTF2H5, cause a photosensitive form of the rare developmental disorder trichothiodystrophy. Some trichothiodystrophy features are thought to be caused by subtle transcription or gene expression defects. TTDA/GTF2H5 knockout mice are not viable, making it difficult to investigate TTDA/GTF2H5 in vivo function. Here we show that deficiency of C. elegans TTDA ortholog GTF-2H5 is, however, compatible with life, in contrast to depletion of other TFIIH subunits. GTF-2H5 promotes TFIIH stability in multiple tissues and is indispensable for nucleotide excision repair, in which it facilitates recruitment of TFIIH to DNA damage. Strikingly, when transcription is challenged, gtf-2H5 embryos die due to the intrinsic TFIIH fragility in absence of GTF-2H5. These results support the idea that TTDA/GTF2H5 mutations cause transcription impairment underlying trichothiodystrophy and establish C. elegans as model for studying pathogenesis of this disease.
Collapse
Affiliation(s)
- Karen L Thijssen
- Department of Molecular Genetics, Oncode Institute, Erasmus MC Cancer Institute, Erasmus University Medical Center, 3015 CN, Rotterdam, The Netherlands
| | - Melanie van der Woude
- Department of Molecular Genetics, Oncode Institute, Erasmus MC Cancer Institute, Erasmus University Medical Center, 3015 CN, Rotterdam, The Netherlands
| | - Carlota Davó-Martínez
- Department of Molecular Genetics, Oncode Institute, Erasmus MC Cancer Institute, Erasmus University Medical Center, 3015 CN, Rotterdam, The Netherlands
| | - Dick H W Dekkers
- Proteomics Center, Erasmus University Medical Center, 3015 CN, Rotterdam, The Netherlands
| | - Mariangela Sabatella
- Department of Molecular Genetics, Oncode Institute, Erasmus MC Cancer Institute, Erasmus University Medical Center, 3015 CN, Rotterdam, The Netherlands
- Mariangela Sabatella, Princess Máxima Center for pediatric oncology, Heidelberglaan 25, 3584 CT, Utrecht, The Netherlands
| | - Jeroen A A Demmers
- Proteomics Center, Erasmus University Medical Center, 3015 CN, Rotterdam, The Netherlands
| | - Wim Vermeulen
- Department of Molecular Genetics, Oncode Institute, Erasmus MC Cancer Institute, Erasmus University Medical Center, 3015 CN, Rotterdam, The Netherlands
| | - Hannes Lans
- Department of Molecular Genetics, Oncode Institute, Erasmus MC Cancer Institute, Erasmus University Medical Center, 3015 CN, Rotterdam, The Netherlands.
| |
Collapse
|
6
|
van der Woude M, Lans H. C. elegans survival assays to discern global and transcription-coupled nucleotide excision repair. STAR Protoc 2021; 2:100586. [PMID: 34151304 PMCID: PMC8192855 DOI: 10.1016/j.xpro.2021.100586] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Global genome nucleotide excision repair (GG-NER) and transcription-coupled nucleotide excision repair (TC-NER) protect cells against a variety of helix-distorting DNA lesions. In C. elegans, GG-NER primarily acts in proliferative germ cells and embryos, while TC-NER acts in post-mitotic somatic cells to maintain transcription. We leverage this difference to distinguish whether proteins function in GG-NER and/or TC-NER by straightforward UV survival assays. Here, we detail a protocol for these assays, using GG-NER factor xpc-1 and TC-NER factor csb-1 as examples. For complete details on the use and execution of this protocol, please refer to Sabatella et al. (2021).
Collapse
Affiliation(s)
- Melanie van der Woude
- Department of Molecular Genetics, Erasmus MC Cancer Institute, Erasmus University Medical Center, 3000 CA Rotterdam, the Netherlands
| | - Hannes Lans
- Department of Molecular Genetics, Erasmus MC Cancer Institute, Erasmus University Medical Center, 3000 CA Rotterdam, the Netherlands
| |
Collapse
|
7
|
Lopes AFC, Bozek K, Herholz M, Trifunovic A, Rieckher M, Schumacher B. A C. elegans model for neurodegeneration in Cockayne syndrome. Nucleic Acids Res 2020; 48:10973-10985. [PMID: 33021672 PMCID: PMC7641758 DOI: 10.1093/nar/gkaa795] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 09/08/2020] [Accepted: 09/27/2020] [Indexed: 12/22/2022] Open
Abstract
Cockayne syndrome (CS) is a congenital syndrome characterized by growth and mental retardation, and premature ageing. The complexity of CS and mammalian models warrants simpler metazoan models that display CS-like phenotypes that could be studied in the context of a live organism. Here, we provide a characterization of neuronal and mitochondrial aberrations caused by a mutation in the csb-1 gene in Caenorhabditis elegans. We report a progressive neurodegeneration in adult animals that is enhanced upon UV-induced DNA damage. The csb-1 mutants show dysfunctional hyperfused mitochondria that degrade upon DNA damage, resulting in diminished respiratory activity. Our data support the role of endogenous DNA damage as a driving factor of CS-related neuropathology and underline the role of mitochondrial dysfunction in the disease.
Collapse
Affiliation(s)
- Amanda F C Lopes
- Institute for Genome Stability in Aging and Disease, Medical Faculty, University of Cologne, Joseph-Stelzmann-Str. 26, 50931 Cologne, Germany
- Cologne Excellence Cluster for Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Joseph-Stelzmann-Str. 26, 50931 Cologne, Germany
| | - Katarzyna Bozek
- Center for Molecular Medicine (CMMC), Faculty of Medicine and University Hospital Cologne, University of Cologne, Robert-Koch-Str. 21, 50931 Cologne, Germany
| | - Marija Herholz
- Cologne Excellence Cluster for Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Joseph-Stelzmann-Str. 26, 50931 Cologne, Germany
- Institute for Mitochondrial Diseases and Aging, Medical Faculty, University of Cologne, D-50931 Cologne, Germany
| | - Aleksandra Trifunovic
- Cologne Excellence Cluster for Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Joseph-Stelzmann-Str. 26, 50931 Cologne, Germany
- Center for Molecular Medicine (CMMC), Faculty of Medicine and University Hospital Cologne, University of Cologne, Robert-Koch-Str. 21, 50931 Cologne, Germany
- Institute for Mitochondrial Diseases and Aging, Medical Faculty, University of Cologne, D-50931 Cologne, Germany
| | - Matthias Rieckher
- Institute for Genome Stability in Aging and Disease, Medical Faculty, University of Cologne, Joseph-Stelzmann-Str. 26, 50931 Cologne, Germany
- Cologne Excellence Cluster for Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Joseph-Stelzmann-Str. 26, 50931 Cologne, Germany
| | - Björn Schumacher
- Institute for Genome Stability in Aging and Disease, Medical Faculty, University of Cologne, Joseph-Stelzmann-Str. 26, 50931 Cologne, Germany
- Cologne Excellence Cluster for Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Joseph-Stelzmann-Str. 26, 50931 Cologne, Germany
- Center for Molecular Medicine (CMMC), Faculty of Medicine and University Hospital Cologne, University of Cologne, Robert-Koch-Str. 21, 50931 Cologne, Germany
| |
Collapse
|
8
|
Al Khateeb WM, Sher AA, Marcus JM, Schroeder DF. UVSSA, UBP12, and RDO2/TFIIS Contribute to Arabidopsis UV Tolerance. FRONTIERS IN PLANT SCIENCE 2019; 10:516. [PMID: 31105721 PMCID: PMC6492544 DOI: 10.3389/fpls.2019.00516] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 04/03/2019] [Indexed: 05/03/2023]
Abstract
Plant DNA is damaged by exposure to solar radiation, which includes ultraviolet (UV) rays. UV damaged DNA is repaired either by photolyases, using visible light energy, or by nucleotide excision repair (NER), also known as dark repair. NER consists of two subpathways: global genomic repair (GGR), which repairs untranscribed DNA throughout the genome, and transcription-coupled repair (TCR), which repairs transcribed DNA. In mammals, CSA, CSB, UVSSA, USP7, and TFIIS have been implicated in TCR. Arabidopsis homologs of CSA (AtCSA-1/2) and CSB (CHR8) have previously been shown to contribute to UV tolerance. Here we examine the role of Arabidopsis homologs of UVSSA, USP7 (UBP12/13), and TFIIS (RDO2) in UV tolerance. We find that loss of function alleles of UVSSA, UBP12, and RDO2 exhibit increased UV sensitivity in both seedlings and adults. UV sensitivity in atcsa-1, uvssa, and ubp12 mutants is specific to dark conditions, consistent with a role in NER. Interestingly, chr8 mutants exhibit UV sensitivity in both light and dark conditions, suggesting that the Arabidopsis CSB homolog may play a role in both NER and light repair. Overall our results indicate a conserved role for UVSSA, USP7 (UBP12), and TFIIS (RDO2) in TCR.
Collapse
Affiliation(s)
| | - Annan A Sher
- Department of Biological Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Jeffery M Marcus
- Department of Biological Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Dana F Schroeder
- Department of Biological Sciences, University of Manitoba, Winnipeg, MB, Canada
| |
Collapse
|
9
|
Rieckher M, Bujarrabal A, Doll MA, Soltanmohammadi N, Schumacher B. A simple answer to complex questions: Caenorhabditis elegans as an experimental model for examining the DNA damage response and disease genes. J Cell Physiol 2017; 233:2781-2790. [PMID: 28463453 DOI: 10.1002/jcp.25979] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Accepted: 04/28/2017] [Indexed: 01/31/2023]
Abstract
The genetic information is constantly challenged by genotoxic attacks. DNA repair mechanisms evolved early in evolution and recognize and remove the various lesions. A complex network of DNA damage responses (DDR) orchestrates a variety of physiological adaptations to the presence of genome instability. Erroneous repair or malfunctioning of the DDR causes cancer development and the accumulation of DNA lesions drives the aging process. For understanding the complex DNA repair and DDR mechanisms it is pivotal to employ simple metazoan as model systems. The nematode Caenorhabditis elegans has become a well-established and popular experimental organism that allows dissecting genome stability mechanisms in dynamic and differentiated tissues and under physiological conditions. We provide an overview of the distinct advantages of the nematode system for studying DDR and provide a range of currently applied methodologies.
Collapse
Affiliation(s)
- Matthias Rieckher
- Institute for Genome Stability in Ageing and Disease, Cologne Cluster of Excellence in Cellular Stress Responses in Aging-Associated Diseases (CECAD), and Center for Molecular Medicine (CMMC), University of Cologne, Cologne, Germany
| | - Arturo Bujarrabal
- Institute for Genome Stability in Ageing and Disease, Cologne Cluster of Excellence in Cellular Stress Responses in Aging-Associated Diseases (CECAD), and Center for Molecular Medicine (CMMC), University of Cologne, Cologne, Germany
| | - Markus A Doll
- Institute for Genome Stability in Ageing and Disease, Cologne Cluster of Excellence in Cellular Stress Responses in Aging-Associated Diseases (CECAD), and Center for Molecular Medicine (CMMC), University of Cologne, Cologne, Germany
| | - Najmeh Soltanmohammadi
- Institute for Genome Stability in Ageing and Disease, Cologne Cluster of Excellence in Cellular Stress Responses in Aging-Associated Diseases (CECAD), and Center for Molecular Medicine (CMMC), University of Cologne, Cologne, Germany
| | - Björn Schumacher
- Institute for Genome Stability in Ageing and Disease, Cologne Cluster of Excellence in Cellular Stress Responses in Aging-Associated Diseases (CECAD), and Center for Molecular Medicine (CMMC), University of Cologne, Cologne, Germany
| |
Collapse
|
10
|
Caenorhabditis elegans as a powerful alternative model organism to promote research in genetic toxicology and biomedicine. Arch Toxicol 2017; 91:2029-2044. [PMID: 28299394 DOI: 10.1007/s00204-017-1944-7] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Accepted: 02/23/2017] [Indexed: 12/20/2022]
Abstract
In view of increased life expectancy the risk for disturbed integrity of genetic information increases. This inevitably holds the implication for higher incidence of age-related diseases leading to considerable cost increase in health care systems. To develop preventive strategies it is crucial to evaluate external and internal noxae as possible threats to our DNA. Especially the interplay of DNA damage response (DDR) and DNA repair (DR) mechanisms needs further deciphering. Moreover, there is a distinct need for alternative in vivo test systems for basic research and also risk assessment in toxicology. Especially the evaluation of combinational toxicity of environmentally present genotoxins and adverse effects of clinically used DNA damaging anticancer drugs is a major challenge for modern toxicology. This review focuses on the applicability of Caenorhabditis elegans as a model organism to unravel and tackle scientific questions related to the biological consequences of genotoxin exposure and highlights methods for studying DDR and DR. In this regard large-scale in vivo screens of mixtures of chemicals and extensive parallel sequencing are highlighted as unique advantages of C. elegans. In addition, concise information regarding evolutionary conserved molecular mechanisms of the DDR and DR as well as currently available data obtained from the use of prototypical genotoxins and preferential read-outs of genotoxin testing are discussed. The use of established protocols, which are already available in the community, is encouraged to facilitate and further improve the implementation of C. elegans as a powerful genetic model system in genetic toxicology and biomedicine.
Collapse
|