1
|
Gu W, Li H, Sun L, Shen Z, Wang Y, Hu X, Wu Y, Liu W, Wan CC, Cai Y, Yan T. The RNA-binding protein CMSS1 promotes the progression of non-small cell lung cancer by regulating the telomerase protein subunit hTERT. Life Sci 2025; 361:123321. [PMID: 39710061 DOI: 10.1016/j.lfs.2024.123321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 12/15/2024] [Accepted: 12/18/2024] [Indexed: 12/24/2024]
Abstract
AIMS High telomerase activity has been detected in over 85 % of tumors, with the activation of hTERT being the most crucial mechanism for re-establishing telomerase activity. Activation of hTERT maintains telomere length in cells, enabling cancer cells to proliferate indefinitely. Nevertheless, the specific mechanism of telomerase activation in non-small cell lung cancer (NSCLC) remains unclear, and post-transcriptional regulation of hTERT could be a potential activation mechanism. MATERIALS AND METHODS We explored the regulatory impact of CMSS1 on hTERT expression in NSCLC cells using several methods: Yeast three-hybrid system, Reporter gene assay, Western blot, RNA decay assay, and Telomere length measurement. Our analysis revealed significant overexpression of CMSS1 in NSCLC, which correlated with poor prognosis, as determined by bioinformatics and tissue microarray techniques. RNA sequencing analysis showed that CMSS1 knockdown influenced the adhesion capabilities of NSCLC cells. Additionally, potential interacting proteins with CMSS1 were identified through mass spectrometry and co-immunoprecipitation experiments. KEY FINDINGS We discovered that CMSS1 regulates hTERT expression in NSCLC cells by binding to the 5' UTR of hTERT mRNA, impacting its mRNA stability and thereby influencing NSCLC progression. RNA-Seq results and adhesion experiments indicated that CMSS1 knockdown disrupts cell adhesion. hTERT also affects cell adhesion in NSCLC, underscoring CMSS1's role as an upstream regulator of hTERT. Mass spectrometry and Co-IP studies suggest potential interactions between CMSS1, RBM34, and DDX5 that further modulate hTERT expression. SIGNIFICANCE These findings indicate that CMSS1 plays a crucial role in NSCLC progression through its interaction with hTERT, making it a promising therapeutic target.
Collapse
Affiliation(s)
- Wei Gu
- School of Life Sciences, Shanghai University, 99 Shangda Road, Shanghai 200444, China; Translational Medicine Center, Zhejiang Xinda hospital, School of Medicine & Nursing, Huzhou University, Huzhou 313099, China
| | - Hongshui Li
- The Second People Hospital of Dezhou, Dezhou 253022, China
| | - Lei Sun
- Department of Pathology, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, China
| | - Ziyi Shen
- School of Life Sciences, Shanghai University, 99 Shangda Road, Shanghai 200444, China
| | - Yuanhui Wang
- School of Life Sciences, Shanghai University, 99 Shangda Road, Shanghai 200444, China
| | - Xiaomeng Hu
- Translational Medicine Center, Zhejiang Xinda hospital, School of Medicine & Nursing, Huzhou University, Huzhou 313099, China; University and College Key Lab of Natural Product Chemistry and Application in Xinjiang, School of Chemistry and Environmental Science, Yili Normal University, Yining 835000, China
| | - Yan Wu
- Translational Medicine Center, Zhejiang Xinda hospital, School of Medicine & Nursing, Huzhou University, Huzhou 313099, China; University and College Key Lab of Natural Product Chemistry and Application in Xinjiang, School of Chemistry and Environmental Science, Yili Normal University, Yining 835000, China
| | - Wei Liu
- University and College Key Lab of Natural Product Chemistry and Application in Xinjiang, School of Chemistry and Environmental Science, Yili Normal University, Yining 835000, China
| | - Chunpeng Craig Wan
- Jiangxi Key Laboratory for Postharvest Technology and Nondestructive Testing of Fruits and Vegetables, College of Agronomy, Jiangxi Agricultural University, Nanchang 330045, China.
| | - Yi Cai
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State & NMPA Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China.
| | - Tingdong Yan
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong 226001, China.
| |
Collapse
|
2
|
Singh AK, Upadhyay V, Sethi A, Chowdhury S, Mishra S, Verma SP, Bhatt MLB, Trivedi AK. Ring finger protein 138 inhibits transcription factor C/EBPα protein turnover leading to differentiation arrest in acute myeloid leukemia. Biochem J 2024; 481:653-666. [PMID: 38666590 DOI: 10.1042/bcj20240027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 04/23/2024] [Accepted: 04/26/2024] [Indexed: 05/12/2024]
Abstract
E3 ubiquitin ligase, ring finger protein 138 (RNF138) is involved in several biological processes; however, its role in myeloid differentiation or tumorigenesis remains unclear. RNAseq data from TNMplot showed that RNF138 mRNA levels are highly elevated in acute myeloid leukemia (AML) bone marrow samples as compared with bone marrow of normal volunteers. Here, we show that RNF138 serves as an E3 ligase for the tumor suppressor CCAAT/enhancer binding protein (C/EBPα) and promotes its degradation leading to myeloid differentiation arrest in AML. Wild-type RNF138 physically interacts with C/EBPα and promotes its ubiquitin-dependent proteasome degradation while a mutant RNF-138 deficient in ligase activity though interacts with C/EBPα, fails to down-regulate it. We show that RNF138 depletion enhances endogenous C/EBPα levels in peripheral blood mononuclear cells (PBMCs) isolated from healthy volunteers. Our data further shows that RNF138-mediated degradation of C/EBPα negatively affects its transactivation potential on its target genes. Furthermore, RNF138 overexpression inhibits all-trans-retinoic acid-induced differentiation of HL-60 cells whereas RNF138 RNAi enhances. In line with RNF138 inhibiting C/EBPα protein turnover, we also observed that RNF138 overexpression inhibited β-estradiol (E2)-induced C/EBPα driven granulocytic differentiation in C/EBPα inducible K562-p42C/EBPα-estrogen receptor cells. Furthermore, we also recapitulated these findings in PBMCs isolated from AML patients where depletion of RNF138 increased the expression of myeloid differentiation marker CD11b. These results suggest that RNF138 inhibits myeloid differentiation by targeting C/EBPα for proteasomal degradation and may provide a plausible mechanism for loss of C/EBPα expression often observed in myeloid leukemia. Also, targeting RNF138 may resolve differentiation arrest by restoring C/EBPα expression in AML.
Collapse
Affiliation(s)
- Anil Kumar Singh
- Division of Cancer Biology, CSIR-Central Drug Research Institute, Sector-10, Jankipuram Extension, Sitapur Road, Lucknow 226031, UP, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Vishal Upadhyay
- Division of Cancer Biology, CSIR-Central Drug Research Institute, Sector-10, Jankipuram Extension, Sitapur Road, Lucknow 226031, UP, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Arppita Sethi
- Division of Cancer Biology, CSIR-Central Drug Research Institute, Sector-10, Jankipuram Extension, Sitapur Road, Lucknow 226031, UP, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Sangita Chowdhury
- Division of Cancer Biology, CSIR-Central Drug Research Institute, Sector-10, Jankipuram Extension, Sitapur Road, Lucknow 226031, UP, India
| | - Shivkant Mishra
- Division of Cancer Biology, CSIR-Central Drug Research Institute, Sector-10, Jankipuram Extension, Sitapur Road, Lucknow 226031, UP, India
| | - Shailendra Prasad Verma
- Division of Cancer Biology, CSIR-Central Drug Research Institute, Sector-10, Jankipuram Extension, Sitapur Road, Lucknow 226031, UP, India
- King George's Medical University, Lucknow 226003, UP, India
| | | | - Arun Kumar Trivedi
- Division of Cancer Biology, CSIR-Central Drug Research Institute, Sector-10, Jankipuram Extension, Sitapur Road, Lucknow 226031, UP, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
3
|
Locke AJ, Abou Farraj R, Tran C, Zeinali E, Mashayekhi F, Ali JYH, Glover JNM, Ismail IH. The role of RNF138 in DNA end resection is regulated by ubiquitylation and CDK phosphorylation. J Biol Chem 2024; 300:105709. [PMID: 38309501 PMCID: PMC10910129 DOI: 10.1016/j.jbc.2024.105709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 01/02/2024] [Accepted: 01/18/2024] [Indexed: 02/05/2024] Open
Abstract
Double-strand breaks (DSBs) are DNA lesions that pose a significant threat to genomic stability. The repair of DSBs by the homologous recombination (HR) pathway is preceded by DNA end resection, the 5' to 3' nucleolytic degradation of DNA away from the DSB. We and others previously identified a role for RNF138, a really interesting new gene finger E3 ubiquitin ligase, in stimulating DNA end resection and HR. Yet, little is known about how RNF138's function is regulated in the context of DSB repair. Here, we show that RNF138 is phosphorylated at residue T27 by cyclin-dependent kinase (CDK) activity during the S and G2 phases of the cell cycle. We also observe that RNF138 is ubiquitylated constitutively, with ubiquitylation occurring in part on residue K158 and rising during the S/G2 phases. Interestingly, RNF138 ubiquitylation decreases upon genotoxic stress. By mutating RNF138 at residues T27, K158, and the previously identified S124 ataxia telangiectasia mutated phosphorylation site (Han et al., 2016, ref. 22), we find that post-translational modifications at all three positions mediate DSB repair. Cells expressing the T27A, K158R, and S124A variants of RNF138 are impaired in DNA end resection, HR activity, and are more sensitive to ionizing radiation compared to those expressing wildtype RNF138. Our findings shed more light on how RNF138 activity is controlled by the cell during HR.
Collapse
Affiliation(s)
- Andrew J Locke
- Division of Experimental Oncology, Department of Oncology, Faculty of Medicine & Dentistry, Cross Cancer Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Rabih Abou Farraj
- Department of Biochemistry, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Caroline Tran
- Division of Experimental Oncology, Department of Oncology, Faculty of Medicine & Dentistry, Cross Cancer Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Elham Zeinali
- Division of Experimental Oncology, Department of Oncology, Faculty of Medicine & Dentistry, Cross Cancer Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Fatemeh Mashayekhi
- Division of Experimental Oncology, Department of Oncology, Faculty of Medicine & Dentistry, Cross Cancer Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Jana Yasser Hafez Ali
- Division of Experimental Oncology, Department of Oncology, Faculty of Medicine & Dentistry, Cross Cancer Institute, University of Alberta, Edmonton, Alberta, Canada
| | - J N Mark Glover
- Department of Biochemistry, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Ismail Hassan Ismail
- Division of Experimental Oncology, Department of Oncology, Faculty of Medicine & Dentistry, Cross Cancer Institute, University of Alberta, Edmonton, Alberta, Canada; Biophysics Department, Faculty of Science, Cairo University, Giza, Egypt.
| |
Collapse
|
4
|
Chao Q, Li X, Huang Y. E3 ubiquitin-ligase RNF138 may regulate p53 protein expression to regulate the self-renewal and tumorigenicity of glioma stem cells. J Cancer Res Ther 2023; 19:1636-1645. [PMID: 38156932 DOI: 10.4103/jcrt.jcrt_733_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Accepted: 09/14/2023] [Indexed: 01/03/2024]
Abstract
BACKGROUND Glioblastoma multiforme (GBM), the most malignant tumor of the central nervous system, is characterized by poor survival and high recurrence. Glioma stem cells (GSCs) are key to treating GBM and are regulated by various signaling pathways. Ubiquitination, a post-translational modification, plays an important regulatory role in many biological processes. Ring finger protein 138 (RNF138) is an E3 ubiquitin-protein ligase that is highly expressed in several tumors; however, its role in GBM is unclear. This study investigated whether RNF138 regulates the self-renewal ability of glioma stem GSCs to treat GBM. MATERIALS AND METHODS The expression of RNF138 in glioma tissues and its correlation with GSCs were analyzed using bioinformatics. Short hairpin ribonucleic acid (RNA) was designed to downregulate the expression of RNF138 in GSCs, and immunofluorescence, secondary pellet formation, and western blotting were used to detect changes in GSC markers and self-renewal ability. The effects of RNF138 on p53 protein expression were determined by immunofluorescence and western blotting. The effects of RNF138 on the self-renewal and tumorigenic abilities of GSCs were evaluated in vivo. RESULTS RNF138 expression was higher in glioma tissues than in normal brain tissues, and was highly expressed in GSCs. RNF138 downregulation significantly decreased the expression of the GSC markers cluster of differentiation 133 (CD133) and nestin. Mechanistically, RNF138 may interfere with the self-renewal ability of GSCs by regulating the expression of p53. RNF138 downregulation in vivo prolonged survival time and regulated the expression of p53 protein in tumor-bearing mice. CONCLUSION RNF138 may regulate the expression of p53 protein through ubiquitination, thereby affecting the self-renewal and tumorigenic ability of GSCs. This study provides a scientific basis for the treatment of glioblastoma by targeting RNF138 to inhibit GSCs.
Collapse
Affiliation(s)
- Qing Chao
- Department of Neurosurgery and Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
- Department of Neurosurgery, The Second Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Xuetao Li
- The DuShu Lake Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Yulun Huang
- Department of Neurosurgery and Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
- The DuShu Lake Hospital of Soochow University, Suzhou, Jiangsu, China
| |
Collapse
|
5
|
Carraro C, Bonaguro L, Schulte-Schrepping J, Horne A, Oestreich M, Warnat-Herresthal S, Helbing T, De Franco M, Haendler K, Mukherjee S, Ulas T, Gandin V, Goettlich R, Aschenbrenner AC, Schultze JL, Gatto B. Decoding mechanism of action and sensitivity to drug candidates from integrated transcriptome and chromatin state. eLife 2022; 11:e78012. [PMID: 36043458 PMCID: PMC9433094 DOI: 10.7554/elife.78012] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 08/15/2022] [Indexed: 11/13/2022] Open
Abstract
Omics-based technologies are driving major advances in precision medicine, but efforts are still required to consolidate their use in drug discovery. In this work, we exemplify the use of multi-omics to support the development of 3-chloropiperidines, a new class of candidate anticancer agents. Combined analyses of transcriptome and chromatin accessibility elucidated the mechanisms underlying sensitivity to test agents. Furthermore, we implemented a new versatile strategy for the integration of RNA- and ATAC-seq (Assay for Transposase-Accessible Chromatin) data, able to accelerate and extend the standalone analyses of distinct omic layers. This platform guided the construction of a perturbation-informed basal signature predicting cancer cell lines' sensitivity and to further direct compound development against specific tumor types. Overall, this approach offers a scalable pipeline to support the early phases of drug discovery, understanding of mechanisms, and potentially inform the positioning of therapeutics in the clinic.
Collapse
Affiliation(s)
- Caterina Carraro
- Department of Pharmaceutical and Pharmacological Sciences, University of PadovaPadovaItaly
| | - Lorenzo Bonaguro
- Systems Medicine, Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE) e.V.BonnGermany
- Genomics and Immunoregulation, Life & Medical Sciences (LIMES) Institute, University of BonnBonnGermany
| | - Jonas Schulte-Schrepping
- Systems Medicine, Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE) e.V.BonnGermany
- Genomics and Immunoregulation, Life & Medical Sciences (LIMES) Institute, University of BonnBonnGermany
| | - Arik Horne
- Systems Medicine, Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE) e.V.BonnGermany
- Genomics and Immunoregulation, Life & Medical Sciences (LIMES) Institute, University of BonnBonnGermany
| | - Marie Oestreich
- Systems Medicine, Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE) e.V.BonnGermany
| | - Stefanie Warnat-Herresthal
- Systems Medicine, Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE) e.V.BonnGermany
- Genomics and Immunoregulation, Life & Medical Sciences (LIMES) Institute, University of BonnBonnGermany
| | - Tim Helbing
- Institute of Organic Chemistry, Justus Liebig University GiessenGiessenGermany
| | - Michele De Franco
- Department of Pharmaceutical and Pharmacological Sciences, University of PadovaPadovaItaly
| | - Kristian Haendler
- Systems Medicine, Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE) e.V.BonnGermany
- PRECISE Platform for Genomics and Epigenomics, Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE) e.V. and University of BonnBonnGermany
- Institute of Human Genetics, University of LübeckLübeckGermany
| | - Sach Mukherjee
- Statistics and Machine Learning, Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE) e.V.BonnGermany
- MRC Biostatistics Unit, University of CambridgeCambridgeUnited Kingdom
| | - Thomas Ulas
- Systems Medicine, Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE) e.V.BonnGermany
- Genomics and Immunoregulation, Life & Medical Sciences (LIMES) Institute, University of BonnBonnGermany
- PRECISE Platform for Genomics and Epigenomics, Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE) e.V. and University of BonnBonnGermany
| | - Valentina Gandin
- Department of Pharmaceutical and Pharmacological Sciences, University of PadovaPadovaItaly
| | - Richard Goettlich
- Institute of Organic Chemistry, Justus Liebig University GiessenGiessenGermany
| | - Anna C Aschenbrenner
- Systems Medicine, Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE) e.V.BonnGermany
- Genomics and Immunoregulation, Life & Medical Sciences (LIMES) Institute, University of BonnBonnGermany
- PRECISE Platform for Genomics and Epigenomics, Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE) e.V. and University of BonnBonnGermany
- Department of Internal Medicine and Radboud Center for Infectious Diseases (RCI), Radboud University Medical CenterNijmegenNetherlands
| | - Joachim L Schultze
- Systems Medicine, Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE) e.V.BonnGermany
- Genomics and Immunoregulation, Life & Medical Sciences (LIMES) Institute, University of BonnBonnGermany
- PRECISE Platform for Genomics and Epigenomics, Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE) e.V. and University of BonnBonnGermany
| | - Barbara Gatto
- Department of Pharmaceutical and Pharmacological Sciences, University of PadovaPadovaItaly
| |
Collapse
|
6
|
Lu Y, Huang R, Ying J, Li X, Jiao T, Guo L, Zhou H, Wang H, Tuersuntuoheti A, Liu J, Chen Q, Wang Y, Su L, Guo C, Xu F, Wang Z, Lu Y, Li K, Liang J, Huang Z, Chen X, Yao J, Hu H, Cheng X, Wan Y, Chen X, Zhang N, Miao S, Cai J, Wang L, Liu C, Song W, Zhao H. RING finger 138 deregulation distorts NF-кB signaling and facilities colitis switch to aggressive malignancy. Signal Transduct Target Ther 2022; 7:185. [PMID: 35697692 PMCID: PMC9192753 DOI: 10.1038/s41392-022-00985-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 03/30/2022] [Accepted: 04/01/2022] [Indexed: 11/25/2022] Open
Abstract
Prolonged activation of nuclear factor (NF)-кB signaling significantly contributes to the development of colorectal cancer (CRC). New therapeutic opportunities are emerging from targeting this distorted cell signaling transduction. Here, we discovered the critical role of RING finger 138 (RNF138) in CRC tumorigenesis through regulating the NF-кB signaling, which is independent of its Ubiquitin-E3 ligase activity involved in DNA damage response. RNF138−/− mice were hyper-susceptible to the switch from colitis to aggressive malignancy, which coincided with sustained aberrant NF-кB signaling in the colonic cells. Furthermore, RNF138 suppresses the activation of NF-кB signaling pathway through preventing the translocation of NIK and IKK-Beta Binding Protein (NIBP) to the cytoplasm, which requires the ubiquitin interaction motif (UIM) domain. More importantly, we uncovered a significant correlation between poor prognosis and the downregulation of RNF138 associated with reinforced NF-кB signaling in clinical settings, raising the possibility of RNF138 dysregulation as an indicator for the therapeutic intervention targeting NF-кB signaling. Using the xenograft models built upon either RNF138-dificient CRC cells or the cells derived from the RNF138-dysregulated CRC patients, we demonstrated that the inhibition of NF-кB signaling effectively hampered tumor growth. Overall, our work defined the pathogenic role of aberrant NF-кB signaling due to RNF138 downregulation in the cascade events from the colitis switch to colonic neoplastic transformation and progression, and also highlights the possibility of targeting the NF-кB signaling in treating specific subtypes of CRC indicated by RNF138-ablation.
Collapse
Affiliation(s)
- Yalan Lu
- Department of Biochemistry and Molecular Biology, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China.,Department of Hepatobiliary Surgery, State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.,Key Laboratory of Gene Editing Screening and R&D of Digestive System Tumor Drugs, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.,Key Laboratory of Human Disease Comparative Medicine, Chinese Ministry of Health, Beijing Key Laboratory for Animal Models of Emerging and Remerging Infectious Diseases, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing, 100021, China
| | - Rong Huang
- Department of Biochemistry and Molecular Biology, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China.,National Cancer Center/National Clinical Research Center for Cancer/ Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, 518116, China
| | - Jianming Ying
- Key Laboratory of Gene Editing Screening and R&D of Digestive System Tumor Drugs, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.,Department of Pathology, State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Xingchen Li
- Department of Hepatobiliary Surgery, State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.,Key Laboratory of Gene Editing Screening and R&D of Digestive System Tumor Drugs, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Tao Jiao
- Department of Biochemistry and Molecular Biology, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China
| | - Lei Guo
- Department of Pathology, State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Haitao Zhou
- Department of Hepatobiliary Surgery, State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.,Key Laboratory of Gene Editing Screening and R&D of Digestive System Tumor Drugs, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Han Wang
- Department of Biochemistry and Molecular Biology, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China
| | - Amannisa Tuersuntuoheti
- Department of Biochemistry and Molecular Biology, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China
| | - Jianmei Liu
- Department of Hepatobiliary Surgery, State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.,Key Laboratory of Gene Editing Screening and R&D of Digestive System Tumor Drugs, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Qichen Chen
- Department of Hepatobiliary Surgery, State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.,Key Laboratory of Gene Editing Screening and R&D of Digestive System Tumor Drugs, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Yanhong Wang
- Department of Biochemistry and Molecular Biology, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China
| | - Luying Su
- Department of Biochemistry and Molecular Biology, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China
| | - Changyuan Guo
- Department of Pathology, State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Fu Xu
- Department of Biochemistry and Molecular Biology, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China
| | - Ziyi Wang
- Department of Biochemistry and Molecular Biology, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China
| | - Yan Lu
- Department of Biochemistry and Molecular Biology, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China
| | - Kai Li
- Department of Biochemistry and Molecular Biology, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China
| | - Junbo Liang
- Department of Biochemistry and Molecular Biology, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China
| | - Zhen Huang
- Department of Hepatobiliary Surgery, State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.,Key Laboratory of Gene Editing Screening and R&D of Digestive System Tumor Drugs, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Xiao Chen
- Department of Hepatobiliary Surgery, State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.,Key Laboratory of Gene Editing Screening and R&D of Digestive System Tumor Drugs, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Jinjie Yao
- Department of Hepatobiliary Surgery, State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.,Key Laboratory of Gene Editing Screening and R&D of Digestive System Tumor Drugs, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Hanjie Hu
- Department of Hepatobiliary Surgery, State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.,Key Laboratory of Gene Editing Screening and R&D of Digestive System Tumor Drugs, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Xiaowen Cheng
- Department of Clinical Laboratory, the First Affiliated Hospital, Anhui Medical University, Hefei, 230022, China
| | - Yufeng Wan
- Department of Clinical Laboratory, the First Affiliated Hospital, Anhui Medical University, Hefei, 230022, China
| | - Xinyan Chen
- Department of Clinical Laboratory, the First Affiliated Hospital, Anhui Medical University, Hefei, 230022, China
| | - Ning Zhang
- Wellcome Centre for Anti-Infectives Research (WCAIR), Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dundee, DD1 5EH, UK
| | - Shiying Miao
- Department of Biochemistry and Molecular Biology, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China
| | - Jianqiang Cai
- Department of Hepatobiliary Surgery, State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.,Key Laboratory of Gene Editing Screening and R&D of Digestive System Tumor Drugs, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Linfang Wang
- Department of Biochemistry and Molecular Biology, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China
| | - Changzheng Liu
- Department of Biochemistry and Molecular Biology, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China.
| | - Wei Song
- Department of Biochemistry and Molecular Biology, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China.
| | - Hong Zhao
- Department of Hepatobiliary Surgery, State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China. .,Key Laboratory of Gene Editing Screening and R&D of Digestive System Tumor Drugs, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| |
Collapse
|
7
|
Wang Q, Wang J, Xin Y, He Z, Zhou X, Liu X, Zhao T, He L, Shen H, Jin M, Wei B. Hsa_circ_0005729 enhances accuracy in diagnosing parathyroid carcinoma. Endocr Connect 2022; 11:EC-21-0605.R1. [PMID: 35029546 PMCID: PMC8859958 DOI: 10.1530/ec-21-0605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 01/14/2022] [Indexed: 12/02/2022]
Abstract
BACKGROUND Parathyroid carcinoma (PC), often misdiagnosed as a parathyroid adenoma (PA), is prone to local relapse due to the initial surgery being restricted to parathyroid lesions instead of en bloc resection of parathyroid lesions with negative incision margins. However, it is very challenging to distinguish PC from PA preoperatively; hence, this study investigated an effective biomarker for increasing accuracy in PC diagnosis. METHOD First, the differentially expressed circular RNAs between three PC tissues and three PA tissues were screened by high-throughput circular RNA sequencing, and the expression of hsa_circ_0005729 was verified by qRT-PCR in 14 patients with PC and 40 patients with PA. Secondly, the receiver operating characteristic curve and the area under the curve (AUC) were used to analyze the diagnostic efficiency of hsa_circ_0005729 in PC by combining with laboratory data. Thirdly, RNF138mRNA, the corresponding linear transcript of hsa_circ_0005729, was measured, and the relationship between hsa_circ_0005729 and RNF138 mRNA was analyzed in patients with PA and patients with PC. RESULTS Hsa_circ_0005729 expression was significantly higher in patients with PC than in patients with PA. Serum calcium (P = 0.045), alkaline phosphatase (ALP) (P = 0.048), and creatinine levels (P = 0.036) were significantly higher in patients with PC than in patients with PA. The AUC increased to 0.86 when hsa_circ_0005729 combined with serum calcium, creatinine, and ALP. In addition, hsa_circ_0005729 was positively correlated with RNF138 mRNA in patients with PA but not in patients with PC. CONCLUSION The novel circular RNA hsa_circ_0005729 was found to have a higher expression in patients with PC, indicating its usefulness for distinguishing PC from PA.
Collapse
Affiliation(s)
- Qian Wang
- Department of Thyroid and Neck Surgery, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Jiacheng Wang
- Department of Thyroid and Neck Surgery, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Yunhui Xin
- Department of Thyroid and Neck Surgery, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Ziyang He
- Department of Thyroid and Neck Surgery, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Xiang Zhou
- Department of Pathology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Xing Liu
- Department of Thyroid and Neck Surgery, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Teng Zhao
- Department of Thyroid and Neck Surgery, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Lihan He
- Department of Thyroid and Neck Surgery, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Hong Shen
- Department of Thyroid and Neck Surgery, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Mulan Jin
- Department of Pathology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Bojun Wei
- Department of Thyroid and Neck Surgery, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
- Correspondence should be addressed to B Wei:
| |
Collapse
|
8
|
Huang L, Xu W, Liu H, Xue M, Liu X, Zhang K, Hu L, Li J, Liu X, Xiang Z, Zheng J, Li C, Chen W, Bu Z, Xiong T, Weng C. African Swine Fever Virus pI215L Negatively Regulates cGAS-STING Signaling Pathway through Recruiting RNF138 to Inhibit K63-Linked Ubiquitination of TBK1. THE JOURNAL OF IMMUNOLOGY 2021; 207:2754-2769. [PMID: 34759016 DOI: 10.4049/jimmunol.2100320] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 09/17/2021] [Indexed: 11/19/2022]
Abstract
African swine fever is a severe animal infectious disease caused by African swine fever virus (ASFV), and the morbidity and mortality associated with virulent ASFV isolates are as high as 100%. Previous studies showed that the ability of ASFV to antagonize IFN production is closely related to its pathogenicity. Here, we report that ASFV HLJ/18 infection induced low levels of type I IFN and inhibited cGMP-AMP-induced type I IFN production in porcine alveolar macrophages that were isolated from specific pathogen-free Landrace piglets. Subsequently, an unbiased screen was performed to screen the ASFV genes with inhibitory effects on the type I IFN production. ASFV pI215L, a viral E2 ubiquitin-conjugating enzyme, was identified as one of the strongest inhibitory effectors on the production of type I IFN. Knockdown of pI215L expression inhibited ASFV replication and enhanced IFN-β production. However, inhibition of type I IFN production by pI215L was independent of its E2 enzyme activity. Furthermore, we found that pI215L inhibited type I IFN production and K63-linked polyubiquitination of TANK-binding kinase 1 through pI215L-binding RING finger protein 138 (RNF138). ASFV pI215L enhanced the interaction between RNF138 and RNF128 and promoted RNF138 to degrade RNF128, which resulted in reduced K63-linked polyubiquitination of TANK-binding kinase 1 and type І IFN production. Taken together, our findings reveal a novel immune escape mechanism of ASFV, which provides a clue to the design and development of an immune-sensitive attenuated live vaccine.
Collapse
Affiliation(s)
- Li Huang
- Division of Fundamental Immunology, National African Swine Fever Para-reference Laboratory, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China; and
| | - Wenjie Xu
- Division of Fundamental Immunology, National African Swine Fever Para-reference Laboratory, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China; and.,College of Life Sciences, Yangtze University, Jingzhou 434025, China
| | - Hongyang Liu
- Division of Fundamental Immunology, National African Swine Fever Para-reference Laboratory, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China; and
| | - Mengdi Xue
- Division of Fundamental Immunology, National African Swine Fever Para-reference Laboratory, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China; and
| | - Xiaohong Liu
- Division of Fundamental Immunology, National African Swine Fever Para-reference Laboratory, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China; and
| | - Kunli Zhang
- Division of Fundamental Immunology, National African Swine Fever Para-reference Laboratory, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China; and
| | - Liang Hu
- Division of Fundamental Immunology, National African Swine Fever Para-reference Laboratory, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China; and
| | - Jiangnan Li
- Division of Fundamental Immunology, National African Swine Fever Para-reference Laboratory, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China; and
| | - Xuemin Liu
- Division of Fundamental Immunology, National African Swine Fever Para-reference Laboratory, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China; and
| | - Zhida Xiang
- Division of Fundamental Immunology, National African Swine Fever Para-reference Laboratory, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China; and.,College of Life Sciences, Yangtze University, Jingzhou 434025, China
| | - Jun Zheng
- Division of Fundamental Immunology, National African Swine Fever Para-reference Laboratory, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China; and
| | - Changyao Li
- Division of Fundamental Immunology, National African Swine Fever Para-reference Laboratory, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China; and
| | - Weiye Chen
- Division of Fundamental Immunology, National African Swine Fever Para-reference Laboratory, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China; and
| | - Zhigao Bu
- Division of Fundamental Immunology, National African Swine Fever Para-reference Laboratory, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China; and
| | - Tao Xiong
- College of Life Sciences, Yangtze University, Jingzhou 434025, China
| | - Changjiang Weng
- Division of Fundamental Immunology, National African Swine Fever Para-reference Laboratory, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China; and .,College of Life Sciences, Yangtze University, Jingzhou 434025, China
| |
Collapse
|
9
|
Yang Q, Zhao J, Chen D, Wang Y. E3 ubiquitin ligases: styles, structures and functions. MOLECULAR BIOMEDICINE 2021; 2:23. [PMID: 35006464 PMCID: PMC8607428 DOI: 10.1186/s43556-021-00043-2] [Citation(s) in RCA: 151] [Impact Index Per Article: 37.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Accepted: 04/30/2021] [Indexed: 01/10/2023] Open
Abstract
E3 ubiquitin ligases are a large family of enzymes that join in a three-enzyme ubiquitination cascade together with ubiquitin activating enzyme E1 and ubiquitin conjugating enzyme E2. E3 ubiquitin ligases play an essential role in catalyzing the ubiquitination process and transferring ubiquitin protein to attach the lysine site of targeted substrates. Importantly, ubiquitination modification is involved in almost all life activities of eukaryotes. Thus, E3 ligases might be involved in regulating various biological processes and cellular responses to stress signal associated with cancer development. Thanks to their multi-functions, E3 ligases can be a promising target of cancer therapy. A deeper understanding of the regulatory mechanisms of E3 ligases in tumorigenesis will help to find new prognostic markers and accelerate the growth of anticancer therapeutic approaches. In general, we mainly introduce the classifications of E3 ligases and their important roles in cancer progression and therapeutic functions.
Collapse
Affiliation(s)
- Quan Yang
- Second Affiliated Hospital, Institute of Cancer Stem Cell, Dalian Medical University, Dalian, 116044, China
| | - Jinyao Zhao
- Second Affiliated Hospital, Institute of Cancer Stem Cell, Dalian Medical University, Dalian, 116044, China
| | - Dan Chen
- Department of Pathology, First Affiliated Hospital, Dalian Medical University, Dalian, 116044, China.
| | - Yang Wang
- Second Affiliated Hospital, Institute of Cancer Stem Cell, Dalian Medical University, Dalian, 116044, China.
| |
Collapse
|
10
|
DNA double-strand break repair: Putting zinc fingers on the sore spot. Semin Cell Dev Biol 2021; 113:65-74. [DOI: 10.1016/j.semcdb.2020.09.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 07/22/2020] [Accepted: 09/07/2020] [Indexed: 12/15/2022]
|
11
|
Flaum N, Crosbie EJ, Edmondson RJ, Smith MJ, Evans DG. Epithelial ovarian cancer risk: A review of the current genetic landscape. Clin Genet 2019; 97:54-63. [PMID: 31099061 PMCID: PMC7017781 DOI: 10.1111/cge.13566] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 03/18/2019] [Accepted: 05/14/2019] [Indexed: 12/11/2022]
Abstract
Ovarian cancer is the fourth most common cause of cancer-related death in women in the developed world, and one of the most heritable cancers. One of the most significant risk factors for epithelial ovarian cancer (EOC) is a family history of breast and/or ovarian cancer. Combined risk factors can be used in models to stratify risk of EOC, and aid in decisions regarding risk-reduction strategies. Germline pathogenic variants in EOC susceptibility genes including those involved in homologous recombination and mismatch repair pathways are present in approximately 22% to 25% of EOC. These genes are associated with an estimated lifetime risk of EOC of 13% to 60% for BRCA1 variants and 10% to 25% for BRCA2 variants, with lower risks associated with remaining genes. Genome-wide association studies have identified single nucleotide polymorphisms (SNPs) thought to explain an additional 6.4% of the familial risk of ovarian cancer, with 34 susceptibility loci identified to date. However, an unknown proportion of the genetic component of EOC risk remains unexplained. This review comprises an overview of individual genes and SNPs suspected to contribute to risk of EOC, and discusses use of a polygenic risk score to predict individual cancer risk more accurately.
Collapse
Affiliation(s)
- Nicola Flaum
- Division of Evolution and Genomic Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Emma J Crosbie
- Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK.,Department of Gynaecology, St Mary's Hospital, Manchester University NHS Foundation Trust, Manchester, UK
| | - Richard J Edmondson
- Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK.,Department of Gynaecology, St Mary's Hospital, Manchester University NHS Foundation Trust, Manchester, UK
| | - Miriam J Smith
- Division of Evolution and Genomic Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK.,Manchester Centre for Genomic Medicine, St. Mary's Hospital, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| | - Dafydd G Evans
- Division of Evolution and Genomic Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK.,Manchester Centre for Genomic Medicine, St. Mary's Hospital, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK.,Prevention Breast Cancer Centre and Nightingale Breast Screening Centre, University Hospital of South Manchester, Manchester, UK.,Department of Cancer Genetics, The Christie NHS Foundation Trust, Manchester, UK.,Manchester Breast Centre, Manchester Cancer Research Centre, University of Manchester, Manchester, UK
| |
Collapse
|
12
|
Son MY, Hasty P. Homologous recombination defects and how they affect replication fork maintenance. AIMS GENETICS 2019; 5:192-211. [PMID: 31435521 PMCID: PMC6690234 DOI: 10.3934/genet.2018.4.192] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Accepted: 03/18/2019] [Indexed: 01/07/2023]
Abstract
Homologous recombination (HR) repairs DNA double strand breaks (DSBs) and stabilizes replication forks (RFs). RAD51 is the recombinase for the HR pathway. To preserve genomic integrity, RAD51 forms a filament on the 3' end of a DSB and on a single-stranded DNA (ssDNA) gap. But unregulated HR results in undesirable chromosomal rearrangements. This review describes the multiple mechanisms that regulate HR with a focus on those mechanisms that promote and contain RAD51 filaments to limit chromosomal rearrangements. If any of these pathways break down and HR becomes unregulated then disease, primarily cancer, can result.
Collapse
Affiliation(s)
- Mi Young Son
- Department of Molecular Medicine and Institute of Biotechnology, UT Health San Antonio, 15355 Lambda Drive, San Antonio, USA
| | - Paul Hasty
- Department of Molecular Medicine and Institute of Biotechnology, UT Health San Antonio, 15355 Lambda Drive, San Antonio, USA
- The Mays Cancer Center, USA
- Sam and Ann Barshop Institute for Longevity and Aging Studies, USA
| |
Collapse
|
13
|
RAD51D splice variants and cancer-associated mutations reveal XRCC2 interaction to be critical for homologous recombination. DNA Repair (Amst) 2019; 76:99-107. [PMID: 30836272 DOI: 10.1016/j.dnarep.2019.02.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 02/15/2019] [Accepted: 02/15/2019] [Indexed: 12/14/2022]
Abstract
The proficiency of cancer cells to repair DNA double-strand breaks (DSBs) by homologous recombination (HR) is a key determinant in predicting response to targeted therapies such as PARP inhibitors. The RAD51 paralogs work as multimeric complexes and act downstream of BRCA1 to facilitate HR. Numerous epidemiological studies have linked RAD51 paralog mutations with hereditary cancer predisposition. Despite their substantial links to cancer, RAD51 paralog HR function has remained elusive. Here we identify isoform 1 as the functional isoform of RAD51D, whereas isoform 4 which has a large N-terminal deletion (including the Walker A motif), and isoform 6 which includes an alternate exon in the N-terminus, are non-functional. To determine the importance of this N-terminal region, we investigated the impact of cancer-associated mutations and SNPs in this variable RAD51D N-terminal region using yeast-2-hybrid and yeast-3-hybrid assays to screen for altered protein-protein interactions. We identified two cancer-associated mutations close to or within the Walker A motif (G96C and G107 V, respectively) that independently disrupt RAD51D interaction with XRCC2. We validated our yeast interaction data in human U2OS cells by co-immunoprecipitation and determined the impact of these mutations on HR-proficiency using a sister chromatid recombination reporter assay in a RAD51D knock-out cell line. Our investigation reveals that the interaction of RAD51D with XRCC2 is required for DSB repair. By characterizing the impact of cancer-associated mutations on RAD51D interactions, we aim to develop predictive models for therapeutic sensitivity and resistance in patients who harbor similar mutations in RAD51D.
Collapse
|
14
|
Abstract
XRCC2 is one of five somatic RAD51 paralogs, all of which have Walker A and B ATPase motifs. Each of the paralogs, including XRCC2, has a function in DNA double-strand break repair by homologous recombination (HR). However, their individual roles are not as well understood as that of RAD51 itself. The XRCC2 protein forms a complex (BCDX2) with three other RAD51 paralogs, RAD51B, RAD51C and RAD51D. It is believed that the BCDX2 complex mediates HR downstream of BRCA2 but upstream of RAD51, as XRCC2 is involved in the assembly of RAD51 into DNA damage foci. XRCC2 can bind DNA and, along with RAD51D, can promote homologous pairing in vitro. Consistent with its role in HR, XRCC2-deficient cells have increased levels of spontaneous chromosome instability, and exhibit hypersensitivity to DNA interstrand crosslinking agents such as mitomycin C and cisplatin as well as ionizing radiation, alkylating agents and aldehydes. XRCC2 also functions in promoting DNA replication and chromosome segregation. Biallelic mutation of XRCC2 (FANCU) causes the FA-U subtype of FA, while heterozygosity for deleterious mutations in XRCC2 may be associated with an increased breast cancer risk. XRCC2 appears to function 'downstream' in the FA pathway, since it is not required for FANCD2 monoubiquitination, which is the central step in the FA pathway. Clinically, the only known FA-U patient in the world exhibits severe congenital abnormalities, but had not developed, by seven years of age, the bone marrow failure and cancer that are often seen in patients from other FA complementation groups.
Collapse
Affiliation(s)
- Paul R Andreassen
- Division of Experimental Hematology and Cancer Biology, Cancer and Blood Diseases Institute, Cincinnati Children's Hospital Medical Center, Cincinnati OH, USA; (PRA); Department of Pediatrics III, University Children's Hospital Essen, University Duisburg-Essen, Essen Germany; (HH)
| | - Helmut Hanenberg
- Division of Experimental Hematology and Cancer Biology, Cancer and Blood Diseases Institute, Cincinnati Children's Hospital Medical Center, Cincinnati OH, USA; (PRA); Department of Pediatrics III, University Children's Hospital Essen, University Duisburg-Essen, Essen Germany; (HH)
| |
Collapse
|
15
|
Reilly NM, Yard BD, Pittman DL. Homologous Recombination-Mediated DNA Repair and Implications for Clinical Treatment of Repair Defective Cancers. Methods Mol Biol 2019; 1999:3-29. [PMID: 31127567 DOI: 10.1007/978-1-4939-9500-4_1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Double-strand DNA breaks (DSBs) are generated by ionizing radiation and as intermediates during the processing of DNA, such as repair of interstrand cross-links and collapsed replication forks. These potentially deleterious DSBs are repaired primarily by the homologous recombination (HR) and nonhomologous end joining (NHEJ) DNA repair pathways. HR utilizes a homologous template to accurately restore damaged DNA, whereas NHEJ utilizes microhomology to join breaks in close proximity. The pathway available for DSB repair is dependent upon the cell cycle stage; for example, HR primarily functions during the S/G2 stages while NHEJ can repair DSBs at any cell cycle stage. Posttranslational modifications (PTMs) promote activity of specific pathways and subpathways through enzyme activation and precisely timed protein recruitment and degradation. This chapter provides an overview of PTMs occurring during DSB repair. In addition, clinical phenotypes associated with HR-defective cancers, such as mutational signatures used to predict response to poly(ADP-ribose) polymerase inhibitors, are discussed. Understanding these processes will provide insight into mechanisms of genome maintenance and likely identify targets and new avenues for therapeutic interventions.
Collapse
Affiliation(s)
- Nicole M Reilly
- Fondazione Piemontese per la Ricerca sul Cancro ONLUS, Candiolo, Italy
| | - Brian D Yard
- Department of Translational Hematology and Oncology Research, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Douglas L Pittman
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC, USA.
| |
Collapse
|
16
|
Lu Y, Han D, Liu W, Huang R, Ou J, Chen X, Zhang X, Wang X, Li S, Wang L, Liu C, Miao S, Wang L, Ma C, Song W. RNF138 confers cisplatin resistance in gastric cancer cells via activating Chk1 signaling pathway. Cancer Biol Ther 2018; 19:1128-1138. [PMID: 30260263 PMCID: PMC6301830 DOI: 10.1080/15384047.2018.1480293] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 05/17/2018] [Accepted: 05/20/2018] [Indexed: 12/14/2022] Open
Abstract
Chemotherapy resistance represents a major issue associated with gastric cancer (GC) treatment, and arises through multiple mechanisms, including modulation of the cell-cycle check point. Several ubiquitin kinases, including RING finger protein 138 (RNF138), have been reported to mediate the G2/M phase arrest. In this study, we investigated the role of RNF138 in the development of cisplatin resistance of two GC cell lines. We show that RNF138 levels are higher in cisplatin-resistant cell lines, compared with cisplatin-sensitive cells, and RNF138 expression was elevated during drug withdrawal following the cisplatin treatment. Using gene overexpression and silencing, we analyzed the impact of altering RNF138 level on GC cell viability, apoptosis, and cell cycle phenotypes in two isogenic cisplatin-sensitive and resistant cell lines. We show that RNF138 overexpression increased GC cell viability, decreased apoptosis and delayed cell cycle progression in the cisplatin-sensitive GC cells. Conversely, RNF138 silencing produced opposite phenotypes in the cisplatin-resistant cells. Moreover, RNF138-dependent phosphorylation of Chk1 was seen in GC cells, indicating a novel connection between cisplatin-induced DNA damage and apoptosis. Collectively, these data suggest that RNF138 modulates the cisplatin resistance in the GC cells, thus serving as a potential drug target to challenge chemotherapy failure. In addition, RNF138 can also be used as a marker to monitor the development of cisplatin resistance in GC treatment.
Collapse
Affiliation(s)
- Yalan Lu
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing China
| | - Deqiang Han
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing China
| | - Wenjie Liu
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing China
| | - Rong Huang
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing China
| | - Jinhuan Ou
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing China
| | - Xiaoqiao Chen
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing China
| | - Xizhe Zhang
- Department of Medical Oncology, Chifeng Municipal Hospital, Chifeng China
| | - Xuezhi Wang
- Department of Medical Oncology, Chifeng Municipal Hospital, Chifeng China
| | - Shijun Li
- Department of Medical Oncology, Chifeng Municipal Hospital, Chifeng China
| | - Lin Wang
- Department of Physiology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing China
| | - Changzheng Liu
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing China
| | - Shiying Miao
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing China
| | - Linfang Wang
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing China
| | - Changwu Ma
- Department of Medical Oncology, Chifeng Municipal Hospital, Chifeng China
| | - Wei Song
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing China
| |
Collapse
|