1
|
Stolyarenko AD, Novikova AA, Shilkin ES, Poltorachenko VA, Makarova AV. The Catalytic Activity of Human REV1 on Undamaged and Damaged DNA. Int J Mol Sci 2024; 25:4107. [PMID: 38612916 PMCID: PMC11012841 DOI: 10.3390/ijms25074107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 04/01/2024] [Accepted: 04/02/2024] [Indexed: 04/14/2024] Open
Abstract
Eukaryotic REV1 serves as a scaffold protein for the coordination of DNA polymerases during DNA translesion synthesis. Besides this structural role, REV1 is a Y-family DNA polymerase with its own distributive deoxycytidyl transferase activity. However, data about the accuracy and efficiency of DNA synthesis by REV1 in the literature are contrasting. Here, we expressed and purified the full-length human REV1 from Saccharomyces cerevisiae and characterized its activity on undamaged DNA and a wide range of damaged DNA templates. We demonstrated that REV1 carried out accurate synthesis opposite 8-oxoG and O6-meG with moderate efficiency. It also replicated thymine glycol surprisingly well in an error-prone manner, but was blocked by the intrastrand 1,2-GG cisplatin crosslink. By using the 1,N6-ethenoadenine and 7-deaza-adenine lesions, we have provided biochemical evidence of the importance for REV1 functioning of the Hoogsteen face of template A, the second preferable template after G.
Collapse
Affiliation(s)
- Anastasia D. Stolyarenko
- National Research Center “Kurchatov Institute”, 123182 Moscow, Russia; (A.A.N.); (E.S.S.); (V.A.P.)
- Institute of Gene Biology of the Russian Academy of Sciences, 119334 Moscow, Russia
| | - Anna A. Novikova
- National Research Center “Kurchatov Institute”, 123182 Moscow, Russia; (A.A.N.); (E.S.S.); (V.A.P.)
- Institute of Gene Biology of the Russian Academy of Sciences, 119334 Moscow, Russia
| | - Evgeniy S. Shilkin
- National Research Center “Kurchatov Institute”, 123182 Moscow, Russia; (A.A.N.); (E.S.S.); (V.A.P.)
- Institute of Gene Biology of the Russian Academy of Sciences, 119334 Moscow, Russia
| | | | - Alena V. Makarova
- National Research Center “Kurchatov Institute”, 123182 Moscow, Russia; (A.A.N.); (E.S.S.); (V.A.P.)
- Institute of Gene Biology of the Russian Academy of Sciences, 119334 Moscow, Russia
| |
Collapse
|
2
|
Zahurancik WJ, Suo Z. Kinetic investigation of the polymerase and exonuclease activities of human DNA polymerase ε holoenzyme. J Biol Chem 2020; 295:17251-17264. [PMID: 33051204 PMCID: PMC7863874 DOI: 10.1074/jbc.ra120.013903] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 10/09/2020] [Indexed: 12/31/2022] Open
Abstract
In eukaryotic DNA replication, DNA polymerase ε (Polε) is responsible for leading strand synthesis, whereas DNA polymerases α and δ synthesize the lagging strand. The human Polε (hPolε) holoenzyme is comprised of the catalytic p261 subunit and the noncatalytic p59, p17, and p12 small subunits. So far, the contribution of the noncatalytic subunits to hPolε function is not well understood. Using pre-steady-state kinetic methods, we established a minimal kinetic mechanism for DNA polymerization and editing catalyzed by the hPolε holoenzyme. Compared with the 140-kDa N-terminal catalytic fragment of p261 (p261N), which we kinetically characterized in our earlier studies, the presence of the p261 C-terminal domain (p261C) and the three small subunits increased the DNA binding affinity and the base substitution fidelity. Although the small subunits enhanced correct nucleotide incorporation efficiency, there was a wide range of rate constants when incorporating a correct nucleotide over a single-base mismatch. Surprisingly, the 3'→5' exonuclease activity of the hPolε holoenzyme was significantly slower than that of p261N when editing both matched and mismatched DNA substrates. This suggests that the presence of p261C and the three small subunits regulates the 3'→5' exonuclease activity of the hPolε holoenzyme. Together, the 3'→5' exonuclease activity and the variable mismatch extension activity modulate the overall fidelity of the hPolε holoenzyme by up to 3 orders of magnitude. Thus, the presence of p261C and the three noncatalytic subunits optimizes the dual enzymatic activities of the catalytic p261 subunit and makes the hPolε holoenzyme an efficient and faithful replicative DNA polymerase.
Collapse
Affiliation(s)
- Walter J Zahurancik
- The Ohio State Biochemistry Program, The Ohio State University, Columbus, Ohio, USA
| | - Zucai Suo
- The Ohio State Biochemistry Program, The Ohio State University, Columbus, Ohio, USA; Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, Florida, USA.
| |
Collapse
|
3
|
Ji S, Fu I, Naldiga S, Shao H, Basu AK, Broyde S, Tretyakova NY. 5-Formylcytosine mediated DNA-protein cross-links block DNA replication and induce mutations in human cells. Nucleic Acids Res 2019; 46:6455-6469. [PMID: 29905846 PMCID: PMC6061883 DOI: 10.1093/nar/gky444] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Accepted: 05/29/2018] [Indexed: 12/24/2022] Open
Abstract
5-Formylcytosine (5fC) is an epigenetic DNA modification introduced via TET protein-mediated oxidation of 5-methyl-dC. We recently reported that 5fC form reversible DNA–protein conjugates (DPCs) with histone proteins in living cells (Ji et al. (2017) Angew. Chem. Int. Ed., 56:14130–14134). We now examined the effects of 5fC mediated DPCs on DNA replication. Synthetic DNA duplexes containing site-specific DPCs between 5fC and lysine-containing proteins and peptides were subjected to primer extension experiments in the presence of human translesion synthesis DNA polymerases η and κ. We found that DPCs containing histones H2A or H4 completely inhibited DNA replication, but the replication block was removed when the proteins were subjected to proteolytic digestion. Cross-links to 11-mer or 31-mer peptides were bypassed by both polymerases in an error-prone manner, inducing targeted C→T transitions and –1 deletions. Similar types of mutations were observed when plasmids containing 5fC-peptide cross-links were replicated in human embryonic kidney (HEK) 293T cells. Molecular simulations of the 11-mer peptide-dC cross-links bound to human polymerases η and κ revealed that the peptide fits well on the DNA major groove side, and the modified dC forms a stable mismatch with incoming dATP via wobble base pairing in the polymerase active site.
Collapse
Affiliation(s)
- Shaofei Ji
- Department of Chemistry, University of Minnesota, Minneapolis, MN 55455, USA
| | - Iwen Fu
- Department of Biology, New York University, New York, NY 10003, USA
| | - Spandana Naldiga
- Department of Chemistry, University of Connecticut, Storrs, CT 06269, USA
| | - Hongzhao Shao
- Department of Chemistry, University of Minnesota, Minneapolis, MN 55455, USA
| | - Ashis K Basu
- Department of Chemistry, University of Connecticut, Storrs, CT 06269, USA
| | - Suse Broyde
- Department of Biology, New York University, New York, NY 10003, USA
| | - Natalia Y Tretyakova
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, MN 55455, USA.,Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
4
|
Phi KK, Smith MC, Tokarsky EJ, Suo Z. Kinetic Investigation of Translesion Synthesis across a 3-Nitrobenzanthrone-Derived DNA Lesion Catalyzed by Human DNA Polymerase Kappa. Chem Res Toxicol 2019; 32:1699-1706. [PMID: 31286773 DOI: 10.1021/acs.chemrestox.9b00219] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
3-Nitrobenzanthrone (3-NBA) is a byproduct of diesel exhaust and is highly present in industrial and populated areas. Inhalation of 3-NBA results in formation of N-(2'-deoxyguanosin-8-yl)-3-aminobenzanthrone (dGC8-N-ABA), a bulky DNA lesion that is of concern due to its mutagenic and carcinogenic potential. If dGC8-N-ABA is not bypassed during genomic replication, the lesion can stall cellular DNA replication machinery, leading to senescence or apoptosis. We have previously used running start assays to demonstrate that human DNA polymerases eta (hPolη) and kappa (hPolκ) are able to catalyze translesion DNA synthesis (TLS) across a site-specifically placed dGC8-N-ABA in a DNA template. Consistently, gene knockdown of hPolη and hPolκ in HEK293T cells reduces the efficiency of TLS across dGC8-N-ABA by ∼25 and ∼30%, respectively. Here, we kinetically investigated why hPolκ paused when bypassing and extending from dGC8-N-ABA. Our kinetic data show that correct dCTP incorporation efficiency of hPolκ dropped by 116-fold when opposite dGC8-N-ABA relative to undamaged dG, leading to hPolκ pausing at the lesion site observed in the running start assays. The already low nucleotide incorporation fidelity of hPolκ was further decreased by 10-fold during lesion bypass, and thus, incorrect nucleotides, especially dATP, were incorporated opposite dGC8-N-ABA with comparable efficiencies as correct dCTP. With regard to the dGC8-N-ABA bypass product extension step, hPolκ incorporated correct dGTP onto the damaged DNA substrate with a 786-fold lower efficiency than onto the corresponding undamaged DNA substrate, which resulted in hPolκ pausing at the site in the running start assays. Furthermore, hPolκ extended the primer-terminal matched base pair dC:dGC8-N-ABA with a 100-1000-fold lower fidelity than it extended the undamaged dC:dG base pair. Together, our kinetic results strongly indicate that hPolκ was error-prone during TLS of dGC8-N-ABA.
Collapse
Affiliation(s)
| | | | | | - Zucai Suo
- Department of Biomedical Sciences , Florida State University College of Medicine , Tallahassee , Florida 32306 , United States
| |
Collapse
|
5
|
Du K, Zhang X, Zou Z, Li B, Gu S, Zhang S, Qu X, Ling Y, Zhang H. Epigenetically modified N 6-methyladenine inhibits DNA replication by human DNA polymerase η. DNA Repair (Amst) 2019; 78:81-90. [PMID: 30991231 DOI: 10.1016/j.dnarep.2019.03.015] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 03/27/2019] [Accepted: 03/27/2019] [Indexed: 01/06/2023]
Abstract
N6-methyladenine (6mA), as a newly reported epigenetic marker, plays significant roles in regulation of various biological processes in eukaryotes. However, the effect of 6mA on human DNA replication remain elusive. In this work, we used Y-family human DNA polymerase η as a model to investigate the kinetics of bypass of 6mA by hPol η. We found 6mA and its intermediate hypoxanthine (I) on template partially inhibited DNA replication by hPol η. dTMP incorporation opposite 6mA and dCMP incorporation opposite I can be considered as correct incorporation. However, both 6mA and I reduced correct incorporation efficiency, next-base extension efficiency, and the priority in extension beyond correct base pair. Both dTMP incorporation opposite 6mA and dCTP opposite I showed fast burst phases. However, 6mA and I reduced the burst incorporation rates (kpol) and increased the dissociation constant (Kd,dNTP), compared with that of dTMP incorporation opposite unmodified A. Biophysical binding assays revealed that both 6mA and I on template reduced the binding affinity of hPol η to DNA in binary or ternary complex compared with unmodified A. All the results explain the inhibition effects of 6mA and I on DNA replication by hPol η, providing new insight in the effects of epigenetically modified 6mA on human DNA replication.
Collapse
Affiliation(s)
- Ke Du
- College of Life Science, Yan´an University, Yan'an, Shaanxi, China; Key Laboratory of Environment and Female Reproductive Health, West China School of Public Health & West China Fourth Hospital, Sichuan University, Chengdu, 610041, China
| | - Xiangqian Zhang
- College of Life Science, Yan´an University, Yan'an, Shaanxi, China
| | - Zhenyu Zou
- Key Laboratory of Environment and Female Reproductive Health, West China School of Public Health & West China Fourth Hospital, Sichuan University, Chengdu, 610041, China
| | - Bianbian Li
- Key Laboratory of Environment and Female Reproductive Health, West China School of Public Health & West China Fourth Hospital, Sichuan University, Chengdu, 610041, China
| | - Shiling Gu
- Key Laboratory of Environment and Female Reproductive Health, West China School of Public Health & West China Fourth Hospital, Sichuan University, Chengdu, 610041, China
| | - Shuming Zhang
- Key Laboratory of Environment and Female Reproductive Health, West China School of Public Health & West China Fourth Hospital, Sichuan University, Chengdu, 610041, China
| | - Xiaoyi Qu
- College of Life Science, Yan´an University, Yan'an, Shaanxi, China
| | - Yihui Ling
- Institute for Chemical Carcinogenesis, Guangzhou Medical University, Xinzao Panyu District, Guangzhou, China
| | - Huidong Zhang
- Key Laboratory of Environment and Female Reproductive Health, West China School of Public Health & West China Fourth Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
6
|
Chatterjee A, Malik CK, Basu AK. Synthesis of Oligodeoxynucleotides Containing a C8-2'-Deoxyguanosine Adduct Formed by the Carcinogen 3-Nitrobenzanthrone. ACTA ACUST UNITED AC 2017. [PMID: 28628210 DOI: 10.1002/cpnc.28] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
This unit describes the detailed procedure in five parts for the synthesis of the C8-2'-deoxyguanosine-3-aminobenzanthrone adduct located in a desired site in an oligonucleotide. The synthesis of the protected 2'-deoxyguanosine, O6 -benzyl-N2 -DMTr-3'-5'-bisTBDMS-C8-Br-2'-deoxyguanosine, is described in the first part. The synthesis of the reduced carcinogen 3-aminobenzanthrone is detailed in part two. The third part outlines the key step of the adduct formation between the reduced carcinogen and the protected nucleoside by a palladium-catalyzed cross coupling reaction. The final two parts describe phosphoramidite synthesis from the nucleoside-carcinogen adduct followed by its site-specific incorporation into DNA by solid-phase oligonucleotide synthesis. The adducted oligonucleotides are purified by reversed-phase HPLC and characterized by mass spectrometry. © 2017 by John Wiley & Sons, Inc.
Collapse
Affiliation(s)
| | - Chanchal K Malik
- Department of Chemistry, University of Connecticut, Storrs, Connecticut.,Department of Chemistry, College of Arts and Science, Vanderbilt University, Nashville, Tennessee
| | - Ashis K Basu
- Department of Chemistry, University of Connecticut, Storrs, Connecticut
| |
Collapse
|
7
|
Patra A, Politica DA, Chatterjee A, Tokarsky EJ, Suo Z, Basu AK, Stone MP, Egli M. Mechanism of Error-Free Bypass of the Environmental Carcinogen N-(2'-Deoxyguanosin-8-yl)-3-aminobenzanthrone Adduct by Human DNA Polymerase η. Chembiochem 2016; 17:2033-2037. [PMID: 27556902 PMCID: PMC5172388 DOI: 10.1002/cbic.201600420] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Indexed: 12/31/2022]
Abstract
The environmental pollutant 3-nitrobenzanthrone produces bulky aminobenzanthrone (ABA) DNA adducts with both guanine and adenine nucleobases. A major product occurs at the C8 position of guanine (C8-dG-ABA). These adducts present a strong block to replicative polymerases but, remarkably, can be bypassed in a largely error-free manner by the human Y-family polymerase η (hPol η). Here, we report the crystal structure of a ternary Pol⋅DNA⋅dCTP complex between a C8-dG-ABA-containing template:primer duplex and hPol η. The complex was captured at the insertion stage and provides crucial insight into the mechanism of error-free bypass of this bulky lesion. Specifically, bypass involves accommodation of the ABA moiety inside a hydrophobic cleft to the side of the enzyme active site and formation of an intra-nucleotide hydrogen bond between the phosphate and ABA amino moiety, allowing the adducted guanine to form a standard Watson-Crick pair with the incoming dCTP.
Collapse
Affiliation(s)
- Amritraj Patra
- Department of Biochemistry, Vanderbilt University, School of Medicine, 868A Robinson Research Building, Nashville, TN, 37232, USA
| | - Dustin A Politica
- Department of Chemistry, Vanderbilt University, College of Arts & Science, Station B, Box 1822, Nashville, TN, 37235, USA
| | - Arindom Chatterjee
- Department of Chemistry, University of Connecticut, 55 North Eagleville Rd, Storrs, CT, 06269, USA
| | - E John Tokarsky
- Department of Chemistry and Biochemistry, Ohio State University, 484 West 12th Avenue, Columbus, OH, 43210, USA
| | - Zucai Suo
- Department of Chemistry and Biochemistry, Ohio State University, 484 West 12th Avenue, Columbus, OH, 43210, USA
| | - Ashis K Basu
- Department of Chemistry, University of Connecticut, 55 North Eagleville Rd, Storrs, CT, 06269, USA
| | - Michael P Stone
- Department of Chemistry, Vanderbilt University, College of Arts & Science, Station B, Box 1822, Nashville, TN, 37235, USA.
| | - Martin Egli
- Department of Biochemistry, Vanderbilt University, School of Medicine, 868A Robinson Research Building, Nashville, TN, 37232, USA.
| |
Collapse
|
8
|
Basu AK, Pande P, Bose A. Translesion Synthesis of 2'-Deoxyguanosine Lesions by Eukaryotic DNA Polymerases. Chem Res Toxicol 2016; 30:61-72. [PMID: 27760288 PMCID: PMC5241707 DOI: 10.1021/acs.chemrestox.6b00285] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
![]()
With the discovery
of translesion synthesis DNA polymerases, great
strides have been made in the last two decades in understanding the
mode of replication of various DNA lesions in prokaryotes and eukaryotes.
A database search indicated that approximately 2000 articles on this
topic have been published in this period. This includes research involving
genetic and structural studies as well as in vitro experiments using purified DNA polymerases and accessory proteins.
It is a daunting task to comprehend this exciting and rapidly emerging
area of research. Even so, as the majority of DNA damage occurs at
2′-deoxyguanosine residues, this perspective attempts to summarize
a subset of this field, focusing on the most relevant eukaryotic DNA
polymerases responsible for their bypass.
Collapse
Affiliation(s)
- Ashis K Basu
- Department of Chemistry, University of Connecticut , Storrs, Connecticut 06269, United States
| | - Paritosh Pande
- Department of Chemistry, University of Connecticut , Storrs, Connecticut 06269, United States
| | - Arindam Bose
- Department of Chemistry, University of Connecticut , Storrs, Connecticut 06269, United States
| |
Collapse
|
9
|
Yagi T, Fujikawa Y, Sawai T, Takamura-Enya T, Ito-Harashima S, Kawanishi M. Error-Prone and Error-Free Translesion DNA Synthesis over Site-Specifically Created DNA Adducts of Aryl Hydrocarbons (3-Nitrobenzanthrone and 4-Aminobiphenyl). Toxicol Res 2015; 33:265-272. [PMID: 29071010 PMCID: PMC5654197 DOI: 10.5487/tr.2017.33.4.265] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2017] [Revised: 09/20/2017] [Accepted: 09/25/2017] [Indexed: 01/05/2023] Open
Abstract
Aryl hydrocarbons such as 3-nitrobenzanthrone (NBA), 4-aminobiphenyl (ABP), acetylaminofluorene (AAF), benzo(a)pyrene (BaP), and 1-nitropyrene (NP) form bulky DNA adducts when absorbed by mammalian cells. These chemicals are metabolically activated to reactive forms in mammalian cells and preferentially get attached covalently to the N2 or C8 positions of guanine or the N6 position of adenine. The proportion of N2 and C8 guanine adducts in DNA differs among chemicals. Although these adducts block DNA replication, cells have a mechanism allowing to continue replication by bypassing these adducts: translesion DNA synthesis (TLS). TLS is performed by translesion DNA polymerases—Pol η, κ, ι, and ζ and Rev1—in an error-free or error-prone manner. Regarding the NBA adducts, namely, 2-(2′-deoxyguanosin-N2-yl)-3-aminobenzanthrone (dG-N2-ABA) and N-(2′-deoxyguanosin-8-yl)-3-aminobenzanthrone (dG-C8-ABA), dG-N2-ABA is produced more often than dG-C8-ABA, whereas dG-C8-ABA blocks DNA replication more strongly than dG-N2-ABA. dG-N2-ABA allows for a less error-prone bypass than dG-C8-ABA does. Pol η and κ are stronger contributors to TLS over dG-C8-ABA, and Pol κ bypasses dG-C8-ABA in an error-prone manner. TLS efficiency and error-proneness are affected by the sequences surrounding the adduct, as demonstrated in our previous study on an ABP adduct, N-(2′-deoxyguanosine-8-yl)-4-aminobiphenyl (dG-C8-ABP). Elucidation of the general mechanisms determining efficiency, error-proneness, and the polymerases involved in TLS over various adducts is the next step in the research on TLS. These TLS studies will clarify the mechanisms underlying aryl hydrocarbon mutagenesis and carcinogenesis in more detail.
Collapse
Affiliation(s)
- Takashi Yagi
- Department of Biology, Graduate School of Science, Osaka Prefecture University, Sakai, Osaka, Japan
| | - Yoshihiro Fujikawa
- Department of Biology, Graduate School of Science, Osaka Prefecture University, Sakai, Osaka, Japan
| | - Tomoko Sawai
- Department of Biology, Graduate School of Science, Osaka Prefecture University, Sakai, Osaka, Japan
| | - Takeji Takamura-Enya
- Department of Applied Chemistry, Kanagawa Institute of Technology, Atsugi, Kanagawa, Japan
| | - Sayoko Ito-Harashima
- Department of Biology, Graduate School of Science, Osaka Prefecture University, Sakai, Osaka, Japan
| | - Masanobu Kawanishi
- Department of Biology, Graduate School of Science, Osaka Prefecture University, Sakai, Osaka, Japan
| |
Collapse
|