1
|
Gao Y, Wen P, Shao C, Ye C, Chen Y, You J, Su Z. CDC20 Holds Novel Regulation Mechanism in RPA1 during Different Stages of DNA Damage to Induce Radio-Chemoresistance. Int J Mol Sci 2024; 25:8383. [PMID: 39125953 PMCID: PMC11312485 DOI: 10.3390/ijms25158383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/25/2024] [Accepted: 07/28/2024] [Indexed: 08/12/2024] Open
Abstract
Targeting CDC20 can enhance the radiosensitivity of tumor cells, but the function and mechanism of CDC20 on DNA damage repair response remains vague. To examine that issue, tumor cell lines, including KYSE200, KYSE450, and HCT116, were utilized to detect the expression, function, and underlying mechanism of CDC20 in radio-chemoresistance. Western blot and immunofluorescence staining were employed to confirm CDC20 expression and location, and radiation could upregulate the expression of CDC20 in the cell nucleus. The homologous recombination (HR) and non-homologous end joining (NHEJ) reporter gene systems were utilized to explore the impact of CDC20 on DNA damage repair, indicating that CDC20 could promote HR repair and radio/chemo-resistance. In the early stages of DNA damage, CDC20 stabilizes the RPA1 protein through protein-protein interactions, activating the ATR-mediated signaling cascade, thereby aiding in genomic repair. In the later stages, CDC20 assists in the subsequent steps of damage repair by the ubiquitin-mediated degradation of RPA1. CCK-8 and colony formation assay were used to detect the function of CDC20 in cell vitality and proliferation, and targeting CDC20 can exacerbate the increase in DNA damage levels caused by cisplatin or etoposide. A tumor xenograft model was conducted in BALB/c-nu/nu mice to confirm the function of CDC20 in vivo, confirming the in vitro results. In conclusion, this study provides further validation of the potential clinical significance of CDC20 as a strategy to overcome radio-chemoresistance via uncovering a novel role of CDC20 in regulating RPA1 during DNA damage repair.
Collapse
Affiliation(s)
- Yang Gao
- Department of Histology and Embryology, Shantou University Medical College, Shantou 515041, China; (Y.G.); (C.S.); (C.Y.); (Y.C.); (J.Y.)
| | - Pengbo Wen
- School of Medical Information and Engineering, Xuzhou Medical University, Xuzhou 221002, China;
| | - Chenran Shao
- Department of Histology and Embryology, Shantou University Medical College, Shantou 515041, China; (Y.G.); (C.S.); (C.Y.); (Y.C.); (J.Y.)
| | - Cheng Ye
- Department of Histology and Embryology, Shantou University Medical College, Shantou 515041, China; (Y.G.); (C.S.); (C.Y.); (Y.C.); (J.Y.)
| | - Yuji Chen
- Department of Histology and Embryology, Shantou University Medical College, Shantou 515041, China; (Y.G.); (C.S.); (C.Y.); (Y.C.); (J.Y.)
| | - Junyu You
- Department of Histology and Embryology, Shantou University Medical College, Shantou 515041, China; (Y.G.); (C.S.); (C.Y.); (Y.C.); (J.Y.)
| | - Zhongjing Su
- Department of Histology and Embryology, Shantou University Medical College, Shantou 515041, China; (Y.G.); (C.S.); (C.Y.); (Y.C.); (J.Y.)
| |
Collapse
|
2
|
Shetty MG, Pai P, Dey B, Satyamoorthy K, Shil S, Nayak UY, T A, Sundara BK. Evaluation of 1,10-phenanthroline-based hydroxamate derivative as dual histone deacetylases/ribonucleotide reductase inhibitor with antitumor activities. Daru 2024; 32:263-278. [PMID: 38683491 PMCID: PMC11087398 DOI: 10.1007/s40199-024-00514-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 04/07/2024] [Indexed: 05/01/2024] Open
Abstract
BACKGROUND Aberrant expression of histone deacetylases (HDACs) and ribonucleotide reductase (RR) enzymes are commonly observed in various cancers. Researchers are focusing on these enzymes in cancer studies with the aim of developing effective chemotherapeutic drugs for cancer treatment. Targeting both HDAC and RR simultaneously with a dual HDAC/RR inhibitor has exhibited enhanced effectiveness compared to monotherapy in cancer treatment, making it a promising strategy. OBJECTIVES The objective of the study is to synthesize and assess the anti-cancer properties of a 1,10-phenanthroline-based hydroxamate derivative, characterizing it as a novel dual HDAC/RR inhibitor. METHODS The N1-hydroxy-N8-(1,10-phenanthrolin-5-yl)octanediamide (PA), a 1,10-phenanthroline-based hydroxamate derivative, was synthesized and structurally characterized. The compound was subjected to in vitro assessments of its anti-cancer, HDAC, and RR inhibitory activities. In silico docking and molecular dynamics simulations were further studied to explore its interactions with HDACs and RRM2. RESULTS The structurally confirmed PA exhibited antiproliferative activity in SiHa cells with an IC50 of 16.43 μM. It displayed potent inhibitory activity against HDAC and RR with IC50 values of 10.80 μM and 9.34 μM, respectively. Co-inhibition of HDAC and RR resulted in apoptosis-induced cell death in SiHa cells, mediated by the accumulation of reactive oxygen species (ROS). In silico docking studies demonstrated that PA can effectively bind to the active sites of HDAC isoforms and RRM2. Furthermore, PA demonstrated a more favorable interaction with HDAC7, displaying a docking score of -9.633 kcal/mol, as compared to the standard HDAC inhibitor suberoylanilide hydroxamic acid (SAHA), which exhibited a docking score of -8.244 kcal/mol against HDAC7. CONCLUSION The present study emphasizes the prospect of designing a potential 1,10-phenanthroline hydroxamic acid derivative as a novel dual HDAC and RR-inhibiting anti-cancer molecule.
Collapse
Affiliation(s)
- Manasa Gangadhar Shetty
- Department of Biophysics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Padmini Pai
- Department of Biophysics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Bipasa Dey
- Department of Biophysics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Kapaettu Satyamoorthy
- Shri Dharmasthala Manjunatheshwara (SDM) University, Manjushree Nagar, Sattur, Dharwad, 580009, Karnataka, India
| | - Suranjan Shil
- Department of Chemistry, Manipal Centre for Natural Sciences (Centre of Excellence), Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Usha Yogendra Nayak
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Ashwini T
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Babitha Kampa Sundara
- Department of Biophysics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India.
| |
Collapse
|
3
|
Du SG, Zhang HM, Ji YX, Tian YL, Wang D, Zhu K, Zhang QG, Liu SP. Polyphyllin VII Promotes Apoptosis in Breast Cancer by Inhibiting MAPK/ERK Signaling Pathway through Downregulation of SOS1. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2024; 52:885-904. [PMID: 38716619 DOI: 10.1142/s0192415x24500368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
Polyphyllin VII is a biologically active herbal monomer extracted from the traditional Chinese herbal medicine Chonglou. Many studies have demonstrated the anticancer activity of polyphyllin VII against various types of cancers, such as colon, liver, and lung cancer, but its effect on breast cancer has not been elucidated. In this study, we demonstrate that polyphyllin VII inhibited proliferation, increased production of intracellular reactive oxygen species, and decreased mitochondrial membrane potential in breast cancer cells. Notably, polyphyllin VII also induced apoptosis via the mitochondrial pathway. Transcriptome sequencing was used to analyze the targets of PPVII in regulating breast cancer cells. Mechanistic studies showed that polyphyllin VII downregulated Son of Sevenless1 (SOS1) and inhibited the MAPK/ERK pathway. Furthermore, PPVII exerted strong antitumor effects in vivo in nude mice injected with breast cancer cells. Our results suggest that PPVII may promote apoptosis through regulating the SOS1/MAPK/ERK pathway, making it a possible candidate target for the treatment of breast cancer.
Collapse
Affiliation(s)
- Shu-Guang Du
- Chronic Disease Research Center, Medical College, Dalian University, Xuefu Road 10, Dalian 116622, P. R. China
- Laboratory Department, The First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin 150040, P. R. China
| | - Hua-Min Zhang
- Chronic Disease Research Center, Medical College, Dalian University, Xuefu Road 10, Dalian 116622, P. R. China
- Key Laboratory of Natural Resources of Changbai Mountain & Functional Molecules, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji 133002, P. R. China
| | - Yun-Xia Ji
- Laboratory Department, Zhangjiakou First Hospital, Zhangjiakou 075041, P. R. China
| | - Yu-Lin Tian
- Chronic Disease Research Center, Medical College, Dalian University, Xuefu Road 10, Dalian 116622, P. R. China
| | - Dan Wang
- Chronic Disease Research Center, Medical College, Dalian University, Xuefu Road 10, Dalian 116622, P. R. China
| | - Kun Zhu
- Chronic Disease Research Center, Medical College, Dalian University, Xuefu Road 10, Dalian 116622, P. R. China
| | - Qing-Gao Zhang
- Chronic Disease Research Center, Medical College, Dalian University, Xuefu Road 10, Dalian 116622, P. R. China
| | - Shuang-Ping Liu
- Chronic Disease Research Center, Medical College, Dalian University, Xuefu Road 10, Dalian 116622, P. R. China
| |
Collapse
|
4
|
Shetty MG, Pai P, Padavu M, Satyamoorthy K, Kampa Sundara B. Synergistic therapeutics: Co-targeting histone deacetylases and ribonucleotide reductase for enhanced cancer treatment. Eur J Med Chem 2024; 269:116324. [PMID: 38520762 DOI: 10.1016/j.ejmech.2024.116324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 03/06/2024] [Accepted: 03/09/2024] [Indexed: 03/25/2024]
Abstract
The development of cancer is influenced by several variables, including altered protein expression, and signaling pathways. Cancers are inherently heterogeneous and exhibit genetic and epigenetic aberrations; therefore, developing therapies that act on numerous biological targets is encouraged. To achieve this, two approaches are employed: combination therapy and dual/multiple targeting chemotherapeutics. Two enzymes, histone deacetylases (HDACs) and ribonucleotide reductase (RR), are crucial for several biological functions, including replication and repair of DNA, division of cells, transcription of genes, etc. However, it has been noted that different cancers exhibit abnormal functions of these enzymes. Potent inhibitors for each of these proteins have been extensively researched. Many medications based on these inhibitors have been successfully food and drug administration (FDA) approved, and the majority are undergoing various stages of clinical testing. This review discusses various studies of HDAC and RR inhibitors in combination therapy and dual-targeting chemotherapeutics.
Collapse
Affiliation(s)
- Manasa Gangadhar Shetty
- Department of Biophysics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, 576104, India
| | - Padmini Pai
- Department of Biophysics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, 576104, India
| | - Mythili Padavu
- Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, 576104, India
| | - Kapaettu Satyamoorthy
- Shri Dharmasthala Manjunatheshwara (SDM) University, Manjushree Nagar, Sattur, Dharwad, 580009, India
| | - Babitha Kampa Sundara
- Department of Biophysics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, 576104, India.
| |
Collapse
|
5
|
Limbu S, Dakshanamurthy S. Predicting Dose-Dependent Carcinogenicity of Chemical Mixtures Using a Novel Hybrid Neural Network Framework and Mathematical Approach. TOXICS 2023; 11:605. [PMID: 37505571 PMCID: PMC10383376 DOI: 10.3390/toxics11070605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/03/2023] [Accepted: 07/10/2023] [Indexed: 07/29/2023]
Abstract
This study addresses the challenge of assessing the carcinogenic potential of hazardous chemical mixtures, such as per- and polyfluorinated substances (PFASs), which are known to contribute significantly to cancer development. Here, we propose a novel framework called HNNMixCancer that utilizes a hybrid neural network (HNN) integrated into a machine-learning framework. This framework incorporates a mathematical model to simulate chemical mixtures, enabling the creation of classification models for binary (carcinogenic or noncarcinogenic) and multiclass classification (categorical carcinogenicity) and regression (carcinogenic potency). Through extensive experimentation, we demonstrate that our HNN model outperforms other methodologies, including random forest, bootstrap aggregating, adaptive boosting, support vector regressor, gradient boosting, kernel ridge, decision tree with AdaBoost, and KNeighbors, achieving a superior accuracy of 92.7% in binary classification. To address the limited availability of experimental data and enrich the training data, we generate an assumption-based virtual library of chemical mixtures using a known carcinogenic and noncarcinogenic single chemical for all the classification models. Remarkably, in this case, all methods achieve accuracies exceeding 98% for binary classification. In external validation tests, our HNN method achieves the highest accuracy of 80.5%. Furthermore, in multiclass classification, the HNN demonstrates an overall accuracy of 96.3%, outperforming RF, Bagging, and AdaBoost, which achieved 91.4%, 91.7%, and 80.2%, respectively. In regression models, HNN, RF, SVR, GB, KR, DT with AdaBoost, and KN achieved average R2 values of 0.96, 0.90, 0.77, 0.94, 0.96, 0.96, and 0.97, respectively, showcasing their effectiveness in predicting the concentration at which a chemical mixture becomes carcinogenic. Our method exhibits exceptional predictive power in prioritizing carcinogenic chemical mixtures, even when relying on assumption-based mixtures. This capability is particularly valuable for toxicology studies that lack experimental data on the carcinogenicity and toxicity of chemical mixtures. To our knowledge, this study introduces the first method for predicting the carcinogenic potential of chemical mixtures. The HNNMixCancer framework offers a novel alternative for dose-dependent carcinogen prediction. Ongoing efforts involve implementing the HNN method to predict mixture toxicity and expanding the application of HNNMixCancer to include multiple mixtures such as PFAS mixtures and co-occurring chemicals.
Collapse
Affiliation(s)
- Sarita Limbu
- Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Sivanesan Dakshanamurthy
- Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA
| |
Collapse
|
6
|
Bang D, Lim S, Lee S, Kim S. Biomedical knowledge graph learning for drug repurposing by extending guilt-by-association to multiple layers. Nat Commun 2023; 14:3570. [PMID: 37322032 PMCID: PMC10272215 DOI: 10.1038/s41467-023-39301-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 06/02/2023] [Indexed: 06/17/2023] Open
Abstract
Computational drug repurposing aims to identify new indications for existing drugs by utilizing high-throughput data, often in the form of biomedical knowledge graphs. However, learning on biomedical knowledge graphs can be challenging due to the dominance of genes and a small number of drug and disease entities, resulting in less effective representations. To overcome this challenge, we propose a "semantic multi-layer guilt-by-association" approach that leverages the principle of guilt-by-association - "similar genes share similar functions", at the drug-gene-disease level. Using this approach, our model DREAMwalk: Drug Repurposing through Exploring Associations using Multi-layer random walk uses our semantic information-guided random walk to generate drug and disease-populated node sequences, allowing for effective mapping of both drugs and diseases in a unified embedding space. Compared to state-of-the-art link prediction models, our approach improves drug-disease association prediction accuracy by up to 16.8%. Moreover, exploration of the embedding space reveals a well-aligned harmony between biological and semantic contexts. We demonstrate the effectiveness of our approach through repurposing case studies for breast carcinoma and Alzheimer's disease, highlighting the potential of multi-layer guilt-by-association perspective for drug repurposing on biomedical knowledge graphs.
Collapse
Affiliation(s)
- Dongmin Bang
- Interdisciplinary Program in Bioinformatics, Seoul National University, Seoul, 08826, Republic of Korea
- AIGENDRUG Co., Ltd., Seoul, 08826, Republic of Korea
| | - Sangsoo Lim
- School of Artificial Intelligence Convergence, Dongguk University, Seoul, 04620, Republic of Korea
| | - Sangseon Lee
- Institute of Computer Technology, Seoul National University, Seoul, 08826, Republic of Korea
| | - Sun Kim
- Interdisciplinary Program in Bioinformatics, Seoul National University, Seoul, 08826, Republic of Korea.
- AIGENDRUG Co., Ltd., Seoul, 08826, Republic of Korea.
- Department of Computer Science and Engineering, Seoul National University, Seoul, 08826, Republic of Korea.
- Interdisciplinary Program in Artificial Intelligence, Seoul National University, Seoul, 08826, Republic of Korea.
| |
Collapse
|
7
|
Lin C, Liu P, Shi C, Qiu L, Shang D, Lu Z, Tu Z, Liu H. Therapeutic targeting of DNA damage repair pathways guided by homologous recombination deficiency scoring in ovarian cancers. Fundam Clin Pharmacol 2023; 37:194-214. [PMID: 36130021 DOI: 10.1111/fcp.12834] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 07/23/2022] [Accepted: 09/20/2022] [Indexed: 12/01/2022]
Abstract
The susceptibility of cells to DNA damage and their DNA repair ability are crucial for cancer therapy. Homologous recombination is one of the major repairing mechanisms for DNA double-strand breaks. Approximately half of ovarian cancer (OvCa) cells harbor homologous recombination deficiency (HRD). Considering that HRD is a major hallmark of OvCas, scholars proposed HRD scoring to evaluate the HRD degree and guide the choice of therapeutic strategies for OvCas. In the last decade, synthetic lethal strategy by targeting poly (ADP-ribose) polymerase (PARP) in HR-deficient OvCas has attracted considerable attention in view of its favorable clinical effort. We therefore suggested that the uses of other DNA damage/repair-targeted drugs in HR-deficient OvCas might also offer better clinical outcome. Here, we reviewed the current small molecule compounds that targeted DNA damage/repair pathways and discussed the HRD scoring system to guide their clinical uses.
Collapse
Affiliation(s)
- Chunxiu Lin
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Peng Liu
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Chaowen Shi
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Lipeng Qiu
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Dongsheng Shang
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Ziwen Lu
- School of Pharmacy, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Zhigang Tu
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Hanqing Liu
- School of Pharmacy, Jiangsu University, Zhenjiang, Jiangsu, China
| |
Collapse
|
8
|
Su B, Lim D, Qi C, Zhang Z, Wang J, Zhang F, Dong C, Feng Z. VPA mediates bidirectional regulation of cell cycle progression through the PPP2R2A-Chk1 signaling axis in response to HU. Cell Death Dis 2023; 14:114. [PMID: 36781846 PMCID: PMC9925808 DOI: 10.1038/s41419-023-05649-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 01/31/2023] [Accepted: 02/02/2023] [Indexed: 02/15/2023]
Abstract
Cell cycle checkpoint kinases play a pivotal role in protecting against replicative stress. In this study, valproic acid (VPA), a histone deacetylase inhibitor (HDACi), was found to promote breast cancer MCF-7 cells to traverse into G2/M phase for catastrophic injury by promoting PPP2R2A (the B-regulatory subunit of Phosphatase PP2A) to facilitate the dephosphorylation of Chk1 at Ser317 and Ser345. By contrast, VPA protected normal 16HBE cells from HU toxicity through decreasing PPP2R2A expression and increasing Chk1 phosphorylation. The effect of VPA on PPP2R2A was at the post-transcription level through HDAC1/2. The in vitro results were affirmed in vivo. Patients with lower PPP2R2A expression and higher pChk1 expression showed significantly worse survival. PPP2R2A D197 and N181 are essential for PPP2R2A-Chk1 signaling and VPA-mediated bidirectional effect on augmenting HU-induced tumor cell death and protecting normal cells.
Collapse
Affiliation(s)
- Benyu Su
- Department of Occupational and Environmental Health, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - David Lim
- Translational Health Research Institute, School of Health Sciences, Western Sydney University, Campbelltown, NSW, Australia
- College of Medicine and Public Health, Flinders University, Bedford Park, SA, Australia
| | - Chenyang Qi
- Department of Occupational and Environmental Health, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Zhongwei Zhang
- Department of Occupational and Environmental Health, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Junxiao Wang
- Department of Occupational and Environmental Health, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Fengmei Zhang
- Department of Occupational and Environmental Health, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Chao Dong
- Department of Occupational and Environmental Health, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China.
| | - Zhihui Feng
- Department of Occupational and Environmental Health, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China.
| |
Collapse
|
9
|
Ezhilarasan D, Mani U. Valproic acid induced liver injury: An insight into molecular toxicological mechanism. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2022; 95:103967. [PMID: 36058508 DOI: 10.1016/j.etap.2022.103967] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 08/22/2022] [Accepted: 08/29/2022] [Indexed: 06/15/2023]
Abstract
Valproic acid (VPA) is an anti-seizure drug that causes idiosyncratic liver injury. 2-propyl-4-pentenoic acid (Δ4VPA), a metabolite of VPA, has been implicated in VPA-induced hepatotoxicity. This review summarizes the pathogenesis involved in VPA-induced liver injury. The VPA induce liver injury mainly by i) liberation of Δ4VPA metabolites; ii) decrease in glutathione stores and antioxidants, resulting in oxidative stress; iii) inhibition of fatty acid β-oxidation, inducing mitochondrial DNA depletion and hypermethylation; a decrease in proton leak; oxidative phosphorylation impairment and ATP synthesis decrease; iv) induction of fatty liver via inhibition of carnitine palmitoyltransferase I, enhancing nuclear receptor peroxisome proliferator-activated receptor-gamma and acyl-CoA thioesterase 1, and inducing long-chain fatty acid uptake and triglyceride synthesis. VPA administration aggravates liver injury in individuals with metabolic syndromes. Therapeutic drug monitoring, routine serum levels of transaminases, ammonia, and lipid parameters during VPA therapy may thus be beneficial in improving the safety profile or preventing the progression of DILI.
Collapse
Affiliation(s)
- Devaraj Ezhilarasan
- Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Chennai, Tamil Nadu 600 077, India.
| | - Uthirappan Mani
- Animal House Division, CSIR-Central Leather Research Institute, Adyar, Chennai 600 020, India
| |
Collapse
|
10
|
Pramanik SD, Kumar Halder A, Mukherjee U, Kumar D, Dey YN, R M. Potential of histone deacetylase inhibitors in the control and regulation of prostate, breast and ovarian cancer. Front Chem 2022; 10:948217. [PMID: 36034650 PMCID: PMC9411967 DOI: 10.3389/fchem.2022.948217] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 06/27/2022] [Indexed: 12/12/2022] Open
Abstract
Histone deacetylases (HDACs) are enzymes that play a role in chromatin remodeling and epigenetics. They belong to a specific category of enzymes that eliminate the acetyl part of the histones' -N-acetyl lysine, causing the histones to be wrapped compactly around DNA. Numerous biological processes rely on HDACs, including cell proliferation and differentiation, angiogenesis, metastasis, gene regulation, and transcription. Epigenetic changes, specifically increased expression and activity of HDACs, are commonly detected in cancer. As a result, HDACi could be used to develop anticancer drugs. Although preclinical outcomes with HDACs as monotherapy have been promising clinical trials have had mixed results and limited success. In both preclinical and clinical trials, however, combination therapy with different anticancer medicines has proved to have synergistic effects. Furthermore, these combinations improved efficacy, decreased tumor resistance to therapy, and decreased toxicity. In the present review, the detailed modes of action, classification of HDACs, and their correlation with different cancers like prostate, breast, and ovarian cancer were discussed. Further, the different cell signaling pathways and the structure-activity relationship and pharmaco-toxicological properties of the HDACi, and their synergistic effects with other anticancer drugs observed in recent preclinical and clinical studies used in combination therapy were discussed for prostate, breast, and ovarian cancer treatment.
Collapse
Affiliation(s)
- Siddhartha Das Pramanik
- Department of Pharmaceutical Engineering and Technology, IIT-BHU, Varanasi, Uttar Pradesh, India
| | - Amit Kumar Halder
- Dr. B.C. Roy College of Pharmacy and Allied Health Sciences, Durgapur, West Bengal, India
| | - Ushmita Mukherjee
- Dr. B.C. Roy College of Pharmacy and Allied Health Sciences, Durgapur, West Bengal, India
| | - Dharmendra Kumar
- Department of Pharmaceutical Chemistry, Narayan Institute of Pharmacy, Gopal Narayan Singh University, Sasaram, Bihar, India
| | - Yadu Nandan Dey
- Dr. B.C. Roy College of Pharmacy and Allied Health Sciences, Durgapur, West Bengal, India
| | - Mogana R
- Department of Pharmaceutical Biology, Faculty of Pharmaceutical Sciences, UCSI Education SDN.BHD., Kuala Lumpur, Malaysia
| |
Collapse
|
11
|
Secchi M, Lodola C, Garbelli A, Bione S, Maga G. DEAD-Box RNA Helicases DDX3X and DDX5 as Oncogenes or Oncosuppressors: A Network Perspective. Cancers (Basel) 2022; 14:cancers14153820. [PMID: 35954483 PMCID: PMC9367324 DOI: 10.3390/cancers14153820] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/01/2022] [Accepted: 08/04/2022] [Indexed: 11/16/2022] Open
Abstract
Simple Summary The transformation of a normal cell into a cancerous one is caused by the deregulation of different metabolic pathways, involving a complex network of protein–protein interactions. The cellular enzymes DDX3X and DDX5 play important roles in the maintenance of normal cell metabolism, but their deregulation can accelerate tumor transformation. Both DDX3X and DDX5 interact with hundreds of different cellular proteins, and depending on the specific pathways in which they are involved, both proteins can either act as suppressors of cancer or as oncogenes. In this review, we summarize the current knowledge about the roles of DDX3X and DDX5 in different tumors. In addition, we present a list of interacting proteins and discuss the possible contribution of some of these protein–protein interactions in determining the roles of DDX3X and DDX5 in the process of cancer proliferation, also suggesting novel hypotheses for future studies. Abstract RNA helicases of the DEAD-box family are involved in several metabolic pathways, from transcription and translation to cell proliferation, innate immunity and stress response. Given their multiple roles, it is not surprising that their deregulation or mutation is linked to different pathological conditions, including cancer. However, while in some cases the loss of function of a given DEAD-box helicase promotes tumor transformation, indicating an oncosuppressive role, in other contexts the overexpression of the same enzyme favors cancer progression, thus acting as a typical oncogene. The roles of two well-characterized members of this family, DDX3X and DDX5, as both oncogenes and oncosuppressors have been documented in several cancer types. Understanding the interplay of the different cellular contexts, as defined by the molecular interaction networks of DDX3X and DDX5 in different tumors, with the cancer-specific roles played by these proteins could help to explain their apparently conflicting roles as cancer drivers or suppressors.
Collapse
|
12
|
Ding C, Su B, Li Q, Ding W, Liu G, Cai Z, Zhang F, Lim D, Feng Z. Histone deacetylase inhibitor 2-hexyl-4-pentynoic acid enhances hydroxyurea therapeutic effect in triple-negative breast cancer cells. MUTATION RESEARCH. GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2022; 873:503422. [PMID: 35094806 DOI: 10.1016/j.mrgentox.2021.503422] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 10/07/2021] [Accepted: 11/03/2021] [Indexed: 06/14/2023]
Abstract
Triple-negative breast cancer (TNBC) treatment has only limited effect, and it causes a significant number of deaths. Histone deacetylase inhibitors (HDACis) are emerging as promising anti-tumor agents in many types of cancers. We thus hypothesized that 2-hexyl-4-pentynoic acid (HPTA), a novel HDACi, could sensitize TNBC to hydroxyurea (HU, a ribonucleotide reductase inhibitor). In the present study, we investigated the effect of HPTA, alone or in combination with HU on cell survival, DNA double-strand breaks (DSBs), key homologous recombination (HR) repair proteins and cell cycle progression in MDA-MB-468 and MDA-MB-231 human TNBC cell lines. HPTA and HU synergistically inhibited the survival of TNBC cell lines and resulted in the accumulation of DNA double-strand breaks (DSBs). HPTA can sensitize TNBC cells to HU by inhibiting replication protein A2 (RPA2) hyperphosphorylation-mediated HR repair, and lessen cell accumulation in S-phase by inhibiting ATR-CHK1 signaling pathway. Taken together, our data suggested that HPTA enhances HU therapeutic effect by blocking the HR repair and regulating cell cycle progression in TNBC.
Collapse
Affiliation(s)
- Chenxia Ding
- Department of Occupational Health and Occupational Medicine, The Public Health School, Cheeloo College of Medicine, Shandong University, China
| | - Benyu Su
- Department of Occupational Health and Occupational Medicine, The Public Health School, Cheeloo College of Medicine, Shandong University, China
| | | | - Wenwen Ding
- Department of Occupational Health and Occupational Medicine, The Public Health School, Cheeloo College of Medicine, Shandong University, China
| | - Guochao Liu
- Department of Occupational Health and Occupational Medicine, The Public Health School, Cheeloo College of Medicine, Shandong University, China
| | - Zuchao Cai
- Department of Occupational Health and Occupational Medicine, The Public Health School, Cheeloo College of Medicine, Shandong University, China
| | - Fengmei Zhang
- Department of Occupational Health and Occupational Medicine, The Public Health School, Cheeloo College of Medicine, Shandong University, China
| | - David Lim
- School of Health Sciences, Western Sydney University, Campbelltown, New South Wales, Australia; Translational Health Research Institute, Western Sydney University, Campbelltown, New South Wales, Australia
| | - Zhihui Feng
- Department of Occupational Health and Occupational Medicine, The Public Health School, Cheeloo College of Medicine, Shandong University, China.
| |
Collapse
|
13
|
Li W, Wu H, Sui S, Wang Q, Xu S, Pang D. Targeting Histone Modifications in Breast Cancer: A Precise Weapon on the Way. Front Cell Dev Biol 2021; 9:736935. [PMID: 34595180 PMCID: PMC8476812 DOI: 10.3389/fcell.2021.736935] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 08/16/2021] [Indexed: 12/27/2022] Open
Abstract
Histone modifications (HMs) contribute to maintaining genomic stability, transcription, DNA repair, and modulating chromatin in cancer cells. Furthermore, HMs are dynamic and reversible processes that involve interactions between numerous enzymes and molecular components. Aberrant HMs are strongly associated with tumorigenesis and progression of breast cancer (BC), although the specific mechanisms are not completely understood. Moreover, there is no comprehensive overview of abnormal HMs in BC, and BC therapies that target HMs are still in their infancy. Therefore, this review summarizes the existing evidence regarding HMs that are involved in BC and the potential mechanisms that are related to aberrant HMs. Moreover, this review examines the currently available agents and approved drugs that have been tested in pre-clinical and clinical studies to evaluate their effects on HMs. Finally, this review covers the barriers to the clinical application of therapies that target HMs, and possible strategies that could help overcome these barriers and accelerate the use of these therapies to cure patients.
Collapse
Affiliation(s)
- Wei Li
- Harbin Medical University Third Hospital: Tumor Hospital of Harbin Medical University, Harbin, China
| | - Hao Wu
- Harbin Medical University Third Hospital: Tumor Hospital of Harbin Medical University, Harbin, China
| | - Shiyao Sui
- Harbin Medical University Third Hospital: Tumor Hospital of Harbin Medical University, Harbin, China
| | - Qin Wang
- Harbin Medical University Third Hospital: Tumor Hospital of Harbin Medical University, Harbin, China
| | - Shouping Xu
- Harbin Medical University Third Hospital: Tumor Hospital of Harbin Medical University, Harbin, China
| | - Da Pang
- Harbin Medical University Third Hospital: Tumor Hospital of Harbin Medical University, Harbin, China.,Heilongjiang Academy of Medical Sciences, Harbin, China
| |
Collapse
|
14
|
Su B, Lim D, Tian Z, Liu G, Ding C, Cai Z, Chen C, Zhang F, Feng Z. Valproic Acid Regulates HR and Cell Cycle Through MUS81-pRPA2 Pathway in Response to Hydroxyurea. Front Oncol 2021; 11:681278. [PMID: 34513672 PMCID: PMC8429838 DOI: 10.3389/fonc.2021.681278] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 07/30/2021] [Indexed: 12/24/2022] Open
Abstract
Breast cancer is the primary problem threatening women’s health. The combined application of valproic acid (VPA) and hydroxyurea (HU) has a synergistic effect on killing breast cancer cells, but the molecular mechanism remains elusive. Replication protein A2 phosphorylation (pRPA2), is essential for homologous recombination (HR) repair and cell cycle. Here we showed that in response to HU, the VPA significantly decreased the tumor cells survival, and promoted S-phase slippage, which was associated with the decrease of pCHK1 and WEE1/pCDK1-mediated checkpoint kinases phosphorylation pathway and inhibited pRPA2/Rad51-mediated HR repair pathway; the mutation of pRPA2 significantly diminished the above effect, indicating that VPA-caused HU sensitization was pRPA2 dependent. It was further found that VPA and HU combination treatment also resulted in the decrease of endonuclease MUS81. After MUS81 elimination, not only the level of pRPA2 was abolished in response to HU treatment, but also VPA-caused HU sensitization was significantly down-regulated through pRPA2-mediated checkpoint kinases phosphorylation and HR repair pathways. In addition, the VPA altered the tumor microenvironment and reduced tumor burden by recruiting macrophages to tumor sites; the Kaplan-Meier analysis showed that patients with high pRPA2 expression had significantly worse survival. Overall, our findings demonstrated that VPA influences HR repair and cell cycle through down-regulating MUS81-pRPA2 pathway in response to HU treatment.
Collapse
Affiliation(s)
- Benyu Su
- Department of Occupational and Environmental Health, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - David Lim
- School of Health Sciences, Western Sydney University, Campbelltown, NSW, Australia.,College of Medicine and Public Health, Flinders University, Bedford Park, SA, Australia
| | - Zhujun Tian
- Department of Occupational and Environmental Health, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China.,School of Public Health and Management, Wenzhou Medical University, Wenzhou, China
| | - Guochao Liu
- Department of Occupational and Environmental Health, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Chenxia Ding
- Department of Occupational and Environmental Health, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Zuchao Cai
- Department of Occupational and Environmental Health, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Chen Chen
- Department of Occupational and Environmental Health, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Fengmei Zhang
- Department of Occupational and Environmental Health, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Zhihui Feng
- Department of Occupational and Environmental Health, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| |
Collapse
|
15
|
Cai Z, Lim D, Liu G, Chen C, Jin L, Duan W, Ding C, Sun Q, Peng J, Dong C, Zhang F, Feng Z. Valproic Acid-Like Compounds Enhance and Prolong the Radiotherapy Effect on Breast Cancer by Activating and Maintaining Anti-Tumor Immune Function. Front Immunol 2021; 12:646384. [PMID: 34054811 PMCID: PMC8149798 DOI: 10.3389/fimmu.2021.646384] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Accepted: 04/16/2021] [Indexed: 12/12/2022] Open
Abstract
Inadequate sustained immune activation and tumor recurrence are major limitations of radiotherapy (RT), sustained and targeted activation of the tumor microenvironment can overcome this obstacle. Here, by two models of a primary rat breast cancer and cell co-culture, we demonstrated that valproic acid (VPA) and its derivative (HPTA) are effective immune activators for RT to inhibit tumor growth by inducing myeloid-derived macrophages and polarizing them toward the M1 phenotype, thus elevate the expression of cytokines such as IL-12, IL-6, IFN-γ and TNF-α during the early stage of the combination treatment. Meanwhile, activated CD8+ T cells increased, angiogenesis of tumors is inhibited, and the vasculature becomes sparse. Furthermore, it was suggested that VPA/HPTA can enhance the effects of RT via macrophage-mediated and macrophage-CD8+ T cell-mediated anti-tumor immunity. The combination of VPA/HPTA and RT treatment slowed the growth of tumors and prolong the anti-tumor effect by continuously maintaining the activated immune response. These are promising findings for the development of new effective, low-cost concurrent cancer therapy.
Collapse
Affiliation(s)
- Zuchao Cai
- Department of Occupational Health and Occupational Medicine, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - David Lim
- School of Health Sciences, Western Sydney University, Campbelltown, NSW, Australia
- College of Medicine and Public Health, Flinders University, Bedford Park, SA, Australia
| | - Guochao Liu
- Department of Occupational Health and Occupational Medicine, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Chen Chen
- Department of Occupational Health and Occupational Medicine, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Liya Jin
- Department of Occupational Health and Occupational Medicine, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Wenhua Duan
- Department of Occupational Health and Occupational Medicine, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Chenxia Ding
- Department of Occupational Health and Occupational Medicine, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Qingjie Sun
- Department of Occupational Health and Occupational Medicine, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Junxuan Peng
- Department of Occupational Health and Occupational Medicine, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Chao Dong
- Department of Occupational Health and Occupational Medicine, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Fengmei Zhang
- Department of Occupational Health and Occupational Medicine, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Zhihui Feng
- Department of Occupational Health and Occupational Medicine, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| |
Collapse
|
16
|
Liu G, Lim D, Cai Z, Ding W, Tian Z, Dong C, Zhang F, Guo G, Wang X, Zhou P, Feng Z. The Valproate Mediates Radio-Bidirectional Regulation Through RFWD3-Dependent Ubiquitination on Rad51. Front Oncol 2021; 11:646256. [PMID: 33842359 PMCID: PMC8029989 DOI: 10.3389/fonc.2021.646256] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Accepted: 03/08/2021] [Indexed: 12/23/2022] Open
Abstract
Ionizing radiation (IR) can induce DNA double-strand breaks (DSBs) in tumor cells during radiotherapy (RT), but the efficiency of RT is limited because of the toxicity to normal cells. Locating an adjuvant treatment to alleviate damage in normal cells while sensitizing tumor cells to IR has attracted much attention. Here, using the 7,12-dimethylbenz[α]anthracene (DMBA)-induced malignant transformed MCF10A cells, we found that valproate (VPA), a histone deacetylase inhibitor (HDACi), radiosensitized transformed cells while alleviated IR-induced damage in normal cells at a safe dose (0.5 mM). We further demonstrated the decrease of homologous recombination (HR)-associated Rad51 in the transformed cells was related to the increase of its ubiquitination regulated by E3 ligase RFWD3 for the radiosensitization, which was opposite to normal cells, indicating that RFWD3-dependent ubiquitination on Rad51 was involved in the VPA-mediated radio-bidirectional effect. Through DMBA-transformed breast cancer rat model, VPA at 200 mg/kg radiosensitized tumor tissue cells by increasing RFWD3 and inhibited Rad51, while radioprotected normal tissue cells by decreasing RFWD3 and enhanced Rad51. In addition, we found high-level Rad51 was associated with tumorigenesis and poor prognosis in breast cancer patients. Our findings uncovered RFWD3-dependent Rad51 ubiquitination was the novel mechanism of VPA-mediated radio-bidirectional effect, VPA is a potential adjuvant treatment for tumor RT.
Collapse
Affiliation(s)
- Guochao Liu
- Department of Occupational Health and Occupational Medicine, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - David Lim
- School of Health Sciences, Western Sydney University, Campbelltown, NSW, Australia
- College of Medicine and Public Health, Flinders University, Bedford Park, SA, Australia
| | - Zuchao Cai
- Department of Occupational Health and Occupational Medicine, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Wenwen Ding
- Department of Occupational Health and Occupational Medicine, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Zhujun Tian
- Department of Occupational Health and Occupational Medicine, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Chao Dong
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Fengmei Zhang
- Department of Occupational Health and Occupational Medicine, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Gongshe Guo
- Department of Medicine, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Xiaowei Wang
- Department of Radiation Oncology, Washington University, School of Medicine, St. Louis, MO, United States
| | - Pingkun Zhou
- Beijing Key Laboratory for Radiobiology, Department of Radiation Biology, Beijing Institute of Radiation Medicine, AMMS, Beijing, China
| | - Zhihui Feng
- Department of Occupational Health and Occupational Medicine, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| |
Collapse
|
17
|
Yan M, Wang H, Gu Y, Li X, Tao L, Lu P. Melatonin exerts protective effects on diabetic retinopathy via inhibition of Wnt/β-catenin pathway as revealed by quantitative proteomics. Exp Eye Res 2021; 205:108521. [PMID: 33636209 DOI: 10.1016/j.exer.2021.108521] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 01/23/2021] [Accepted: 02/17/2021] [Indexed: 12/13/2022]
Abstract
Diabetic retinopathy (DR), the most common ocular complication resulting from diabetes in working-age adults, causes vision impairment and even blindness because of microvascular damage to the retina. Melatonin is an endogenous neurohormone possessing various biological properties, including the regulation of oxidative stress, inflammation, autophagy, and angiogenesis functions. To evaluate the effects of melatonin on DR, we first investigated the role of melatonin in retinal angiogenesis and inner blood-retina barrier (iBRB) under high glucose conditions in vitro and in vivo. Melatonin administration ameliorated high glucose-induced iBRB disruption, cell proliferation, cell migration, invasion and tube formation, and decreased the expression levels of VEGF, MMP-2, and MMP-9. Furthermore, melatonin treatment increased the level of autophagy but decreased the expression levels of inflammation-related factors under high glucose conditions. To further explore the underlying mechanism, we evaluated human retinal microvascular endothelial cells (HRMECs) via tandem mass tags (TMT)-labeled quantitative proteomics under high-glucose conditions with or without melatonin. Bioinformatics analysis results revealed that the main enrichment pathway of differentially expressed proteins (DEPs) was the Wnt pathway. We found that melatonin inhibited the activation of Wnt/β-catenin pathway following DR. These abovementioned protective effects of melatonin under hyperglycemia were blocked by lithium chloride (LiCl; activator of the Wnt/β-catenin signaling pathway). In summary, melatonin exerts protective effects on experimental DR via inhibiting Wnt/β-catenin pathway by, at least partially, alleviating autophagic dysfunction and inflammatory activation.
Collapse
Affiliation(s)
- Mengyang Yan
- Department of Ophthalmology, The First Affiliated Hospital of Soochow University, Shizi Street 188, Suzhou, 215006, China
| | - Haochen Wang
- Department of Forensic Medicine, Medical School of Soochow University, 178 East Ganjiang Road, Suzhou, 215213, China
| | - Yu Gu
- Department of Ophthalmology, The First Affiliated Hospital of Soochow University, Shizi Street 188, Suzhou, 215006, China
| | - Xin Li
- Department of Ophthalmology, The First Affiliated Hospital of Soochow University, Shizi Street 188, Suzhou, 215006, China
| | - Luyang Tao
- Department of Forensic Medicine, Medical School of Soochow University, 178 East Ganjiang Road, Suzhou, 215213, China.
| | - Peirong Lu
- Department of Ophthalmology, The First Affiliated Hospital of Soochow University, Shizi Street 188, Suzhou, 215006, China.
| |
Collapse
|
18
|
Yang X, Liu J, Liang Q, Sun G. Valproic acid reverses sorafenib resistance through inhibiting activated Notch/Akt signaling pathway in hepatocellular carcinoma. Fundam Clin Pharmacol 2020; 35:690-699. [PMID: 33015852 DOI: 10.1111/fcp.12608] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 09/21/2020] [Accepted: 09/28/2020] [Indexed: 12/24/2022]
Abstract
Hepatocellular carcinoma (HCC) is one of the most common lethal human malignancies worldwide. Sorafenib is the first-line drug approved by the United States Food and Drug Administration for HCC. However, the acquired resistance to sorafenib reduces its beneficial effects and limits clinical use. In this study, we established a sorafenib-resistant HCC cell line HepG2-SR by low-concentration gradient induction. Compared with the parental cell HepG2, the proliferation and anti-apoptosis were increased in drug-resistant cell HepG2-SR. Thorough comparisons of the molecular changes between parental HepG2 and sorafenib-resistant HepG2-SR cells indicated that the Notch signaling pathway and PI3K/Akt signaling pathway were associated with sorafenib resistance mechanisms. Notch1 and Akt were upregulated in sorafenib-resistant cells. However, we surprisingly found that valproic acid (VPA) combined with sorafenib could enhance the sensitivity of drug-resistant cells and reverse the increased levels of Notch1 and Akt in sorafenib-resistant HCC cells. Moreover, Akt inhibitor could suppress Notch1 expression, whereas the level of Akt phosphorylation decreased along with increasing dose of Notch inhibitor. Besides, we found that knockdown of Akt resulted in Notch1 reduction, whereas Notch1 reduction also led to a significant reduction in the phosphorylation of Akt. Collectively, our results indicated that Notch1 and Akt might play vital roles in sorafenib resistance in HCC cells and VPA might overcome the drug resistance to enhance the sensitivity of HCC cells to sorafenib through suppressing Notch/Akt signaling pathway. VPA combined with sorafenib may provide a potential targeting therapeutic regimen for clinically to solve the problem of sorafenib resistance.
Collapse
Affiliation(s)
- Xu Yang
- Department of Pharmacy, The Fifth People's Hospital of Shanghai, Fudan University, Shanghai, 200240, China
| | - Jing Liu
- Department of Pharmacy, The Fifth People's Hospital of Shanghai, Fudan University, Shanghai, 200240, China
| | - Qing Liang
- Department of Pharmacy, The Fifth People's Hospital of Shanghai, Fudan University, Shanghai, 200240, China
| | - Guangchun Sun
- Department of Pharmacy, The Fifth People's Hospital of Shanghai, Fudan University, Shanghai, 200240, China
| |
Collapse
|
19
|
Dueva R, Iliakis G. Replication protein A: a multifunctional protein with roles in DNA replication, repair and beyond. NAR Cancer 2020; 2:zcaa022. [PMID: 34316690 PMCID: PMC8210275 DOI: 10.1093/narcan/zcaa022] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/23/2020] [Accepted: 08/27/2020] [Indexed: 02/07/2023] Open
Abstract
Single-stranded DNA (ssDNA) forms continuously during DNA replication and is an important intermediate during recombination-mediated repair of damaged DNA. Replication protein A (RPA) is the major eukaryotic ssDNA-binding protein. As such, RPA protects the transiently formed ssDNA from nucleolytic degradation and serves as a physical platform for the recruitment of DNA damage response factors. Prominent and well-studied RPA-interacting partners are the tumor suppressor protein p53, the RAD51 recombinase and the ATR-interacting proteins ATRIP and ETAA1. RPA interactions are also documented with the helicases BLM, WRN and SMARCAL1/HARP, as well as the nucleotide excision repair proteins XPA, XPG and XPF–ERCC1. Besides its well-studied roles in DNA replication (restart) and repair, accumulating evidence shows that RPA is engaged in DNA activities in a broader biological context, including nucleosome assembly on nascent chromatin, regulation of gene expression, telomere maintenance and numerous other aspects of nucleic acid metabolism. In addition, novel RPA inhibitors show promising effects in cancer treatment, as single agents or in combination with chemotherapeutics. Since the biochemical properties of RPA and its roles in DNA repair have been extensively reviewed, here we focus on recent discoveries describing several non-canonical functions.
Collapse
Affiliation(s)
- Rositsa Dueva
- Institute of Medical Radiation Biology, University of Duisburg-Essen Medical School, 45122 Essen, Germany
| | - George Iliakis
- Institute of Medical Radiation Biology, University of Duisburg-Essen Medical School, 45122 Essen, Germany
| |
Collapse
|
20
|
Peng J, Cai Z, Zhao R, Chen J, Liu G, Dong C, Lim D, Feng Z. The intervention of valproic acid on the tumorigenesis induced by an environmental carcinogen of PAHs. Toxicol Res (Camb) 2020; 9:609-621. [PMID: 33178421 DOI: 10.1093/toxres/tfaa069] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 07/28/2020] [Accepted: 08/03/2020] [Indexed: 11/14/2022] Open
Abstract
This study investigated whether valproic acid (VPA, a histone deacetylase inhibitor) can interfere with the carcinogenicity of polycyclic aromatic hydrocarbons (PAHs). A typical representative compound of PAHs, 7,12-Dimethylbenz[a]anthracene (DMBA), was used to induce rat breast cancer. The results showed that therapeutic concentration of VPA (50 and 100 mg/kg) delayed the occurrence of tumors, reduced tumor formation rate and attenuated tumors growth, and have a protective effect on normal tissues. The macrophage-mediated inflammatory response was found to be associated with the observed effect of VPA. In addition, we screened and validated a possible gene, Sema3c, which was involved in DMBA-induced breast cancer development and can be inhibited by VPA.
Collapse
Affiliation(s)
- Junxuan Peng
- Department of Occupational Health and Occupational Medicine, School of Public Health, Cheeloo College of Medicine, Shandong University, 44 Wenhua Xi Road, Shandong, Jinan, 250012, China
| | - Zuchao Cai
- Department of Occupational Health and Occupational Medicine, School of Public Health, Cheeloo College of Medicine, Shandong University, 44 Wenhua Xi Road, Shandong, Jinan, 250012, China
| | - Ruixue Zhao
- Department of Occupational Health and Occupational Medicine, School of Public Health, Cheeloo College of Medicine, Shandong University, 44 Wenhua Xi Road, Shandong, Jinan, 250012, China
| | - Jiahao Chen
- Department of Occupational Health and Occupational Medicine, School of Public Health, Cheeloo College of Medicine, Shandong University, 44 Wenhua Xi Road, Shandong, Jinan, 250012, China
| | - Guochao Liu
- Department of Occupational Health and Occupational Medicine, School of Public Health, Cheeloo College of Medicine, Shandong University, 44 Wenhua Xi Road, Shandong, Jinan, 250012, China
| | - Chao Dong
- Department of Occupational Health and Occupational Medicine, School of Public Health, Cheeloo College of Medicine, Shandong University, 44 Wenhua Xi Road, Shandong, Jinan, 250012, China
| | - David Lim
- School of Science and Health, Western Sydney University, Narellan Road, Campbelltown NSW 2560, Australia
| | - Zhihui Feng
- Department of Occupational Health and Occupational Medicine, School of Public Health, Cheeloo College of Medicine, Shandong University, 44 Wenhua Xi Road, Shandong, Jinan, 250012, China
| |
Collapse
|
21
|
Liu J, Yang X, Liang Q, Yu Y, Shen X, Sun G. Valproic acid overcomes sorafenib resistance by reducing the migration of Jagged2-mediated Notch1 signaling pathway in hepatocellular carcinoma cells. Int J Biochem Cell Biol 2020; 126:105820. [PMID: 32750425 DOI: 10.1016/j.biocel.2020.105820] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 06/30/2020] [Accepted: 07/29/2020] [Indexed: 12/22/2022]
Abstract
Sorafenib resistance is a classic problem related to the treatment of advanced hepatocellular carcinoma (HCC). There is a recognized need to explore new drug resistance mechanisms and develop novel strategies to overcome the acquired resistance to sorafenib. Although one study has showed that the anti-epileptic drug valproic acid (VPA) could sensitize transforming growth factor-β (TGF-β)-induced sorafenib-resistant HCC cells, it is unclear whether VPA could reverse resistance to long-term clinical treatment with sorafenib. In this study, we successfully established sorafenib-resistant HCC cells by long-term sorafenib exposure. Compared with sensitive HCC cells, the proliferation, anti-apoptotic capability and migration of the sorafenib-resistant cells were enhanced. In addition, we found that VPA combined with sorafenib could overcome drug resistance by downregulating Jagged2-mediated Notch1 signaling pathway and epithelial-mesenchymal transition (EMT)-related proteins. Furthermore, the combination of VPA and sorafenib could obviously increase the sensitivity of drug-resistant cells in vitro and synergistically suppress tumor growth in vivo. These results provided a new insight that the use of VPA in combination with sorafenib was an effective method for clinically solving the problem of sorafenib resistance by modulating the Jagged2-mediated Notch1 signaling pathway and reversing the EMT phenotype.
Collapse
Affiliation(s)
- Jing Liu
- Department of Pharmacy, The Fifth People's Hospital of Shanghai, Fudan University, Shanghai 200240, China
| | - Xu Yang
- Department of Pharmacy, The Fifth People's Hospital of Shanghai, Fudan University, Shanghai 200240, China
| | - Qing Liang
- Department of Pharmacy, The Fifth People's Hospital of Shanghai, Fudan University, Shanghai 200240, China
| | - Yan Yu
- Department of Pharmacy, The Fifth People's Hospital of Shanghai, Fudan University, Shanghai 200240, China
| | - Xiaoying Shen
- Department of Pharmacy, The Fifth People's Hospital of Shanghai, Fudan University, Shanghai 200240, China
| | - Guangchun Sun
- Department of Pharmacy, The Fifth People's Hospital of Shanghai, Fudan University, Shanghai 200240, China.
| |
Collapse
|
22
|
2-hexyl-4-pentynoic acid, a potential therapeutic for breast carcinoma by influencing RPA2 hyperphosphorylation-mediated DNA repair. DNA Repair (Amst) 2020; 95:102940. [PMID: 32795962 DOI: 10.1016/j.dnarep.2020.102940] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 07/19/2020] [Accepted: 07/24/2020] [Indexed: 12/31/2022]
Abstract
Breast carcinoma is one of the most common malignancies in women. Previous studies have reported that 500 μM valproic acid can sensitize breast tumor cells to the anti-neoplastic agent hydroxyurea. However, the dose requirements for valproic acid is highly variable due to the wide inter-individuals clinical characteristics. High therapeutic dose of valproic acid required to induce anti-tumor activity in solid tumor was associated with increased adverse effects. There are attempts to locate suitably high-efficient low-toxicity valproic acid derivatives. We demonstrated that lower dose of 2-hexyl-4-pentynoic acid (HPTA; 15 μM) has similar effects as 500 μM VPA in inhibiting breast cancer cell growth and sensitizing the tumor cells to hydroxyurea on MCF7 cells, EUFA423 cells, MCF7 cells with defective RPA2-p gene and primary culture cells derived from tissue-transformed breast tumor cells. We discovered HPTA resulted in more DNA double-strand breaks, the homologous recombination was inhibited through the interference of the hyperphosphorylation of replication protein A2 and recombinase Rad51. Our data postulate that HPTA may be a potential novel sensitizer to hydroxyurea in the treatment of breast carcinoma.
Collapse
|
23
|
Costa B, Amorim I, Gärtner F, Vale N. Understanding Breast cancer: from conventional therapies to repurposed drugs. Eur J Pharm Sci 2020; 151:105401. [PMID: 32504806 DOI: 10.1016/j.ejps.2020.105401] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 04/22/2020] [Accepted: 05/27/2020] [Indexed: 12/18/2022]
Abstract
Breast cancer is the most common cancer among women and is considered a developed country disease. Moreover, is a heterogenous disease, existing different types and stages of breast cancer development, therefore, better understanding of cancer biology, helps to improve the development of therapies. The conventional treatments accessible after diagnosis, have the main goal of controlling the disease, by improving survival. In more advance stages the aim is to prolong life and symptom palliation care. Surgery, radiation therapy and chemotherapy are the main options available, which must be adapted to each person individually. However, patients are developing resistance to the conventional therapies. This resistance is due to alterations in important regulatory pathways such as PI3K/AKt/mTOR, this pathway contributes to trastuzumab resistance, a reference drug to treat breast cancer. Therefore, is proposed the repurposing of drugs, instead of developing drugs de novo, for example, to seek new medical treatments within the drugs available, to be used in breast cancer treatment. Providing safe and tolerable treatments to patients, and new insights to efficacy and efficiency of breast cancer treatments. The economic and social burden of cancer is enormous so it must be taken measures to relieve this burden and to ensure continued access to therapies to all patients. In this review we focus on how conventional therapies against breast cancer are leading to resistance, by reviewing those mechanisms and discussing the efficacy of repurposed drugs to fight breast cancer.
Collapse
Affiliation(s)
- Bárbara Costa
- Laboratory of Pharmacology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo 228, 4050-313 Porto, Portugal
| | - Irina Amorim
- Department of Molecular Pathology and Immunology, Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Rua Jorge Viterbo 228, Porto, Portugal; Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Rua Júlio Amaral de Carvalho 45, 4200-135 Porto, Portugal; i3S, Instituto de Investigação e Inovação em Saúde, University of Porto, Rua Alfredo Allen, 4200-135 Porto, Portugal
| | - Fátima Gärtner
- Department of Molecular Pathology and Immunology, Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Rua Jorge Viterbo 228, Porto, Portugal; Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Rua Júlio Amaral de Carvalho 45, 4200-135 Porto, Portugal; i3S, Instituto de Investigação e Inovação em Saúde, University of Porto, Rua Alfredo Allen, 4200-135 Porto, Portugal
| | - Nuno Vale
- Laboratory of Pharmacology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo 228, 4050-313 Porto, Portugal; Department of Molecular Pathology and Immunology, Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Rua Jorge Viterbo 228, Porto, Portugal; Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Rua Júlio Amaral de Carvalho 45, 4200-135 Porto, Portugal; i3S, Instituto de Investigação e Inovação em Saúde, University of Porto, Rua Alfredo Allen, 4200-135 Porto, Portugal.
| |
Collapse
|
24
|
Valproic acid promotes the epithelial-to-mesenchymal transition of breast cancer cells through stabilization of Snail and transcriptional upregulation of Zeb1. Eur J Pharmacol 2019; 865:172745. [PMID: 31639340 DOI: 10.1016/j.ejphar.2019.172745] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 10/11/2019] [Accepted: 10/17/2019] [Indexed: 02/07/2023]
Abstract
Histone deacetylases (HDACs) can regulate cancer progression and its inhibitors (HDACIs) have been widely used for cancer therapy. Valproic acid (VPA, 2-propylpentanoic acid) can inhibit the class I HDAC and suppress the malignancy of solid cancers. Our present study revealed that 1 mM VPA, which has no effect on cell proliferation, can significantly increase the migration and induce epithelial to mesenchymal transition (EMT) like properties of breast cancer cells. Further, VPA increased the expression of EMT-transcription factors (EMT-TFs) Snail and Zeb1. Knockdown of Snail and Zeb1 can attenuate VPA induced cell migration and EMT. Mechanistically, VPA increased the protein stability of Snail via suppression its phosphorylation at Ser 11. As to Zeb1, VPA can increase its promoter activity and transcription via a HDAC2 dependent manner. Over expression of HDAC2 can block VPA induced expression of Zeb1. Collectively, our data revealed that VPA can trigger the EMT of breast cancer cells via upregulation of Snail and Zeb1. It indicated that more attention should be paid to the effects of VPA on the clinical therapy of breast cancer.
Collapse
|
25
|
Sargazi S, Kooshkaki O, Zavar Reza J, Saravani R, Zarei Jaliani H, Mirinejad S, Meshkini F. Mild antagonistic effect of Valproic acid in combination with AZD2461 in MCF-7 breast cancer cells. Med J Islam Repub Iran 2019; 33:29. [PMID: 31380319 PMCID: PMC6662678 DOI: 10.34171/mjiri.33.29] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2018] [Indexed: 12/13/2022] Open
Abstract
Background: Breast cancer (BC) is a complex disease, but current treatments are not efficient enough considering increased relapse and decreased survival rate among patients. Poly (ADP-ribose) polymerase inhibitors are recently developed anticancer agents which target cells with defects in homologous recombination (HR) pathway. This study wishes to assess whether the combination of AZD2461 as a newly developed PARP1 inhibitor and valproic acid (VPA), a histone deacetylase inhibitor could effectively reduce the growth of MCF-7 cells with no fundamental DNA repair defect.
Methods: Both trypan blue dye exclusion assay and MTT viability test were used to evaluate cell death. γ-H2AX levels, as a marker of DNA repair, were measured using in cell ELISA method. The Student's t-test and non-parametric analysis of variance (ANOVA) were applied for our data analyses where p-value <0.05 was considered statistically significant.
Results: As calculated by CompuSyn software, IC50 values for VPA and AZD2461 were 4.89 mM and 42.83 µM respectively following 48 hours treatment. Also, the trypan blue exclusion assay results showed a concentration- and time-dependent decrease when MCF-7 cells were treated with both agents (p<0.05). Combination analysis showed a mild antagonism (CI>1.1) while γ-H2AX levels found not to be significantly increased in MCF-7 cells co-treated with VPA+AZD2461 compared to each agent alone (p=0.29).
Conclusion: Our findings revealed that the combination of VPA and AZD2461 could decrease cell viability of MCF-7 cells, but it was not able to significantly increase unrepaired DNA damage sites. The mechanism responsible for drugs combination was not of synergism or addition. Determining the type of involved cell death mechanisms might be followed in further studies.
Collapse
Affiliation(s)
- Saman Sargazi
- Cellular and Molecular Research Center, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Omid Kooshkaki
- Department of Immunology, School of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - Javad Zavar Reza
- Department of Clinical Biochemistry, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Ramin Saravani
- Cellular and Molecular Research Center, Zahedan University of Medical Sciences, Zahedan, Iran.,Department of Clinical Biochemistry, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Hossein Zarei Jaliani
- Protein Engineering Laboratory, Department of Medical Genetics, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Shekoufeh Mirinejad
- Cellular and Molecular Research Center, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Fatemeh Meshkini
- Student Research committee, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| |
Collapse
|
26
|
Ediriweera MK, Tennekoon KH, Samarakoon SR. Emerging role of histone deacetylase inhibitors as anti-breast-cancer agents. Drug Discov Today 2019; 24:685-702. [DOI: 10.1016/j.drudis.2019.02.003] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2018] [Revised: 01/05/2019] [Accepted: 02/12/2019] [Indexed: 12/20/2022]
|
27
|
Shah RR, Stonier PD. Repurposing old drugs in oncology: Opportunities with clinical and regulatory challenges ahead. J Clin Pharm Ther 2018; 44:6-22. [PMID: 30218625 DOI: 10.1111/jcpt.12759] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 08/08/2018] [Accepted: 08/19/2018] [Indexed: 12/11/2022]
Abstract
WHAT IS KNOWN AND OBJECTIVE In order to expedite the availability of drugs to treat cancers in a cost-effective manner, repurposing of old drugs for oncological indications is gathering momentum. Revolutionary advances in pharmacology and genomics have demonstrated many old drugs to have activity at novel antioncogenic pharmacological targets. We decided to investigate whether prospective studies support the promises of nonclinical and retrospective clinical studies on repurposing three old drugs, namely metformin, valproate and astemizole. METHODS We conducted an extensive literature search through PubMed to gather representative nonclinical and retrospective clinical studies that investigated the potential repurposing of these three drugs for oncological indications. We then searched for prospective studies aimed at confirming the promises of retrospective data. RESULTS AND DISCUSSION While evidence from nonclinical and retrospective clinical studies with these drugs appears highly promising, large scale prospective studies are either lacking or have failed to substantiate this promise. We provide a brief discussion of some of the challenges in repurposing. Principal challenges and obstacles relate to heterogeneity of cancers studied without considering their molecular signatures, trials with small sample size and short duration, failure consider issues of ethnicity of study population and effective antioncogenic doses of the drug studied. WHAT IS NEW AND CONCLUSION Well-designed prospective studies demonstrating efficacy are required for repurposing old drugs for oncology indications, just as they are for new chemical entities for any indication. Early and ongoing interactions with regulatory authorities are invaluable. We outline a tentative framework for a structured approach to repurposing old drugs for novel indications in oncology.
Collapse
Affiliation(s)
- Rashmi R Shah
- Pharmaceutical Consultant, Gerrards Cross, Buckinghamshire, UK
| | - Peter D Stonier
- Department of Pharmaceutical Medicine, School of Cancer and Pharmaceutical Sciences, Faculty of Life Sciences and Medicine, King's College, London, UK
| |
Collapse
|
28
|
Valproic acid as an adjunctive therapeutic agent for the treatment of breast cancer. Eur J Pharmacol 2018; 835:61-74. [DOI: 10.1016/j.ejphar.2018.07.057] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 07/27/2018] [Accepted: 07/30/2018] [Indexed: 02/07/2023]
|