1
|
Li N, Wang H, Zou S, Yu X, Li J. Perspective in the Mechanisms for Repairing Sperm DNA Damage. Reprod Sci 2024:10.1007/s43032-024-01714-5. [PMID: 39333437 DOI: 10.1007/s43032-024-01714-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Accepted: 09/23/2024] [Indexed: 09/29/2024]
Abstract
DNA damage in spermatozoa is a major cause of male infertility. It is also associated with adverse reproductive outcomes (including reduced fertilization rates, embryo quality and pregnancy rates, and higher rates of spontaneous miscarriage). The damage to sperm DNA occurs during the production and maturation of spermatozoa, as well as during their transit through the male reproductive tract. DNA damage repair typically occurs during spermatogenesis, oocytes after fertilization, and early embryonic development stages. The known mechanisms of sperm DNA repair mainly include nucleotide excision repair (NER), base excision repair (BER), mismatch repair (MMR), and double-strand break repair (DSBR). The most severe type of sperm DNA damage is double-strand break, and it will be repaired by DSBR, including homologous recombination (HR), classical non-homologous end joining (cNHEJ), alternative end joining (aEJ), and single-strand annealing (SSA). However, the precise mechanisms of DNA repair in spermatozoa remain incompletely understood. DNA repair-associated proteins are of great value in the repair of sperm DNA. Several repair-related proteins have been identified as playing critical roles in condensing chromatin, regulating transcription, repairing DNA damage, and regulating the cell cycle. It is noteworthy that XRCC4-like factor (XLF) and paralog of XRCC4 and XLF (PAXX) -mediated dimerization promote the processing of populated ends for cNHEJ repair, which suggests that XLF and PAXX have potential value in the mechanism of sperm DNA repair. This review summarizes the classic and potential repair mechanisms of sperm DNA damage, aiming to provide a perspective for further research on DNA damage repair mechanisms.
Collapse
Affiliation(s)
- Nihong Li
- Chengdu Fifth People's Hospital, The Fifth People's Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 611130, China
| | - Hong Wang
- Chengdu Fifth People's Hospital, The Fifth People's Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 611130, China
| | - Siying Zou
- Chengdu Fifth People's Hospital, The Fifth People's Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 611130, China
| | - Xujun Yu
- College of Medicine and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Junjun Li
- Chengdu Fifth People's Hospital, The Fifth People's Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 611130, China.
| |
Collapse
|
2
|
Li S, Liu B, Tan M, Juillard F, Szymula A, Álvarez Á, Van Sciver N, George A, Ramachandran A, Raina K, Tumuluri VS, Costa C, Simas J, Kaye K. Kaposi's sarcoma herpesvirus exploits the DNA damage response to circularize its genome. Nucleic Acids Res 2024; 52:1814-1829. [PMID: 38180827 PMCID: PMC10899755 DOI: 10.1093/nar/gkad1224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 12/05/2023] [Accepted: 12/16/2023] [Indexed: 01/07/2024] Open
Abstract
To establish lifelong, latent infection, herpesviruses circularize their linear, double-stranded, DNA genomes through an unknown mechanism. Kaposi's sarcoma (KS) herpesvirus (KSHV), a gamma herpesvirus, is tightly linked with KS, primary effusion lymphoma, and multicentric Castleman's disease. KSHV persists in latently infected cells as a multi-copy, extrachromosomal episome. Here, we show the KSHV genome rapidly circularizes following infection, and viral protein expression is unnecessary for this process. The DNA damage response (DDR) kinases, ATM and DNA-PKcs, each exert roles, and absence of both severely compromises circularization and latency. These deficiencies were rescued by expression of ATM and DNA-PKcs, but not catalytically inactive mutants. In contrast, γH2AX did not function in KSHV circularization. The linear viral genomic ends resemble a DNA double strand break, and non-homologous DNA end joining (NHEJ) and homologous recombination (HR) reporters indicate both NHEJ and HR contribute to KSHV circularization. Last, we show, similar to KSHV, ATM and DNA-PKcs have roles in circularization of the alpha herpesvirus, herpes simplex virus-1 (HSV-1), while γH2AX does not. Therefore, the DDR mediates KSHV and HSV-1 circularization. This strategy may serve as a general herpesvirus mechanism to initiate latency, and its disruption may provide new opportunities for prevention of herpesvirus disease.
Collapse
Affiliation(s)
- Shijun Li
- Departments of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
- Program in Virology, Harvard Medical School, Boston, MA 02115, USA
| | - Bing Liu
- Departments of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
- Program in Virology, Harvard Medical School, Boston, MA 02115, USA
| | - Min Tan
- Departments of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
- Program in Virology, Harvard Medical School, Boston, MA 02115, USA
| | - Franceline Juillard
- Departments of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
- Program in Virology, Harvard Medical School, Boston, MA 02115, USA
| | - Agnieszka Szymula
- Departments of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
- Program in Virology, Harvard Medical School, Boston, MA 02115, USA
| | - Ángel L Álvarez
- Departments of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
- Program in Virology, Harvard Medical School, Boston, MA 02115, USA
| | - Nicholas Van Sciver
- Departments of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
- Program in Virology, Harvard Medical School, Boston, MA 02115, USA
| | - Athira George
- Departments of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
- Program in Virology, Harvard Medical School, Boston, MA 02115, USA
| | - Akshaya Ramachandran
- Departments of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
- Program in Virology, Harvard Medical School, Boston, MA 02115, USA
| | - Komal Raina
- Departments of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
- Program in Virology, Harvard Medical School, Boston, MA 02115, USA
| | - Vinayak Sadasivam Tumuluri
- Departments of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
- Program in Virology, Harvard Medical School, Boston, MA 02115, USA
| | - Catarina N Costa
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Avenida Professor Egas Moniz, 1649-028 Lisboa, Portugal
- Universidade Católica Portuguesa, Católica Medical School, Católica Biomedical Research, Palma de Cima, 1649-023 Lisboa, Portugal
| | - J Pedro Simas
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Avenida Professor Egas Moniz, 1649-028 Lisboa, Portugal
- Universidade Católica Portuguesa, Católica Medical School, Católica Biomedical Research, Palma de Cima, 1649-023 Lisboa, Portugal
| | - Kenneth M Kaye
- Departments of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
- Program in Virology, Harvard Medical School, Boston, MA 02115, USA
- Broad Institute of Harvard University and Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| |
Collapse
|
3
|
Ribeiro JH, Altinisik N, Rajan N, Verslegers M, Baatout S, Gopalakrishnan J, Quintens R. DNA damage and repair: underlying mechanisms leading to microcephaly. Front Cell Dev Biol 2023; 11:1268565. [PMID: 37881689 PMCID: PMC10597653 DOI: 10.3389/fcell.2023.1268565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 09/25/2023] [Indexed: 10/27/2023] Open
Abstract
DNA-damaging agents and endogenous DNA damage constantly harm genome integrity. Under genotoxic stress conditions, the DNA damage response (DDR) machinery is crucial in repairing lesions and preventing mutations in the basic structure of the DNA. Different repair pathways are implicated in the resolution of such lesions. For instance, the non-homologous DNA end joining and homologous recombination pathways are central cellular mechanisms by which eukaryotic cells maintain genome integrity. However, defects in these pathways are often associated with neurological disorders, indicating the pivotal role of DDR in normal brain development. Moreover, the brain is the most sensitive organ affected by DNA-damaging agents compared to other tissues during the prenatal period. The accumulation of lesions is believed to induce cell death, reduce proliferation and premature differentiation of neural stem and progenitor cells, and reduce brain size (microcephaly). Microcephaly is mainly caused by genetic mutations, especially genes encoding proteins involved in centrosomes and DNA repair pathways. However, it can also be induced by exposure to ionizing radiation and intrauterine infections such as the Zika virus. This review explains mammalian cortical development and the major DNA repair pathways that may lead to microcephaly when impaired. Next, we discuss the mechanisms and possible exposures leading to DNA damage and p53 hyperactivation culminating in microcephaly.
Collapse
Affiliation(s)
- Jessica Honorato Ribeiro
- Radiobiology Unit, Belgian Nuclear Research Centre (SCK CEN), Mol, Belgium
- Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Nazlican Altinisik
- Laboratory for Centrosome and Cytoskeleton Biology, Institute of Human Genetics, University Hospital, Heinrich-Heine-Universität, Düsseldorf, Germany
| | - Nicholas Rajan
- Radiobiology Unit, Belgian Nuclear Research Centre (SCK CEN), Mol, Belgium
| | - Mieke Verslegers
- Radiobiology Unit, Belgian Nuclear Research Centre (SCK CEN), Mol, Belgium
| | - Sarah Baatout
- Radiobiology Unit, Belgian Nuclear Research Centre (SCK CEN), Mol, Belgium
- Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Jay Gopalakrishnan
- Laboratory for Centrosome and Cytoskeleton Biology, Institute of Human Genetics, University Hospital, Heinrich-Heine-Universität, Düsseldorf, Germany
| | - Roel Quintens
- Radiobiology Unit, Belgian Nuclear Research Centre (SCK CEN), Mol, Belgium
| |
Collapse
|
4
|
Vogt A, He Y. Structure and mechanism in non-homologous end joining. DNA Repair (Amst) 2023; 130:103547. [PMID: 37556875 PMCID: PMC10528545 DOI: 10.1016/j.dnarep.2023.103547] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 07/26/2023] [Accepted: 07/27/2023] [Indexed: 08/11/2023]
Abstract
DNA double-stranded breaks (DSBs) are a particularly challenging form of DNA damage to repair because the damaged DNA must not only undergo the chemical reactions responsible for returning it to its original state, but, additionally, the two free ends can become physically separated in the nucleus and must be bridged prior to repair. In nonhomologous end joining (NHEJ), one of the major pathways of DSB repair, repair is carried out by a number of repair factors capable of binding to and directly joining DNA ends. It has been unclear how these processes are carried out at a molecular level, owing in part to the lack of structural evidence describing the coordination of the NHEJ factors with each other and a DNA substrate. Advances in cryo-Electron Microscopy (cryo-EM), allowing for the structural characterization of large protein complexes that would be intractable using other techniques, have led to the visualization several key steps of the NHEJ process, which support a model of sequential assembly of repair factors at the DSB, followed by end-bridging mediated by protein-protein complexes and transition to full synapsis. Here we examine the structural evidence for these models, devoting particular attention to recent work identifying a new NHEJ intermediate state and incorporating new NHEJ factors into the general mechanism. We also discuss the evolving understanding of end-bridging mechanisms in NHEJ and DNA-PKcs's role in mediating DSB repair.
Collapse
Affiliation(s)
- Alex Vogt
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, USA; Interdisciplinary Biological Sciences Program, Northwestern University, Evanston, USA
| | - Yuan He
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, USA; Interdisciplinary Biological Sciences Program, Northwestern University, Evanston, USA; Chemistry of Life Processes Institute, Northwestern University, Evanston, IL, USA; Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Northwestern University, Chicago, USA.
| |
Collapse
|
5
|
Seif-El-Dahan M, Kefala-Stavridi A, Frit P, Hardwick SW, Chirgadze DY, Maia De Oliviera T, Britton S, Barboule N, Bossaert M, Pandurangan AP, Meek K, Blundell TL, Ropars V, Calsou P, Charbonnier JB, Chaplin AK. PAXX binding to the NHEJ machinery explains functional redundancy with XLF. SCIENCE ADVANCES 2023; 9:eadg2834. [PMID: 37256950 PMCID: PMC10413649 DOI: 10.1126/sciadv.adg2834] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 04/03/2023] [Indexed: 06/02/2023]
Abstract
Nonhomologous end joining is a critical mechanism that repairs DNA double-strand breaks in human cells. In this work, we address the structural and functional role of the accessory protein PAXX [paralog of x-ray repair cross-complementing protein 4 (XRCC4) and XRCC4-like factor (XLF)] in this mechanism. Here, we report high-resolution cryo-electron microscopy (cryo-EM) and x-ray crystallography structures of the PAXX C-terminal Ku-binding motif bound to Ku70/80 and cryo-EM structures of PAXX bound to two alternate DNA-dependent protein kinase (DNA-PK) end-bridging dimers, mediated by either Ku80 or XLF. We identify residues critical for the Ku70/PAXX interaction in vitro and in cells. We demonstrate that PAXX and XLF can bind simultaneously to the Ku heterodimer and act as structural bridges in alternate forms of DNA-PK dimers. Last, we show that engagement of both proteins provides a complementary advantage for DNA end synapsis and end joining in cells.
Collapse
Affiliation(s)
- Murielle Seif-El-Dahan
- Institute for Integrative Biology of the Cell (I2BC), Institute Joliot, CEA, CNRS, Université Paris-Saclay, 91198 Gif-sur-Yvette cedex, France
| | - Antonia Kefala-Stavridi
- Department of Biochemistry, University of Cambridge, Sanger Building, Tennis Court Road, Cambridge CB2 1GA, UK
| | - Philippe Frit
- Institut de Pharmacologie et Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Steven W. Hardwick
- Cryo-EM Facility, Department of Biochemistry, University of Cambridge, Sanger Building, Tennis Court Road, Cambridge CB2 1GA, UK
| | - Dima Y. Chirgadze
- Cryo-EM Facility, Department of Biochemistry, University of Cambridge, Sanger Building, Tennis Court Road, Cambridge CB2 1GA, UK
| | | | - Sébastien Britton
- Institut de Pharmacologie et Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Nadia Barboule
- Institut de Pharmacologie et Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Madeleine Bossaert
- Institut de Pharmacologie et Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Arun Prasad Pandurangan
- Department of Biochemistry, University of Cambridge, Sanger Building, Tennis Court Road, Cambridge CB2 1GA, UK
| | - Katheryn Meek
- College of Veterinary Medicine, Department of Microbiology & Molecular Genetics, Department of Pathobiology and Diagnostic Investigation, Michigan State University, East Lansing, MI 48824, USA
| | - Tom L. Blundell
- Department of Biochemistry, University of Cambridge, Sanger Building, Tennis Court Road, Cambridge CB2 1GA, UK
| | - Virginie Ropars
- Institute for Integrative Biology of the Cell (I2BC), Institute Joliot, CEA, CNRS, Université Paris-Saclay, 91198 Gif-sur-Yvette cedex, France
| | - Patrick Calsou
- Institut de Pharmacologie et Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Jean-Baptiste Charbonnier
- Institute for Integrative Biology of the Cell (I2BC), Institute Joliot, CEA, CNRS, Université Paris-Saclay, 91198 Gif-sur-Yvette cedex, France
| | - Amanda K. Chaplin
- Leicester Institute for Structural and Chemical Biology, Department of Molecular and Cell Biology, University of Leicester, Leicester, UK
| |
Collapse
|
6
|
DNA double-strand break repair machinery in Penaeid crustaceans: A focus on the Non-Homologous End-Joining pathway. Comp Biochem Physiol B Biochem Mol Biol 2023; 264:110803. [DOI: 10.1016/j.cbpb.2022.110803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 10/19/2022] [Accepted: 10/24/2022] [Indexed: 11/12/2022]
|
7
|
El Nachef L, Berthel E, Ferlazzo ML, Le Reun E, Al-Choboq J, Restier-Verlet J, Granzotto A, Sonzogni L, Bourguignon M, Foray N. Cancer and Radiosensitivity Syndromes: Is Impaired Nuclear ATM Kinase Activity the Primum Movens? Cancers (Basel) 2022; 14:cancers14246141. [PMID: 36551628 PMCID: PMC9776478 DOI: 10.3390/cancers14246141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/01/2022] [Accepted: 12/09/2022] [Indexed: 12/15/2022] Open
Abstract
There are a number of genetic syndromes associated with both high cancer risk and clinical radiosensitivity. However, the link between these two notions remains unknown. Particularly, some cancer syndromes are caused by mutations in genes involved in DNA damage signaling and repair. How are the DNA sequence errors propagated and amplified to cause cell transformation? Conversely, some cancer syndromes are caused by mutations in genes involved in cell cycle checkpoint control. How is misrepaired DNA damage produced? Lastly, certain genes, considered as tumor suppressors, are not involved in DNA damage signaling and repair or in cell cycle checkpoint control. The mechanistic model based on radiation-induced nucleoshuttling of the ATM kinase (RIANS), a major actor of the response to ionizing radiation, may help in providing a unified explanation of the link between cancer proneness and radiosensitivity. In the frame of this model, a given protein may ensure its own specific function but may also play additional biological role(s) as an ATM phosphorylation substrate in cytoplasm. It appears that the mutated proteins that cause the major cancer and radiosensitivity syndromes are all ATM phosphorylation substrates, and they generally localize in the cytoplasm when mutated. The relevance of the RIANS model is discussed by considering different categories of the cancer syndromes.
Collapse
Affiliation(s)
- Laura El Nachef
- Inserm, U1296 Unit, Radiation: Defense, Health and Environment, Centre Léon-Bérard, 69008 Lyon, France
| | - Elise Berthel
- Inserm, U1296 Unit, Radiation: Defense, Health and Environment, Centre Léon-Bérard, 69008 Lyon, France
| | - Mélanie L. Ferlazzo
- Inserm, U1296 Unit, Radiation: Defense, Health and Environment, Centre Léon-Bérard, 69008 Lyon, France
| | - Eymeric Le Reun
- Inserm, U1296 Unit, Radiation: Defense, Health and Environment, Centre Léon-Bérard, 69008 Lyon, France
| | - Joelle Al-Choboq
- Inserm, U1296 Unit, Radiation: Defense, Health and Environment, Centre Léon-Bérard, 69008 Lyon, France
| | - Juliette Restier-Verlet
- Inserm, U1296 Unit, Radiation: Defense, Health and Environment, Centre Léon-Bérard, 69008 Lyon, France
| | - Adeline Granzotto
- Inserm, U1296 Unit, Radiation: Defense, Health and Environment, Centre Léon-Bérard, 69008 Lyon, France
| | - Laurène Sonzogni
- Inserm, U1296 Unit, Radiation: Defense, Health and Environment, Centre Léon-Bérard, 69008 Lyon, France
| | - Michel Bourguignon
- Inserm, U1296 Unit, Radiation: Defense, Health and Environment, Centre Léon-Bérard, 69008 Lyon, France
- Department of Biophysics and Nuclear Medicine, Université Paris Saclay (UVSQ), 78035 Versailles, France
| | - Nicolas Foray
- Inserm, U1296 Unit, Radiation: Defense, Health and Environment, Centre Léon-Bérard, 69008 Lyon, France
- Correspondence: ; Tel.: +33-04-7878-2828
| |
Collapse
|
8
|
Guo Y, Hu H, Xu S, Xia W, Li H. Useful genes for predicting the efficacy of transarterial chemoembolization in hepatocellular carcinoma. J Cancer Res Ther 2022; 18:1860-1866. [PMID: 36647943 DOI: 10.4103/jcrt.jcrt_1479_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Transarterial chemoembolization (TACE) is generally used to treat patients with hepatocellular carcinoma (HCC), a common and deadly cancer; however, its efficacy varies according to factors such as tumor volume, stage, serum alpha-fetoprotein level, and chosen feeding artery. In addition, gene-related factors have been recently suggested to be involved in the regulation and prediction of TACE outcomes. Accordingly, genes could serve as effective biomarkers to select patients who can benefit from TACE. These gene-related factors can activate signaling pathways affecting cancer cell survival while regulating the epithelial-mesenchymal transition, angiogenesis, and the tumor microenvironment, all directly associated with tumor progression, thereby affecting TACE efficacy. Moreover, this disordered gene expression is associated with poor prognosis in patients with HCC, including TACE resistance, postoperative recurrence, and metastasis. To identify the exact relationship between various genes and TACE efficacy, this review summarizes the involvement of protein-coding and non-coding genes and single nucleotide polymorphisms in TACE efficacy for predicting the efficacy of TACE; the present findings may help improve the efficacy of TACE in clinical settings.
Collapse
Affiliation(s)
- Yuan Guo
- Department of Minimal Invasive Intervention, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
| | - Hongtao Hu
- Department of Minimal Invasive Intervention, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
| | - Shijun Xu
- Department of Radiology, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
| | - Weili Xia
- Department of Minimal Invasive Intervention, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
| | - Hailiang Li
- Department of Minimal Invasive Intervention, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
| |
Collapse
|
9
|
Liu JY, Zou T, Yin JY, Wang Z, Liu C, Huang HX, Ding FX, Lei MR, Wang Y, Liu M, Liu ZQ, Tan LM, Chen J. Genetic Variants in Double-Strand Break Repair Pathway Genes to Predict Platinum-Based Chemotherapy Prognosis in Patients With Lung Cancer. Front Pharmacol 2022; 13:915822. [PMID: 35899106 PMCID: PMC9309806 DOI: 10.3389/fphar.2022.915822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 05/30/2022] [Indexed: 11/21/2022] Open
Abstract
Objective: The purpose of this study was to investigate the associations of genetic variants in double-strand break (DSB) repair pathway genes with prognosis in patients with lung cancer treated with platinum-based chemotherapy. Methods: Three hundred ninety-nine patients with lung cancer who received platinum-based chemotherapy for at least two cycles were included in this study. A total of 35 single nucleotide polymorphisms (SNPs) in DSB repair, base excision repair (BER), and nucleotide excision repair (NER) repair pathway genes were genotyped, and were used to evaluate the overall survival (OS) and the progression-free survival (PFS) of patients who received platinum-based chemotherapy using Cox proportional hazard models. Results: The PFS of patients who carried the MAD2L2 rs746218 GG genotype was shorter than that in patients with the AG or AA genotypes (recessive model: p = 0.039, OR = 5.31, 95% CI = 1.09–25.93). Patients with the TT or GT genotypes of TNFRSF1A rs4149570 had shorter OS times than those with the GG genotype (dominant model: p = 0.030, OR = 0.57, 95% CI = 0.34–0.95). We also investigated the influence of age, gender, histology, smoking, stage, and metastasis in association between SNPs and OS or PFS in patients with lung cancer. DNA repair gene SNPs were significantly associated with PFS and OS in the subgroup analyses. Conclusion: Our study showed that variants in MAD2L2 rs746218 and TNFRSF1A rs4149570 were associated with shorter PFS or OS in patients with lung cancer who received platinum-based chemotherapy. These variants may be novel biomarkers for the prediction of prognosis of patients with lung cancer who receive platinum-based chemotherapy.
Collapse
Affiliation(s)
- Jun-Yan Liu
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, China
| | - Ting Zou
- National Institution of Drug Clinical Trial, Xiangya Hospital, Central South University, Changsha, China
| | - Ji-Ye Yin
- Departments of Clinical Pharmacology, Xinagya Hospital, Central South University, Changsha, China
- Institute of Clinical Pharmacology and Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha, China
| | - Zhan Wang
- Lung Cancer and Gastrointestinal Unit, Department of Medical Oncology, Hunan Cancer Hospital, Affiliated Cancer Hospital of Xiangya School of Medicine, Changsha, China
| | - Chong Liu
- Institute of Clinical Pharmacology and Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha, China
| | - Han-Xue Huang
- Institute of Clinical Pharmacology and Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha, China
| | - Fei-Xiang Ding
- Institute of Clinical Pharmacology and Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha, China
| | - Meng-Rong Lei
- Institute of Clinical Pharmacology and Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha, China
| | - Ying Wang
- Hunan Clinical Research Center in Gynecologic Cancer, Hunan Cancer Hospital, Affiliated Cancer Hospital of Xiangya School of Medicine, Changsha, China
| | - Min Liu
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China
| | - Zhao-Qian Liu
- National Institution of Drug Clinical Trial, Xiangya Hospital, Central South University, Changsha, China
- Departments of Clinical Pharmacology, Xinagya Hospital, Central South University, Changsha, China
| | - Li-Ming Tan
- Department of Pharmacy, The Second People's Hospital of Huaihua City, Huaihua, China
| | - Juan Chen
- Department of Pharmacy, Xinagya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
10
|
Jamee M, Khakbazan Fard N, Fallah S, Golchehre Z, Fallahi M, Shamsian BS, Sharafian S, Chavoshzadeh Z. Cernunnos defect in an Iranian patient with T - B + NK + severe combined immunodeficiency: A case report and review of the literature. Mol Genet Genomic Med 2022; 10:e1990. [PMID: 35656589 PMCID: PMC9356558 DOI: 10.1002/mgg3.1990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 05/09/2022] [Accepted: 05/12/2022] [Indexed: 12/02/2022] Open
Abstract
Background Defective Cernunnos gene in nonhomologous end‐joining (NHEJ) pathway of the DNA repair is responsible for radiosensitive severe combined immunodeficiency (SCID). Herein, presented a new patient with Cernunnos deficiency and summarized the clinical, immunological, and molecular features of reported patients in the literature. Case The patient was a 6‐month‐old female born to consanguineous parents. She presented with long‐lasting fever, diarrhea, poor feeding, and restlessness. She had suffered from recurrent fever of unknown origin and multiple episodes of oral candidiasis. In the physical examination, microcephaly, failure to thrive, oral candidiasis, pustular rash on fingers, and perianal ulcers, but no dysmorphic feature were observed. The immunologic workup revealed lymphopenia, neutropenia, normocytic anemia, low T‐ but normal B‐ and natural killer (NK)‐ cells, low immunoglobulin (Ig)G, and normal IgA, IgM, and IgE. The T‐cell receptor excision circle (TREC) was low and the lymphocyte transformation test (LTT) was abnormal to mitogens and antigens. She was diagnosed with T− B+ NK+ SCID and improved by intravenous immunoglobulin along with antimicrobials. A homozygous splice site variant, c.390 + 1G > T, at the intron 3 of the NHEJ1, was identified and the diagnosis of Cernunnos deficiency was established. However, while a candidate for hematopoietic stem cell transplantation, she developed sepsis and died at 11 months of age. Conclusions Cernunnos deficiency should be considered as a differential diagnosis in patients with microcephaly, growth retardation, recurrent infections, T‐cell defects, and hypogammaglobulinemia. The normal B‐cell level in the index patient is an unexpected finding in Cernunnos deficiency which requires further evaluation.
Collapse
Affiliation(s)
- Mahnaz Jamee
- Pediatric Nephrology Research Center, Research Institute for Children's Health, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Immunology and Allergy Department, Mofid Children's Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Nasrin Khakbazan Fard
- Immunology and Allergy Department, Mofid Children's Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Shahrzad Fallah
- Immunology and Allergy Department, Mofid Children's Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zahra Golchehre
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mazdak Fallahi
- Immunology and Allergy Department, Mofid Children's Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Bibi Shahin Shamsian
- Pediatric Congenital Hematologic Disorders Research Center, Research Institute for Children's Health, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Samin Sharafian
- Immunology and Allergy Department, Mofid Children's Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zahra Chavoshzadeh
- Immunology and Allergy Department, Mofid Children's Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
11
|
Koike M, Yutoku Y, Koike A. Feline XRCC4 undergoes rapid Ku-dependent recruitment to DNA damage sites. FEBS Open Bio 2022; 12:798-810. [PMID: 35000298 PMCID: PMC8972062 DOI: 10.1002/2211-5463.13363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 11/30/2021] [Accepted: 01/07/2022] [Indexed: 11/16/2022] Open
Abstract
Radiation and chemotherapy resistance remain some of the greatest challenges in human and veterinary cancer therapies. XRCC4, an essential molecule for nonhomologous end joining repair, is a promising target for radiosensitizers. Genetic variants and mutations of XRCC4 contribute to cancer susceptibility, and XRCC4 is also the causative gene of microcephalic primordial dwarfism (MPD) in humans. The development of clinically effective molecular‐targeted drugs requires accurate understanding of the functions and regulatory mechanisms of XRCC4. In this study, we cloned and sequenced the cDNA of feline XRCC4. Comparative analysis indicated that sequences and post‐translational modification sites that are predicted to be involved in regulating the localization of human XRCC4, including the nuclear localization signal, are mostly conserved in feline XRCC4. All examined target amino acids responsible for human MPD are completely conserved in feline XRCC4. Furthermore, we found that the localization of feline XRCC4 dynamically changes during the cell cycle. Soon after irradiation, feline XRCC4 accumulated at laser‐induced DNA double‐strand break (DSB) sites in both the interphase and mitotic phase, and this accumulation was dependent on the presence of Ku. Additionally, XRCC4 superfamily proteins XLF and PAXX accumulated at the DSB sites. Collectively, these findings suggest that mechanisms regulating the spatiotemporal localization of XRCC4 are crucial for XRCC4 function in humans and cats. Our findings contribute to elucidating the functions of XRCC4 and the role of abnormal XRCC4 in diseases, including cancers and MPD, and may help in developing XRCC4‐targeted drugs, such as radiosensitizers, for humans and cats.
Collapse
Affiliation(s)
- Manabu Koike
- Institute for Quantum Medical Science, National Institutes for Quantum and Radiological Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba, 263-8555, Japan.,Department of Regulatory Biology, Faculty of Science, Saitama University, Saitama, Saitama, 338-8570, Japan
| | - Yasutomo Yutoku
- Institute for Quantum Medical Science, National Institutes for Quantum and Radiological Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba, 263-8555, Japan
| | - Aki Koike
- Institute for Quantum Medical Science, National Institutes for Quantum and Radiological Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba, 263-8555, Japan
| |
Collapse
|
12
|
Frizinsky S, Rechavi E, Barel O, Lee YN, Simon AJ, Lev A, Stauber T, Adam E, Somech R. Novel NHEJ1 pathogenic variant linked to severe combined immunodeficiency, microcephaly, and abnormal T and B cell receptor repertoires. Front Pediatr 2022; 10:883173. [PMID: 35967585 PMCID: PMC9363661 DOI: 10.3389/fped.2022.883173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 06/22/2022] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND During the process of generating diverse T and B cell receptor (TCR and BCR, respectively) repertoires, double-strand DNA breaks are produced. Subsequently, these breaks are corrected by a complex system led by the non-homologous end-joining (NHEJ). Pathogenic variants in genes involved in this process, such as the NHEJ1 gene, cause severe combined immunodeficiency syndrome (SCID) along with neurodevelopmental disease and sensitivity to ionizing radiation. OBJECTIVE To provide new clinical and immunological insights on NHEJ1 deficiency arising from a newly diagnosed patient with severe immunodeficiency. MATERIALS AND METHODS A male infant, born to consanguineous parents, suspected of having primary immunodeficiency underwent immunological and genetic workup. This included a thorough assessment of T cell phenotyping and lymphocyte activation by mitogen stimulation tests, whole-exome sequencing (WES), TCR repertoire Vβ repertoire via flow cytometry analysis, and TCR and BCR repertoire analysis via next-generation sequencing (NGS). RESULTS Clinical findings included microcephaly, recurrent pneumonia, and failure to thrive. An immune workup revealed lymphopenia, reduced T cell function, and hypogammaglobulinemia. Skewed TCR Vβ repertoire, TCR gamma (TRG) repertoire, and BCR repertoire were determined in the patient. Genetic analysis identified a novel homozygous missense pathogenic variant in XLF/Cernunnos: c.A580Ins.T; p.M194fs. The patient underwent a successful hematopoietic stem cell transplantation (HSCT). CONCLUSION A novel NHEJ1 pathogenic variant is reported in a patient who presented with SCID phenotype that displayed clonally expanded T and B cells. An adjusted HSCT was safe to ensure full T cell immune reconstitution.
Collapse
Affiliation(s)
- Shirly Frizinsky
- Pediatric Department A and the Immunology Service, Jeffrey Modell Foundation Center, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Ramat Gan, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Erez Rechavi
- Pediatric Department A and the Immunology Service, Jeffrey Modell Foundation Center, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Ramat Gan, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Ortal Barel
- The Wohl Institute for Translational Medicine and Cancer Research Center, Sheba Medical Center, Ramat Gan, Israel
| | - Yu Nee Lee
- Pediatric Department A and the Immunology Service, Jeffrey Modell Foundation Center, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Ramat Gan, Israel.,The Wohl Institute for Translational Medicine and Cancer Research Center, Sheba Medical Center, Ramat Gan, Israel
| | - Amos J Simon
- Pediatric Department A and the Immunology Service, Jeffrey Modell Foundation Center, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Ramat Gan, Israel.,The Wohl Institute for Translational Medicine and Cancer Research Center, Sheba Medical Center, Ramat Gan, Israel
| | - Atar Lev
- Pediatric Department A and the Immunology Service, Jeffrey Modell Foundation Center, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Ramat Gan, Israel.,The Wohl Institute for Translational Medicine and Cancer Research Center, Sheba Medical Center, Ramat Gan, Israel
| | - Tali Stauber
- Pediatric Department A and the Immunology Service, Jeffrey Modell Foundation Center, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Ramat Gan, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.,The Wohl Institute for Translational Medicine and Cancer Research Center, Sheba Medical Center, Ramat Gan, Israel
| | - Etai Adam
- Department of Pediatric Hematology, Oncology and Bone Marrow Transplant, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Ramat Gan, Israel
| | - Raz Somech
- Pediatric Department A and the Immunology Service, Jeffrey Modell Foundation Center, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Ramat Gan, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.,The Wohl Institute for Translational Medicine and Cancer Research Center, Sheba Medical Center, Ramat Gan, Israel
| |
Collapse
|
13
|
Li G, Yang X, Wang L, Pan Y, Chen S, Shang L, Zhang Y, Wu Y, Zhou Z, Chen Q, Zhang X, Zhang L, Wang Y, Li J, Jin L, Wu Y, Zhang X, Zhang F. Haploinsufficiency in non-homologous end joining factor 1 induces ovarian dysfunction in humans and mice. J Med Genet 2021; 59:579-588. [PMID: 33888552 DOI: 10.1136/jmedgenet-2020-107398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 02/16/2021] [Accepted: 03/18/2021] [Indexed: 11/03/2022]
Abstract
BACKGROUND Premature ovarian insufficiency (POI) is a common disease in women that leads to a reduced reproductive lifespan. The aetiology of POI is genetically heterogeneous, with certain double-strand break (DSB) repair genes being implicated in POI. Although non-homologous end joining (NHEJ) is an efficient DSB repair pathway, the functional relationship between this pathway and POI remains unknown. METHODS AND RESULTS We conducted whole-exome sequencing in a Chinese family and identified a rare heterozygous loss-of-function variant in non-homologous end joining factor 1 (NHEJ1): c.532C>T (p.R178*), which co-segregated with POI and irregular menstruation. The amount of NHEJ1 protein in the proband was half of the normal level, indicating a link between NHEJ1 haploinsufficiency and POI. Furthermore, another rare heterozygous NHEJ1 variant c.500A>G (p.Y167C) was identified in one of 100 sporadic POI cases. Both variants were predicted to be deleterious by multiple in silico tools. In vitro assays showed that knock-down of NHEJ1 in human KGN ovarian cells impaired DNA repair capacity. We also generated a knock-in mouse model with a heterozygous Nhej1 variant equivalent to NHEJ1 p.R178* in familial patients. Compared with wild-type mice, heterozygous Nhej1-mutated female mice required a longer time to first birth, and displayed reduced numbers of primordial and growing follicles. Moreover, these mice exhibited higher sensitivity to DSB-inducing drugs. All these phenotypes are analogous to the progressive loss of ovarian function observed in POI. CONCLUSIONS Our observations in both humans and mice suggest that NHEJ1 haploinsufficiency is associated with non-syndromic POI, providing novel insights into genetic counselling and clinical prevention of POI.
Collapse
Affiliation(s)
- Guoqing Li
- Obstetrics and Gynecology Hospital, NHC Key Laboratory of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), State Key Laboratory of Genetic Engineering at School of Life Sciences, Institute of Metabolism and Integrative Biology, Fudan University, Shanghai, China
| | - Xi Yang
- Obstetrics and Gynecology Hospital, NHC Key Laboratory of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), State Key Laboratory of Genetic Engineering at School of Life Sciences, Institute of Metabolism and Integrative Biology, Fudan University, Shanghai, China
| | - Lingbo Wang
- Obstetrics and Gynecology Hospital, NHC Key Laboratory of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), State Key Laboratory of Genetic Engineering at School of Life Sciences, Institute of Metabolism and Integrative Biology, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, China
| | - Yuncheng Pan
- Obstetrics and Gynecology Hospital, NHC Key Laboratory of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), State Key Laboratory of Genetic Engineering at School of Life Sciences, Institute of Metabolism and Integrative Biology, Fudan University, Shanghai, China
| | - Siyuan Chen
- Obstetrics and Gynecology Hospital, NHC Key Laboratory of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), State Key Laboratory of Genetic Engineering at School of Life Sciences, Institute of Metabolism and Integrative Biology, Fudan University, Shanghai, China
| | - Lingyue Shang
- Obstetrics and Gynecology Hospital, NHC Key Laboratory of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), State Key Laboratory of Genetic Engineering at School of Life Sciences, Institute of Metabolism and Integrative Biology, Fudan University, Shanghai, China
| | - Yicheng Zhang
- Obstetrics and Gynecology Hospital, NHC Key Laboratory of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), State Key Laboratory of Genetic Engineering at School of Life Sciences, Institute of Metabolism and Integrative Biology, Fudan University, Shanghai, China
| | - Yucheng Wu
- Obstetrics and Gynecology Hospital, NHC Key Laboratory of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), State Key Laboratory of Genetic Engineering at School of Life Sciences, Institute of Metabolism and Integrative Biology, Fudan University, Shanghai, China
| | - Zixue Zhou
- Obstetrics and Gynecology Hospital, NHC Key Laboratory of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), State Key Laboratory of Genetic Engineering at School of Life Sciences, Institute of Metabolism and Integrative Biology, Fudan University, Shanghai, China
| | - Qing Chen
- Obstetrics and Gynecology Hospital, NHC Key Laboratory of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), State Key Laboratory of Genetic Engineering at School of Life Sciences, Institute of Metabolism and Integrative Biology, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, China
| | - Xue Zhang
- Obstetrics and Gynecology Hospital, NHC Key Laboratory of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), State Key Laboratory of Genetic Engineering at School of Life Sciences, Institute of Metabolism and Integrative Biology, Fudan University, Shanghai, China
| | - Ling Zhang
- Obstetrics and Gynecology Hospital, NHC Key Laboratory of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), State Key Laboratory of Genetic Engineering at School of Life Sciences, Institute of Metabolism and Integrative Biology, Fudan University, Shanghai, China
| | - Yingchen Wang
- Obstetrics and Gynecology Hospital, NHC Key Laboratory of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), State Key Laboratory of Genetic Engineering at School of Life Sciences, Institute of Metabolism and Integrative Biology, Fudan University, Shanghai, China
| | - Jinsong Li
- State Key Laboratory of Cell Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Li Jin
- Obstetrics and Gynecology Hospital, NHC Key Laboratory of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), State Key Laboratory of Genetic Engineering at School of Life Sciences, Institute of Metabolism and Integrative Biology, Fudan University, Shanghai, China
| | - Yanhua Wu
- Obstetrics and Gynecology Hospital, NHC Key Laboratory of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), State Key Laboratory of Genetic Engineering at School of Life Sciences, Institute of Metabolism and Integrative Biology, Fudan University, Shanghai, China .,Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, China.,National Demonstration Center for Experimental Biology Education, School of Life Sciences, Fudan University, Shanghai, China
| | - Xiaojin Zhang
- Obstetrics and Gynecology Hospital, NHC Key Laboratory of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), State Key Laboratory of Genetic Engineering at School of Life Sciences, Institute of Metabolism and Integrative Biology, Fudan University, Shanghai, China .,Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, China
| | - Feng Zhang
- Obstetrics and Gynecology Hospital, NHC Key Laboratory of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), State Key Laboratory of Genetic Engineering at School of Life Sciences, Institute of Metabolism and Integrative Biology, Fudan University, Shanghai, China .,Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, China
| |
Collapse
|
14
|
Smolinska A, Swoboda J, Fendler W, Lerch MM, Sendler M, Moskwa P. MiR-502 is the first reported miRNA simultaneously targeting two components of the classical non-homologous end joining (C-NHEJ) in pancreatic cell lines. Heliyon 2020; 6:e03187. [PMID: 32042960 PMCID: PMC7002776 DOI: 10.1016/j.heliyon.2020.e03187] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 11/22/2019] [Accepted: 01/06/2020] [Indexed: 12/13/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the deadliest cancers. Acquired inherited and/or somatic mutations drive its development. In order to prevent the formation of these mutations, precise and immediate repair of any DNA damage is indispensable. Non-homologous end-joining (NHEJ) is the key mechanism of DNA double-strand break repair. Here, we report that miR-502 targets two components in pancreatic cell lines, Ku70 and XLF of the C-NHEJ. Interestingly, we also observed an attenuated cell cycle response to gamma ionizing radiation (γ-IR) via diminished phosphorylation of checkpoint kinase 1 (Chk1) on serine 345 in these cell lines. Altogether, pancreatic cells showed increased susceptibility to γ-IR via direct inhibition of DNA double-strand break repair and attenuation of the cell cycle response.
Collapse
Affiliation(s)
- Agnieszka Smolinska
- University Medicine Greifswald, Department of Internal Medicine A, Greifswald, Germany
| | - Julia Swoboda
- University Medicine Greifswald, Department of Internal Medicine A, Greifswald, Germany
| | - Wojciech Fendler
- Department of Biostatistics and Translational Medicine, Medical University of Lodz, Lodz, Poland.,Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Markus M Lerch
- University Medicine Greifswald, Department of Internal Medicine A, Greifswald, Germany
| | - Matthias Sendler
- University Medicine Greifswald, Department of Internal Medicine A, Greifswald, Germany
| | - Patryk Moskwa
- University Medicine Greifswald, Department of Internal Medicine A, Greifswald, Germany
| |
Collapse
|
15
|
Cui Y, Dong H, Ma Y, Zhang D. Strategies for Applying Nonhomologous End Joining-Mediated Genome Editing in Prokaryotes. ACS Synth Biol 2019; 8:2194-2202. [PMID: 31525995 DOI: 10.1021/acssynbio.9b00179] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The emergence of genome editing technology based on the CRISPR/Cas system enabled revolutionary progress in genetic engineering. Double-strand breaks (DSBs), which can be induced by the CRISPR/Cas9 system, cause serious DNA damage that can be repaired by a homologous recombination (HR) system or the nonhomologous end joining (NHEJ) pathway. However, many bacterial species have a very weak HR system. Thus, the NHEJ pathway can be used in prokaryotes. Starting with a brief introduction of the mechanism of the NHEJ pathway, this review focuses on current research and details of applications of NHEJ in eukaryotes, which forms the theoretical basis for the application of the NHEJ system in prokaryotes.
Collapse
|
16
|
Gonzalez-Rodriguez Y, Bunting SF. XLF extends its range from DNA repair to replication. J Cell Biol 2019; 218:2075-2076. [PMID: 31189608 PMCID: PMC6605802 DOI: 10.1083/jcb.201905221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
The close interplay between DNA replication and repair is underscored by a report from Chen et al. (2019. J. Cell Biol. https://doi.org/10.1083/jcb.201808134) in this issue. The authors demonstrate that the non-homologous end-joining factor XLF promotes the stability of replication forks.
Collapse
Affiliation(s)
- Yanira Gonzalez-Rodriguez
- Department of Molecular Biology and Biochemistry, Rutgers, The State University of New Jersey, Piscataway, NJ
| | - Samuel F Bunting
- Department of Molecular Biology and Biochemistry, Rutgers, The State University of New Jersey, Piscataway, NJ
| |
Collapse
|
17
|
Koike M, Yutoku Y, Koike A. Feline XLF accumulates at DNA damage sites in a Ku-dependent manner. FEBS Open Bio 2019; 9:1052-1062. [PMID: 31115163 PMCID: PMC6551493 DOI: 10.1002/2211-5463.12589] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 12/14/2018] [Accepted: 01/02/2019] [Indexed: 11/05/2022] Open
Abstract
Resistance to radiotherapy and chemotherapy is a common problem in the treatment of cancer in humans and companion animals, including cats. There is thus an urgent need to develop new treatments. Molecularly targeted therapies hold the promise of high specificity and significant cancer‐killing effects. Accumulating evidence shows that DNA double‐strand break (DSB) repair proteins, which function in Ku‐dependent non‐homologous DNA‐end joining (NHEJ), are potential target molecules for next‐generation cancer therapies. Although cancer radioresistance in cats has been previously described, there are no reports on feline Ku‐dependent NHEJ. Here, we cloned and sequenced feline XLFcDNA and characterized X‐ray repair cross‐complementing protein 4‐like factor (XLF), which is one of the core NHEJ proteins. We demonstrated that feline XLF localizes to the nuclei of feline cells and that feline XLF immediately accumulates at laser‐induced DSB sites in a Ku‐dependent manner. Amino acid sequence alignment analysis showed that feline XLF has only 80.9% identity with human XLF protein, while the predicted nuclear localization signal and putative 14‐3‐3‐binding motif are perfectly conserved among human, cat, dog, chimpanzee, and mouse. These findings are consistent with the hypothesis that regulation of subcellular localization is important for the function of XLF. Furthermore, these findings may be useful in clarifying the mechanisms underlying feline Ku‐dependent DSB repair and feline cell radioresistance, and possibly facilitate the development of new molecularly targeted therapies that target common proteins in human and feline cancers.
Collapse
Affiliation(s)
- Manabu Koike
- National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Yasutomo Yutoku
- National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Aki Koike
- National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| |
Collapse
|
18
|
Mechanistic modelling supports entwined rather than exclusively competitive DNA double-strand break repair pathway. Sci Rep 2019; 9:6359. [PMID: 31015540 PMCID: PMC6478946 DOI: 10.1038/s41598-019-42901-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2019] [Accepted: 04/04/2019] [Indexed: 02/01/2023] Open
Abstract
Following radiation induced DNA damage, several repair pathways are activated to help preserve genome integrity. Double Strand Breaks (DSBs), which are highly toxic, have specified repair pathways to address them. The main repair pathways used to resolve DSBs are Non-Homologous End Joining (NHEJ) and Homologous Recombination (HR). Cell cycle phase determines the availability of HR, but the repair choice between pathways in the G2 phases where both HR and NHEJ can operate is not clearly understood. This study compares several in silico models of repair choice to experimental data published in the literature, each model representing a different possible scenario describing how repair choice takes place. Competitive only scenarios, where initial protein recruitment determines repair choice, are unable to fit the literature data. In contrast, the scenario which uses a more entwined relationship between NHEJ and HR, incorporating protein co-localisation and RNF138-dependent removal of the Ku/DNA-PK complex, is better able to predict levels of repair similar to the experimental data. Furthermore, this study concludes that co-localisation of the Mre11-Rad50-Nbs1 (MRN) complexes, with initial NHEJ proteins must be modeled to accurately depict repair choice.
Collapse
|
19
|
Plugged into the Ku-DNA hub: The NHEJ network. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2019; 147:62-76. [PMID: 30851288 DOI: 10.1016/j.pbiomolbio.2019.03.001] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 02/26/2019] [Accepted: 03/01/2019] [Indexed: 12/16/2022]
Abstract
In vertebrates, double-strand breaks in DNA are primarily repaired by Non-Homologous End-Joining (NHEJ). The ring-shaped Ku heterodimer rapidly senses and threads onto broken DNA ends forming a recruiting hub. Through protein-protein contacts eventually reinforced by protein-DNA interactions, the Ku-DNA hub attracts a series of specialized proteins with scaffolding and/or enzymatic properties. To shed light on these dynamic interplays, we review here current knowledge on proteins directly interacting with Ku and on the contact points involved, with a particular accent on the different classes of Ku-binding motifs identified in several Ku partners. An integrated structural model of the core NHEJ network at the synapsis step is proposed.
Collapse
|
20
|
Recio MJ, Dominguez-Pinilla N, Perrig MS, Rodriguez Vigil-Iturrate C, Salmón-Rodriguez N, Martinez Faci C, Castro-Panete MJ, Blas-Espada J, López-Nevado M, Ruiz-Garcia R, Chaparro-García R, Allende LM, Gonzalez-Granado LI. Extreme Phenotypes With Identical Mutations: Two Patients With Same Non-sense NHEJ1 Homozygous Mutation. Front Immunol 2019; 9:2959. [PMID: 30666249 PMCID: PMC6330288 DOI: 10.3389/fimmu.2018.02959] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Accepted: 11/30/2018] [Indexed: 12/22/2022] Open
Abstract
Cernunnos/XLF deficiency is a rare primary immunodeficiency classified within the DNA repair defects. Patients present with severe growth retardation, microcephaly, lymphopenia and increased cellular sensitivity to ionizing radiation. Here, we describe two unrelated cases with the same non-sense mutation in the NHEJ1 gene showing significant differences in clinical presentation and immunological profile but a similar DNA repair defect.
Collapse
Affiliation(s)
- Maria J Recio
- Department of Immunology, Ophthalmology and ENT, School of Medicine, Complutense University, 12 de Octubre Health Research Institute (imas12), Madrid, Spain.,Hospital 12 de Octubre Health Research Institute (imas12), Madrid, Spain
| | - Nerea Dominguez-Pinilla
- Hospital 12 de Octubre Health Research Institute (imas12), Madrid, Spain.,Pediatric Hematology and Oncology Unit, University Hospital Virgen de la Salud, Toledo, Spain
| | - Melina Soledad Perrig
- Department of Immunology, Ophthalmology and ENT, School of Medicine, Complutense University, 12 de Octubre Health Research Institute (imas12), Madrid, Spain.,Hospital 12 de Octubre Health Research Institute (imas12), Madrid, Spain
| | | | - Nerea Salmón-Rodriguez
- Hospital 12 de Octubre Health Research Institute (imas12), Madrid, Spain.,Immunodeficiencies Unit, Pediatrics, University Hospital 12 octubre, Madrid, Spain.,Complutense University School of Medicine, Madrid, Spain
| | - Cristina Martinez Faci
- Pediatric Hematology and Oncology Unit, University Hospital Miguel Servet, Zaragoza, Spain
| | | | - Javier Blas-Espada
- Hospital 12 de Octubre Health Research Institute (imas12), Madrid, Spain.,Department of Immunology, University Hospital 12 Octubre, Madrid, Spain
| | - Marta López-Nevado
- Hospital 12 de Octubre Health Research Institute (imas12), Madrid, Spain.,Department of Immunology, University Hospital 12 Octubre, Madrid, Spain
| | - Raquel Ruiz-Garcia
- Hospital 12 de Octubre Health Research Institute (imas12), Madrid, Spain.,Department of Immunology, University Hospital 12 Octubre, Madrid, Spain
| | - Rebeca Chaparro-García
- Department of Immunology, Ophthalmology and ENT, School of Medicine, Complutense University, 12 de Octubre Health Research Institute (imas12), Madrid, Spain
| | - Luis M Allende
- Hospital 12 de Octubre Health Research Institute (imas12), Madrid, Spain.,Department of Immunology, University Hospital 12 Octubre, Madrid, Spain
| | - Luis Ignacio Gonzalez-Granado
- Hospital 12 de Octubre Health Research Institute (imas12), Madrid, Spain.,Immunodeficiencies Unit, Pediatrics, University Hospital 12 octubre, Madrid, Spain.,Complutense University School of Medicine, Madrid, Spain
| |
Collapse
|
21
|
Genomic and transcriptomic landscapes of Epstein-Barr virus in extranodal natural killer T-cell lymphoma. Leukemia 2018; 33:1451-1462. [PMID: 30546078 PMCID: PMC6756073 DOI: 10.1038/s41375-018-0324-5] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 11/22/2018] [Indexed: 12/13/2022]
Abstract
Extranodal natural killer T-cell lymphoma (nasal type; NKTCL) is an aggressive malignancy strongly associated with Epstein-Barr virus (EBV) infection. However, the role of EBV in NKTCL development is unclear, largely due to the lack of information about EBV genome and transcriptome in NKTCL. Here, using high-throughput sequencing, we obtained whole genome (n = 27) and transcriptome datasets (n = 18) of EBV derived from NKTCL tumor biopsies. We assembled 27 EBV genomes and detected an average of 1,152 single nucleotide variants and 44.8 indels (<50 bp) of EBV per sample. We also identified frequent focal EBV genome deletions and integrated EBV fragments in the host genome. Moreover, Phylogenetic analysis revealed that NKTCL-derived EBVs are closely clustered; transcriptome analysis revealed less activation of both latent and lytic genes and larger amount of T-cell epitope alterations in NKTCL, as compared with other EBV-associated cancers. Furthermore, we observed transcriptional defects of the BARTs miRNA by deletion, and the disruption of host NHEJ1 by integrated EBV fragment, implying novel pathogenic mechanisms of EBV. Taken together, we reported for the first time global mutational and transcriptional profiles of EBV in NKTCL clinical samples, revealing important somatic events of EBV and providing insights to better understanding of EBV’s contribution in tumorigenesis.
Collapse
|
22
|
Nemoz C, Ropars V, Frit P, Gontier A, Drevet P, Yu J, Guerois R, Pitois A, Comte A, Delteil C, Barboule N, Legrand P, Baconnais S, Yin Y, Tadi S, Barbet-Massin E, Berger I, Le Cam E, Modesti M, Rothenberg E, Calsou P, Charbonnier JB. XLF and APLF bind Ku80 at two remote sites to ensure DNA repair by non-homologous end joining. Nat Struct Mol Biol 2018; 25:971-980. [PMID: 30291363 PMCID: PMC6234012 DOI: 10.1038/s41594-018-0133-6] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 08/21/2018] [Indexed: 12/20/2022]
Abstract
The Ku70-Ku80 (Ku) heterodimer binds rapidly and tightly to the ends of DNA double-strand breaks and recruits factors of the non-homologous end-joining (NHEJ) repair pathway through molecular interactions that remain unclear. We have determined crystal structures of the Ku-binding motifs (KBM) of the NHEJ proteins APLF (A-KBM) and XLF (X-KBM) bound to a Ku-DNA complex. The two KBM motifs bind remote sites of the Ku80 α/β domain. The X-KBM occupies an internal pocket formed by an unprecedented large outward rotation of the Ku80 α/β domain. We observe independent recruitment of the APLF-interacting protein XRCC4 and of XLF to laser-irradiated sites via binding of A- and X-KBMs, respectively, to Ku80. Finally, we show that mutation of the X-KBM and A-KBM binding sites in Ku80 compromises both the efficiency and accuracy of end joining and cellular radiosensitivity. A- and X-KBMs may represent two initial anchor points to build the intricate interaction network required for NHEJ.
Collapse
Affiliation(s)
- Clement Nemoz
- Institute for Integrative Biology of the Cell, Institute Joliot, CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Virginie Ropars
- Institute for Integrative Biology of the Cell, Institute Joliot, CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Philippe Frit
- Institut de Pharmacologie et Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France
- Equipe Labellisée Ligue Contre le Cancer 2018, Toulouse, France
| | - Amandine Gontier
- Institute for Integrative Biology of the Cell, Institute Joliot, CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Pascal Drevet
- Institute for Integrative Biology of the Cell, Institute Joliot, CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Jinchao Yu
- Institute for Integrative Biology of the Cell, Institute Joliot, CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Raphaël Guerois
- Institute for Integrative Biology of the Cell, Institute Joliot, CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Aurelien Pitois
- Institute for Integrative Biology of the Cell, Institute Joliot, CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Audrey Comte
- Institute for Integrative Biology of the Cell, Institute Joliot, CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Christine Delteil
- Institut de Pharmacologie et Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France
- Equipe Labellisée Ligue Contre le Cancer 2018, Toulouse, France
| | - Nadia Barboule
- Institut de Pharmacologie et Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France
- Equipe Labellisée Ligue Contre le Cancer 2018, Toulouse, France
| | - Pierre Legrand
- Synchrotron Soleil, L'Orme des Merisiers, Saint-Aubin, Gif-sur-Yvette, France
| | - Sonia Baconnais
- Signalisations, Noyaux et Innovations en Cancérologie, UMR 8126, CNRS, Université Paris-Sud, Gustave Roussy, Université Paris-Saclay, Villejuif, France
| | - Yandong Yin
- New York University School of Medicine, Perlmutter Cancer Center, New York, USA
| | - Satish Tadi
- Cancer Research Center of Marseille, CNRS UMR 7258, Inserm U1068, Institut Paoli-Calmettes, Aix-Marseille Université UM105, Marseille, France
| | | | - Imre Berger
- BrisSynBio Centre, School of Biochemistry, Faculty of Biomedical Sciences, University of Bristol, Bristol, UK
| | - Eric Le Cam
- Signalisations, Noyaux et Innovations en Cancérologie, UMR 8126, CNRS, Université Paris-Sud, Gustave Roussy, Université Paris-Saclay, Villejuif, France
| | - Mauro Modesti
- Cancer Research Center of Marseille, CNRS UMR 7258, Inserm U1068, Institut Paoli-Calmettes, Aix-Marseille Université UM105, Marseille, France
| | - Eli Rothenberg
- New York University School of Medicine, Perlmutter Cancer Center, New York, USA
| | - Patrick Calsou
- Institut de Pharmacologie et Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France.
- Equipe Labellisée Ligue Contre le Cancer 2018, Toulouse, France.
| | - Jean Baptiste Charbonnier
- Institute for Integrative Biology of the Cell, Institute Joliot, CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette, France.
| |
Collapse
|
23
|
A single XLF dimer bridges DNA ends during nonhomologous end joining. Nat Struct Mol Biol 2018; 25:877-884. [PMID: 30177755 PMCID: PMC6128732 DOI: 10.1038/s41594-018-0120-y] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 07/05/2018] [Indexed: 01/09/2023]
Abstract
Non-homologous end joining (NHEJ) is the primary pathway of DNA double-strand break repair in vertebrate cells, yet it remains unclear how NHEJ factors assemble a synaptic complex that bridges DNA ends. To address the role of XRCC4-like factor (XLF) in synaptic complex assembly, we employed single-molecule fluorescence imaging in Xenopus laevis egg extract, a system that efficiently joins DNA ends. We find that a single XLF dimer binds to DNA substrates just prior to formation of a ligation-competent synaptic complex between DNA ends. The interaction of both globular head domains of the XLF dimer with XRCC4 is required for efficient formation of this synaptic complex. In contrast to a model in which filaments of XLF and XRCC4 bridge DNA ends, our results indicate that binding of a single XLF dimer facilitates the assembly of a stoichiometrically well-defined synaptic complex.
Collapse
|
24
|
Bhargava R, Sandhu M, Muk S, Lee G, Vaidehi N, Stark JM. C-NHEJ without indels is robust and requires synergistic function of distinct XLF domains. Nat Commun 2018; 9:2484. [PMID: 29950655 PMCID: PMC6021437 DOI: 10.1038/s41467-018-04867-5] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Accepted: 05/25/2018] [Indexed: 01/17/2023] Open
Abstract
To investigate the fidelity of canonical non-homologous end joining (C-NHEJ), we developed an assay to detect EJ between distal ends of two Cas9-induced chromosomal breaks that are joined without causing insertion/deletion mutations (indels). Here we find that such EJ requires several core C-NHEJ factors, including XLF. Using variants of this assay, we find that C-NHEJ is required for EJ events that use 1-2, but not ≥3, nucleotides of terminal microhomology. We also investigated XLF residues required for EJ without indels, finding that one of two binding domains is essential (L115 or C-terminal lysines that bind XRCC4 and KU/DNA, respectively), and that disruption of one of these domains sensitizes XLF to mutations that affect its dimer interface, which we examined with molecular dynamic simulations. Thus, C-NHEJ, including synergistic function of distinct XLF domains, is required for EJ of chromosomal breaks without indels.
Collapse
Affiliation(s)
- Ragini Bhargava
- Department of Cancer Genetics and Epigenetics, Beckman Research Institute of the City of Hope, 1500 E Duarte Rd., Duarte, CA, 91010, USA
- Irell and Manella Graduate School of Biological Sciences, Beckman Research Institute of the City of Hope, 1500 E Duarte Rd., Duarte, CA, 91010, USA
| | - Manbir Sandhu
- Irell and Manella Graduate School of Biological Sciences, Beckman Research Institute of the City of Hope, 1500 E Duarte Rd., Duarte, CA, 91010, USA
- Department of Molecular Immunology, Beckman Research Institute of the City of Hope, 1500 E Duarte Rd., Duarte, CA, 91010, USA
| | - Sanychen Muk
- Department of Molecular Immunology, Beckman Research Institute of the City of Hope, 1500 E Duarte Rd., Duarte, CA, 91010, USA
| | - Gabriella Lee
- Department of Cancer Genetics and Epigenetics, Beckman Research Institute of the City of Hope, 1500 E Duarte Rd., Duarte, CA, 91010, USA
| | - Nagarajan Vaidehi
- Irell and Manella Graduate School of Biological Sciences, Beckman Research Institute of the City of Hope, 1500 E Duarte Rd., Duarte, CA, 91010, USA
- Department of Molecular Immunology, Beckman Research Institute of the City of Hope, 1500 E Duarte Rd., Duarte, CA, 91010, USA
| | - Jeremy M Stark
- Department of Cancer Genetics and Epigenetics, Beckman Research Institute of the City of Hope, 1500 E Duarte Rd., Duarte, CA, 91010, USA.
- Irell and Manella Graduate School of Biological Sciences, Beckman Research Institute of the City of Hope, 1500 E Duarte Rd., Duarte, CA, 91010, USA.
| |
Collapse
|
25
|
Pannunzio NR, Watanabe G, Lieber MR. Nonhomologous DNA end-joining for repair of DNA double-strand breaks. J Biol Chem 2017; 293:10512-10523. [PMID: 29247009 DOI: 10.1074/jbc.tm117.000374] [Citation(s) in RCA: 335] [Impact Index Per Article: 47.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Nonhomologous DNA end-joining (NHEJ) is the predominant double-strand break (DSB) repair pathway throughout the cell cycle and accounts for nearly all DSB repair outside of the S and G2 phases. NHEJ relies on Ku to thread onto DNA termini and thereby improve the affinity of the NHEJ enzymatic components consisting of polymerases (Pol μ and Pol λ), a nuclease (the Artemis·DNA-PKcs complex), and a ligase (XLF·XRCC4·Lig4 complex). Each of the enzymatic components is distinctive for its versatility in acting on diverse incompatible DNA end configurations coupled with a flexibility in loading order, resulting in many possible junctional outcomes from one DSB. DNA ends can either be directly ligated or, if the ends are incompatible, processed until a ligatable configuration is achieved that is often stabilized by up to 4 bp of terminal microhomology. Processing of DNA ends results in nucleotide loss or addition, explaining why DSBs repaired by NHEJ are rarely restored to their original DNA sequence. Thus, NHEJ is a single pathway with multiple enzymes at its disposal to repair DSBs, resulting in a diversity of repair outcomes.
Collapse
Affiliation(s)
- Nicholas R Pannunzio
- From the Departments of Pathology, Biochemistry and Molecular Biology, and Molecular Microbiology and Immunology, Section of Molecular and Computational Biology, Department of Biological Sciences, Norris Comprehensive Cancer Center, University of Southern California Keck School of Medicine, Los Angeles, California 90033
| | - Go Watanabe
- From the Departments of Pathology, Biochemistry and Molecular Biology, and Molecular Microbiology and Immunology, Section of Molecular and Computational Biology, Department of Biological Sciences, Norris Comprehensive Cancer Center, University of Southern California Keck School of Medicine, Los Angeles, California 90033
| | - Michael R Lieber
- From the Departments of Pathology, Biochemistry and Molecular Biology, and Molecular Microbiology and Immunology, Section of Molecular and Computational Biology, Department of Biological Sciences, Norris Comprehensive Cancer Center, University of Southern California Keck School of Medicine, Los Angeles, California 90033
| |
Collapse
|