1
|
Gillet N, Dumont E, Bignon E. DNA damage and repair in the nucleosome: insights from computational methods. Biophys Rev 2024; 16:345-356. [PMID: 39099841 PMCID: PMC11297232 DOI: 10.1007/s12551-024-01183-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 03/05/2024] [Indexed: 08/06/2024] Open
Abstract
Cellular DNA is constantly exposed to endogenous or exogenous factors that can induce lesions. Several types of lesions have been described that can result from UV/ionizing irradiations, oxidative stress, or free radicals, among others. In order to overcome the deleterious effects of such damages, i.e., mutagenicity or cytotoxicity, cells possess a highly complex DNA repair machinery, involving repair enzymes targeting specific types of lesions through dedicated cellular pathways. In addition, DNA is highly compacted in the nucleus, the first level of compaction consisting of ~ 147 DNA base pairs wrapped around a core of histones, the so-called nucleosome core particle. In this complex environment, the DNA structure is highly constrained, and fine-tuned mechanisms involving remodeling processes are required to expose the DNA to repair enzymes and to facilitate the damage removal. However, these nucleosome-specific mechanisms remain poorly understood, and computational methods emerged only recently as powerful tools to investigate DNA damages in such complex systems as the nucleosome. In this mini-review, we summarize the latest advances brought out by computational approaches in the field, opening new exciting perspectives for the study of DNA damage and repair in the nucleosome context.
Collapse
Affiliation(s)
- Natacha Gillet
- ENS de Lyon, CNRS, Université Claude Bernard Lyon 1, Laboratoire de Chimie UMR 5182, 69342 Lyon, France
| | - Elise Dumont
- Institut de Chimie de Nice, UMR 7272, Université Côte d’Azur, CNRS, 06108 Nice, France
- Institut Universitaire de France, 5 Rue Descartes, 75005 Paris, France
| | | |
Collapse
|
2
|
Grasso L, Fonzino A, Manzari C, Leonardi T, Picardi E, Gissi C, Lazzaro F, Pesole G, Muzi-Falconi M. Detection of ribonucleotides embedded in DNA by Nanopore sequencing. Commun Biol 2024; 7:491. [PMID: 38654143 PMCID: PMC11039623 DOI: 10.1038/s42003-024-06077-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 03/20/2024] [Indexed: 04/25/2024] Open
Abstract
Ribonucleotides represent the most common non-canonical nucleotides found in eukaryotic genomes. The sources of chromosome-embedded ribonucleotides and the mechanisms by which unrepaired rNMPs trigger genome instability and human pathologies are not fully understood. The available sequencing technologies only allow to indirectly deduce the genomic location of rNMPs. Oxford Nanopore Technologies (ONT) may overcome such limitation, revealing the sites of rNMPs incorporation in genomic DNA directly from raw sequencing signals. We synthesized two types of DNA molecules containing rNMPs at known or random positions and we developed data analysis pipelines for DNA-embedded ribonucleotides detection by ONT. We report that ONT can identify all four ribonucleotides incorporated in DNA by capturing rNMPs-specific alterations in nucleotide alignment features, current intensity, and dwell time. We propose that ONT may be successfully employed to directly map rNMPs in genomic DNA and we suggest a strategy to build an ad hoc basecaller to analyse native genomes.
Collapse
Grants
- IG-21806 Associazione Italiana per la Ricerca sul Cancro (Italian Association for Cancer Research)
- PRIN2017_2022KJHC7S Ministero dell'Istruzione, dell'Università e della Ricerca (Ministry of Education, University and Research)
- PRIN_2022JA8JY5 Ministero dell'Istruzione, dell'Università e della Ricerca (Ministry of Education, University and Research)
- CN_00000041 Ministero dell'Istruzione, dell'Università e della Ricerca (Ministry of Education, University and Research)
- PRIN2017_2022KJHC7S Ministero dell'Istruzione, dell'Università e della Ricerca (Ministry of Education, University and Research)
- National Research Centers: “High Performance Computing, Big Data and Quantum Computing” (Project no. CN_00000013)
- National Research Centers: “High Performance Computing, Big Data and Quantum Computing” extended Partnerships: MNESYS (Project no. PE_0000006) and Age-It (Project no. PE_00000015). ELIXIR-IT through the empowering project ELIXIRNextGenIT (Grant Code IR0000010).
Collapse
Affiliation(s)
- Lavinia Grasso
- Dipartimento di Bioscienze, Università degli Studi di Milano, Via Celoria 26, 20133, Milano, Italy
| | - Adriano Fonzino
- Dipartimento di Bioscienze, Biotecnologie e Ambiente, Università di Bari A. Moro, Via Orabona 4, 70126, Bari, Italy
| | - Caterina Manzari
- Dipartimento di Bioscienze, Biotecnologie e Ambiente, Università di Bari A. Moro, Via Orabona 4, 70126, Bari, Italy
| | - Tommaso Leonardi
- Center for Genomic Science of IIT@SEMM, Fondazione Istituto Italiano di Tecnologia, Via Adamello 16, 20139, Milano, Italy
| | - Ernesto Picardi
- Dipartimento di Bioscienze, Biotecnologie e Ambiente, Università di Bari A. Moro, Via Orabona 4, 70126, Bari, Italy
- Istituto di Biomembrane, Bioenergetica e Biotecnologie Molecolari, Consiglio Nazionale delle Ricerche, Via Amendola 122/O, 70126, Bari, Italy
| | - Carmela Gissi
- Dipartimento di Bioscienze, Biotecnologie e Ambiente, Università di Bari A. Moro, Via Orabona 4, 70126, Bari, Italy
- Istituto di Biomembrane, Bioenergetica e Biotecnologie Molecolari, Consiglio Nazionale delle Ricerche, Via Amendola 122/O, 70126, Bari, Italy
| | - Federico Lazzaro
- Dipartimento di Bioscienze, Università degli Studi di Milano, Via Celoria 26, 20133, Milano, Italy.
| | - Graziano Pesole
- Dipartimento di Bioscienze, Biotecnologie e Ambiente, Università di Bari A. Moro, Via Orabona 4, 70126, Bari, Italy.
- Istituto di Biomembrane, Bioenergetica e Biotecnologie Molecolari, Consiglio Nazionale delle Ricerche, Via Amendola 122/O, 70126, Bari, Italy.
| | - Marco Muzi-Falconi
- Dipartimento di Bioscienze, Università degli Studi di Milano, Via Celoria 26, 20133, Milano, Italy.
| |
Collapse
|
3
|
Ryan BJ, Weaver TM, Spencer JJ, Freudenthal BD. Generation of Recombinant Nucleosomes Containing Site-Specific DNA Damage. Methods Mol Biol 2023; 2701:55-76. [PMID: 37574475 PMCID: PMC10794041 DOI: 10.1007/978-1-0716-3373-1_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
Eukaryotic DNA exists in chromatin, where the genomic DNA is packaged into a fundamental repeating unit known as the nucleosome. In this chromatin environment, our genomic DNA is constantly under attack by exogenous and endogenous stressors that can lead to DNA damage. Importantly, this DNA damage must be repaired to prevent the accumulation of mutations and ensure normal cellular function. To date, most in-depth biochemical studies of DNA repair proteins have been performed in the context of free duplex DNA. However, chromatin can serve as a barrier that DNA repair enzymes must navigate in order find, access, and process DNA damage in the cell. To facilitate future studies of DNA repair in chromatin, we describe a protocol for generating nucleosome containing site-specific DNA damage that can be utilized for a variety of in vitro applications. This protocol describes several key steps including how to generate damaged DNA oligonucleotides, the expression and purification of recombinant histones, the refolding of histone complexes, and the reconstitution of nucleosomes containing site-specific DNA damage. These methods will enable researchers to generate nucleosomes containing site-specific DNA damage for extensive biochemical and structural studies of DNA repair in the nucleosome.
Collapse
Affiliation(s)
- Benjamin J Ryan
- Department of Biochemistry and Molecular Biology, Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS, USA
| | - Tyler M Weaver
- Department of Biochemistry and Molecular Biology, Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS, USA
| | - Jonah J Spencer
- Department of Biochemistry and Molecular Biology, Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS, USA
| | - Bret D Freudenthal
- Department of Biochemistry and Molecular Biology, Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS, USA.
| |
Collapse
|
4
|
Williams JS, Kunkel TA. Ribonucleotide Incorporation by Eukaryotic B-family Replicases and Its Implications for Genome Stability. Annu Rev Biochem 2022; 91:133-155. [PMID: 35287470 DOI: 10.1146/annurev-biochem-032620-110354] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Our current view of how DNA-based genomes are efficiently and accurately replicated continues to evolve as new details emerge on the presence of ribonucleotides in DNA. Ribonucleotides are incorporated during eukaryotic DNA replication at rates that make them the most common noncanonical nucleotide placed into the nuclear genome, they are efficiently repaired, and their removal impacts genome integrity. This review focuses on three aspects of this subject: the incorporation of ribonucleotides into the eukaryotic nuclear genome during replication by B-family DNA replicases, how these ribonucleotides are removed, and the consequences of their presence or removal for genome stability and disease. Expected final online publication date for the Annual Review of Biochemistry, Volume 91 is June 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Jessica S Williams
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina, USA;
| | - Thomas A Kunkel
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina, USA;
| |
Collapse
|
5
|
Fu I, Geacintov NE, Broyde S. Molecular dynamics simulations reveal how H3K56 acetylation impacts nucleosome structure to promote DNA exposure for lesion sensing. DNA Repair (Amst) 2021; 107:103201. [PMID: 34399316 PMCID: PMC8526387 DOI: 10.1016/j.dnarep.2021.103201] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 07/12/2021] [Accepted: 08/02/2021] [Indexed: 01/04/2023]
Abstract
The first order of DNA packaging is the nucleosome with the DNA wrapped around the histone octamer. This leaves the nucleosomal DNA with access restrictions, which impose a significant barrier to repair of damaged DNA. The efficiency of DNA repair has been related to nucleosome structure and chromatin status, which is modulated in part by post-translational modifications (PTMs) of histones. Numerous studies have suggested a role for acetylation of lysine at position 56 of the H3 histone (H3K56ac) in various DNA transactions, including the response to DNA damage and its association with human cancer. Biophysical studies have revealed that H3K56ac increases DNA accessibility by facilitating spontaneous and transient unwrapping motions of the DNA ends. However, how this acetylation mark modulates nucleosome structure and dynamics to promote accessibility to the damaged DNA for repair factors and other proteins is still poorly understood. Here, we utilize approximately 5-6 microseconds of atomistic molecular dynamics simulations to delineate the impact of H3K56 acetylation on the nucleosome structure and dynamics, and to elucidate how these nucleosome properties are further impacted when a bulky benzo[a]pyrene-derived DNA lesion is placed near the acetylation site. Our findings reveal that H3K56ac alone induces considerable disturbance to the histone-DNA/histone-histone interactions, and amplifies the distortions imposed by the presence of the lesion. Our work highlights the important role of H3K56 acetylation in response to DNA damage and depicts how access to DNA lesions by the repair machinery can be facilitated within the nucleosome via a key acetylation event.
Collapse
Affiliation(s)
- Iwen Fu
- Department of Biology, New York University, 100 Washington Square East, New York, NY, 10003, United States.
| | - Nicholas E Geacintov
- Department of Chemistry, New York University, 100 Washington Square East, New York, NY, 10003, United States.
| | - Suse Broyde
- Department of Biology, New York University, 100 Washington Square East, New York, NY, 10003, United States.
| |
Collapse
|
6
|
Malfatti MC, Antoniali G, Codrich M, Burra S, Mangiapane G, Dalla E, Tell G. New perspectives in cancer biology from a study of canonical and non-canonical functions of base excision repair proteins with a focus on early steps. Mutagenesis 2021; 35:129-149. [PMID: 31858150 DOI: 10.1093/mutage/gez051] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 12/05/2019] [Indexed: 12/15/2022] Open
Abstract
Alterations of DNA repair enzymes and consequential triggering of aberrant DNA damage response (DDR) pathways are thought to play a pivotal role in genomic instabilities associated with cancer development, and are further thought to be important predictive biomarkers for therapy using the synthetic lethality paradigm. However, novel unpredicted perspectives are emerging from the identification of several non-canonical roles of DNA repair enzymes, particularly in gene expression regulation, by different molecular mechanisms, such as (i) non-coding RNA regulation of tumour suppressors, (ii) epigenetic and transcriptional regulation of genes involved in genotoxic responses and (iii) paracrine effects of secreted DNA repair enzymes triggering the cell senescence phenotype. The base excision repair (BER) pathway, canonically involved in the repair of non-distorting DNA lesions generated by oxidative stress, ionising radiation, alkylation damage and spontaneous or enzymatic deamination of nucleotide bases, represents a paradigm for the multifaceted roles of complex DDR in human cells. This review will focus on what is known about the canonical and non-canonical functions of BER enzymes related to cancer development, highlighting novel opportunities to understand the biology of cancer and representing future perspectives for designing new anticancer strategies. We will specifically focus on APE1 as an example of a pleiotropic and multifunctional BER protein.
Collapse
Affiliation(s)
- Matilde Clarissa Malfatti
- Laboratory of Molecular Biology and DNA repair, Department of Medicine (DAME), University of Udine, Udine, Italy
| | - Giulia Antoniali
- Laboratory of Molecular Biology and DNA repair, Department of Medicine (DAME), University of Udine, Udine, Italy
| | - Marta Codrich
- Laboratory of Molecular Biology and DNA repair, Department of Medicine (DAME), University of Udine, Udine, Italy
| | - Silvia Burra
- Laboratory of Molecular Biology and DNA repair, Department of Medicine (DAME), University of Udine, Udine, Italy
| | - Giovanna Mangiapane
- Laboratory of Molecular Biology and DNA repair, Department of Medicine (DAME), University of Udine, Udine, Italy
| | - Emiliano Dalla
- Laboratory of Molecular Biology and DNA repair, Department of Medicine (DAME), University of Udine, Udine, Italy
| | - Gianluca Tell
- Laboratory of Molecular Biology and DNA repair, Department of Medicine (DAME), University of Udine, Udine, Italy
| |
Collapse
|
7
|
Zhou ZX, Williams JS, Lujan SA, Kunkel TA. Ribonucleotide incorporation into DNA during DNA replication and its consequences. Crit Rev Biochem Mol Biol 2021; 56:109-124. [PMID: 33461360 DOI: 10.1080/10409238.2020.1869175] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Ribonucleotides are the most abundant non-canonical nucleotides in the genome. Their vast presence and influence over genome biology is becoming increasingly appreciated. Here we review the recent progress made in understanding their genomic presence, incorporation characteristics and usefulness as biomarkers for polymerase enzymology. We also discuss ribonucleotide processing, the genetic consequences of unrepaired ribonucleotides in DNA and evidence supporting the significance of their transient presence in the nuclear genome.
Collapse
Affiliation(s)
- Zhi-Xiong Zhou
- Genome Integrity & Structural Biology Laboratory, National Institute of Environmental Health Sciences, NIH, DHHS, Durham, NC, USA
| | - Jessica S Williams
- Genome Integrity & Structural Biology Laboratory, National Institute of Environmental Health Sciences, NIH, DHHS, Durham, NC, USA
| | - Scott A Lujan
- Genome Integrity & Structural Biology Laboratory, National Institute of Environmental Health Sciences, NIH, DHHS, Durham, NC, USA
| | - Thomas A Kunkel
- Genome Integrity & Structural Biology Laboratory, National Institute of Environmental Health Sciences, NIH, DHHS, Durham, NC, USA
| |
Collapse
|
8
|
Huertas J, Cojocaru V. Breaths, Twists, and Turns of Atomistic Nucleosomes. J Mol Biol 2020; 433:166744. [PMID: 33309853 DOI: 10.1016/j.jmb.2020.166744] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 12/02/2020] [Accepted: 12/02/2020] [Indexed: 02/07/2023]
Abstract
Gene regulation programs establish cellular identity and rely on dynamic changes in the structural packaging of genomic DNA. The DNA is packaged in chromatin, which is formed from arrays of nucleosomes displaying different degree of compaction and different lengths of inter-nucleosomal linker DNA. The nucleosome represents the repetitive unit of chromatin and is formed by wrapping 145-147 basepairs of DNA around an octamer of histone proteins. Each of the four histones is present twice and has a structured core and intrinsically disordered terminal tails. Chromatin dynamics are triggered by inter- and intra-nucleosome motions that are controlled by the DNA sequence, the interactions between the histone core and the DNA, and the conformations, positions, and DNA interactions of the histone tails. Understanding chromatin dynamics requires studying all these features at the highest possible resolution. For this, molecular dynamics simulations can be used as a powerful complement or alternative to experimental approaches, from which it is often very challenging to characterize the structural features and atomic interactions controlling nucleosome motions. Molecular dynamics simulations can be performed at different resolutions, by coarse graining the molecular system with varying levels of details. Here we review the successes and the remaining challenges of the application of atomic resolution simulations to study the structure and dynamics of nucleosomes and their complexes with interacting partners.
Collapse
Affiliation(s)
- Jan Huertas
- In Silico Biomolecular Structure and Dynamics Group, Hubrecht Institute, Utrecht, the Netherlands; Department of Cellular and Developmental Biology, Max Planck Institute for Molecular Biomedicine, Münster, Germany; Center for Multiscale Theory and Computation, Westfälische Wilhelms University, Münster, Germany
| | - Vlad Cojocaru
- In Silico Biomolecular Structure and Dynamics Group, Hubrecht Institute, Utrecht, the Netherlands; Department of Cellular and Developmental Biology, Max Planck Institute for Molecular Biomedicine, Münster, Germany; Center for Multiscale Theory and Computation, Westfälische Wilhelms University, Münster, Germany.
| |
Collapse
|
9
|
Matoušková E, Bignon E, Claerbout VEP, Dršata T, Gillet N, Monari A, Dumont E, Lankaš F. Impact of the Nucleosome Histone Core on the Structure and Dynamics of DNA-Containing Pyrimidine-Pyrimidone (6-4) Photoproduct. J Chem Theory Comput 2020; 16:5972-5981. [PMID: 32810397 DOI: 10.1021/acs.jctc.0c00593] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The pyrimidine-pyrimidone (6-4) photoproduct (64-PP) is an important photoinduced DNA lesion constituting a mutational signature for melanoma. The structural impact of 64-PP on DNA complexed with histones affects the lesion mutagenicity and repair but remains poorly understood. Here we investigate the conformational dynamics of DNA-containing 64-PP within the nucleosome core particle by atomic-resolution molecular dynamics simulations and multiscale data analysis. We demonstrate that the histone core exerts important mechanical restraints that largely decrease global DNA structural fluctuations. However, the local DNA flexibility at the damaged site is enhanced due to imperfect structural adaptation to restraints imposed by the histone core. If 64-PP faces the histone core and is therefore not directly accessible by the repair protein, the complementary strand facing the solvent is deformed and exhibits higher flexibility than the corresponding strand in a naked, undamaged DNA. This may serve as an initial recognition signal for repair. Our simulations also pinpoint the structural role of proximal residues from the truncated histone tails.
Collapse
Affiliation(s)
- Eva Matoušková
- Department of Informatics and Chemistry, University of Chemistry and Technology Prague, Technická 5, 166 28 Prague, Czech Republic
| | - Emmanuelle Bignon
- Université de Lyon, ENS de Lyon, CNRS UMR 5182, Université Claude Bernard Lyon 1, Laboratoire de Chimie, F69342, Lyon, France
| | - Victor E P Claerbout
- Université de Lyon, ENS de Lyon, CNRS UMR 5182, Université Claude Bernard Lyon 1, Laboratoire de Chimie, F69342, Lyon, France
| | - Tomáš Dršata
- Department of Informatics and Chemistry, University of Chemistry and Technology Prague, Technická 5, 166 28 Prague, Czech Republic
| | - Natacha Gillet
- Université de Lyon, ENS de Lyon, CNRS UMR 5182, Université Claude Bernard Lyon 1, Laboratoire de Chimie, F69342, Lyon, France
| | - Antonio Monari
- Université de Lorraine and CNRS, LPCT UMR 7019, F-54000 Nancy, France
| | - Elise Dumont
- Université de Lyon, ENS de Lyon, CNRS UMR 5182, Université Claude Bernard Lyon 1, Laboratoire de Chimie, F69342, Lyon, France.,Institut Universitaire de France, 5 rue Descartes, 75005 Paris, France
| | - Filip Lankaš
- Department of Informatics and Chemistry, University of Chemistry and Technology Prague, Technická 5, 166 28 Prague, Czech Republic
| |
Collapse
|
10
|
Vydzhak O, Luke B, Schindler N. Non-coding RNAs at the Eukaryotic rDNA Locus: RNA-DNA Hybrids and Beyond. J Mol Biol 2020; 432:4287-4304. [PMID: 32446803 DOI: 10.1016/j.jmb.2020.05.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 05/14/2020] [Accepted: 05/15/2020] [Indexed: 12/12/2022]
Abstract
The human ribosomal DNA (rDNA) locus encodes a variety of long non-coding RNAs (lncRNAs). Among them, the canonical ribosomal RNAs that are the catalytic components of the ribosomes, as well as regulatory lncRNAs including promoter-associated RNAs (pRNA), stress-induced promoter and pre-rRNA antisense RNAs (PAPAS), and different intergenic spacer derived lncRNA species (IGSRNA). In addition, externally encoded lncRNAs are imported into the nucleolus, which orchestrate the complex regulation of the nucleolar state in normal and stress conditions via a plethora of molecular mechanisms. This review focuses on the triplex and R-loop formation aspects of lncRNAs at the rDNA locus in yeast and human cells. We discuss the protein players that regulate R-loops at rDNA and how their misregulation contributes to DNA damage and disease. Furthermore, we speculate how DNA lesions such as rNMPs or 8-oxo-dG might affect RNA-DNA hybrid formation. The transcription of lncRNA from rDNA has been observed in yeast, plants, flies, worms, mouse and human cells. This evolutionary conservation highlights the importance of lncRNAs in rDNA function and maintenance.
Collapse
Affiliation(s)
- Olga Vydzhak
- Institute of Molecular Biology (IMB), Johannes Gutenberg-University Mainz, Ackermannweg 4, 55128 Mainz, Germany
| | - Brian Luke
- Institute of Molecular Biology (IMB), Johannes Gutenberg-University Mainz, Ackermannweg 4, 55128 Mainz, Germany; Institute of Developmental Biology and Neurobiology (IDN), Johannes Gutenberg-University Mainz, 55128 Mainz, Germany
| | - Natalie Schindler
- Institute of Developmental Biology and Neurobiology (IDN), Johannes Gutenberg-University Mainz, 55128 Mainz, Germany.
| |
Collapse
|
11
|
Ghodke PP, Guengerich FP. Impact of 1, N 6-ethenoadenosine, a damaged ribonucleotide in DNA, on translesion synthesis and repair. J Biol Chem 2020; 295:6092-6107. [PMID: 32213600 DOI: 10.1074/jbc.ra120.012829] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 03/23/2020] [Indexed: 01/02/2023] Open
Abstract
Incorporation of ribonucleotides into DNA can severely diminish genome integrity. However, how ribonucleotides instigate DNA damage is poorly understood. In DNA, they can promote replication stress and genomic instability and have been implicated in several diseases. We report here the impact of the ribonucleotide rATP and of its naturally occurring damaged analog 1,N 6-ethenoadenosine (1,N 6-ϵrA) on translesion synthesis (TLS), mediated by human DNA polymerase η (hpol η), and on RNase H2-mediated incision. Mass spectral analysis revealed that 1,N 6-ϵrA in DNA generates extensive frameshifts during TLS, which can lead to genomic instability. Moreover, steady-state kinetic analysis of the TLS process indicated that deoxypurines (i.e. dATP and dGTP) are inserted predominantly opposite 1,N 6-ϵrA. We also show that hpol η acts as a reverse transcriptase in the presence of damaged ribonucleotide 1,N 6-ϵrA but has poor RNA primer extension activities. Steady-state kinetic analysis of reverse transcription and RNA primer extension showed that hpol η favors the addition of dATP and dGTP opposite 1,N 6-ϵrA. We also found that RNase H2 recognizes 1,N 6-ϵrA but has limited incision activity across from this lesion, which can lead to the persistence of this detrimental DNA adduct. We conclude that the damaged and unrepaired ribonucleotide 1,N 6-ϵrA in DNA exhibits mutagenic potential and can also alter the reading frame in an mRNA transcript because 1,N 6-ϵrA is incompletely incised by RNase H2.
Collapse
Affiliation(s)
- Pratibha P Ghodke
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37323-0146
| | - F Peter Guengerich
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37323-0146.
| |
Collapse
|
12
|
Nava GM, Grasso L, Sertic S, Pellicioli A, Muzi Falconi M, Lazzaro F. One, No One, and One Hundred Thousand: The Many Forms of Ribonucleotides in DNA. Int J Mol Sci 2020; 21:E1706. [PMID: 32131532 PMCID: PMC7084774 DOI: 10.3390/ijms21051706] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 02/26/2020] [Accepted: 02/28/2020] [Indexed: 12/14/2022] Open
Abstract
In the last decade, it has become evident that RNA is frequently found in DNA. It is now well established that single embedded ribonucleoside monophosphates (rNMPs) are primarily introduced by DNA polymerases and that longer stretches of RNA can anneal to DNA, generating RNA:DNA hybrids. Among them, the most studied are R-loops, peculiar three-stranded nucleic acid structures formed upon the re-hybridization of a transcript to its template DNA. In addition, polyribonucleotide chains are synthesized to allow DNA replication priming, double-strand breaks repair, and may as well result from the direct incorporation of consecutive rNMPs by DNA polymerases. The bright side of RNA into DNA is that it contributes to regulating different physiological functions. The dark side, however, is that persistent RNA compromises genome integrity and genome stability. For these reasons, the characterization of all these structures has been under growing investigation. In this review, we discussed the origin of single and multiple ribonucleotides in the genome and in the DNA of organelles, focusing on situations where the aberrant processing of RNA:DNA hybrids may result in multiple rNMPs embedded in DNA. We concluded by providing an overview of the currently available strategies to study the presence of single and multiple ribonucleotides in DNA in vivo.
Collapse
Affiliation(s)
| | | | | | | | - Marco Muzi Falconi
- Dipartimento di Bioscienze, Università degli Studi di Milano, via Celoria 26, 20133 Milano, Italy; (G.M.N.); (L.G.); (S.S.); (A.P.)
| | - Federico Lazzaro
- Dipartimento di Bioscienze, Università degli Studi di Milano, via Celoria 26, 20133 Milano, Italy; (G.M.N.); (L.G.); (S.S.); (A.P.)
| |
Collapse
|
13
|
Kellner V, Luke B. Molecular and physiological consequences of faulty eukaryotic ribonucleotide excision repair. EMBO J 2020; 39:e102309. [PMID: 31833079 PMCID: PMC6996501 DOI: 10.15252/embj.2019102309] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 10/22/2019] [Accepted: 11/26/2019] [Indexed: 01/11/2023] Open
Abstract
The duplication of the eukaryotic genome is an intricate process that has to be tightly safe-guarded. One of the most frequently occurring errors during DNA synthesis is the mis-insertion of a ribonucleotide instead of a deoxyribonucleotide. Ribonucleotide excision repair (RER) is initiated by RNase H2 and results in error-free removal of such mis-incorporated ribonucleotides. If left unrepaired, DNA-embedded ribonucleotides result in a variety of alterations within chromosomal DNA, which ultimately lead to genome instability. Here, we review how genomic ribonucleotides lead to chromosomal aberrations and discuss how the tight regulation of RER timing may be important for preventing unwanted DNA damage. We describe the structural impact of unrepaired ribonucleotides on DNA and chromatin and comment on the potential consequences for cellular fitness. In the context of the molecular mechanisms associated with faulty RER, we have placed an emphasis on how and why increased levels of genomic ribonucleotides are associated with severe autoimmune syndromes, neuropathology, and cancer. In addition, we discuss therapeutic directions that could be followed for pathologies associated with defective removal of ribonucleotides from double-stranded DNA.
Collapse
Affiliation(s)
- Vanessa Kellner
- Institute of Molecular Biology (IMB)MainzGermany
- Present address:
Department of BiologyNew York UniversityNew YorkNYUSA
| | - Brian Luke
- Institute of Molecular Biology (IMB)MainzGermany
- Institute of Developmental Biology and Neurobiology (IDN)Johannes Gutenberg UniversitätMainzGermany
| |
Collapse
|
14
|
Cai Y, Geacintov NE, Broyde S. Variable impact of conformationally distinct DNA lesions on nucleosome structure and dynamics: Implications for nucleotide excision repair. DNA Repair (Amst) 2019; 87:102768. [PMID: 32018112 DOI: 10.1016/j.dnarep.2019.102768] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 11/14/2019] [Accepted: 12/08/2019] [Indexed: 12/26/2022]
Abstract
The packaging of DNA in nucleosomes presents a barrier for biological transactions including replication, transcription and repair. However, despite years of research, how the DNA is freed from the histone proteins and thereby allows the molecular machines to access the DNA remains poorly understood. We are interested in global genomic nucleotide excision repair (GG-NER). It is established that the histones are obstacles to this process, and DNA lesions are repaired less efficiently in nucleosomes than in free DNA. In the present study, we utilized molecular dynamics simulations to elucidate the nature of the distortions and dynamics imposed in the nucleosome by a set of three structually different lesions that vary in GG-NER efficiencies in free DNA, and in nucleosomes [Shafirovich, Geacintov, et. al, 2019]. Two of these are bulky lesions derived from metabolic activation of the environmental carcinogen benzo[a]pyrene, the 10R (+)-cis-anti-B[a]P-N2-dG and the stereoisomeric 10S (+)-trans-anti-B[a]P-N2-dG, which respectively adopt base-displaced/intercalated and minor groove-aligned conformations in DNA. The third is a non-bulky lesion, the 5'R-8-cyclo-2'-deoxyguanosine cross-link, produced by reactive oxygen and nitrogen species; cyclopurine lesions are highly mutagenic. These adducts are placed near the dyad axis, and rotationally with the lesion-containing strand facing towards or away from the histones. While each lesion has distinct conformational characteristics that are retained in the nucleosome, a spectrum of structural and dynamic disturbances, from slight to substantial, are displayed that depend on the lesion's structure and position in the nucleosome. We hypothesize that these intrinsic structural and dynamic distinctions provide different signals to initiate the cascade of chromatin-opening processes, including acetylation and other post translational modifications, remodeling by ATP-dependent complexes and spontaneous unwrapping that regulate the rate of access to the lesion; this may translate ultimately into varying GG-NER efficiencies, including repair resistance when signals for access are too weak.
Collapse
Affiliation(s)
- Yuqin Cai
- Department of Biology, New York University, 100 Washington Square East, New York, NY, 10003, USA
| | - Nicholas E Geacintov
- Department of Chemistry, New York University, 100 Washington Square East, New York, NY, 10003, USA
| | - Suse Broyde
- Department of Biology, New York University, 100 Washington Square East, New York, NY, 10003, USA.
| |
Collapse
|
15
|
Ren M, Cheng Y, Duan Q, Zhou C. Transesterification Reaction and the Repair of Embedded Ribonucleotides in DNA Are Suppressed upon the Assembly of DNA into Nucleosome Core Particles †. Chem Res Toxicol 2019; 32:926-934. [PMID: 30990021 DOI: 10.1021/acs.chemrestox.9b00059] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Ribonucleotides can be incorporated into DNA through many different cellular processes, and abundant amounts of ribonucleotides are detected in genomic DNA. Embedded ribonucleotides lead to genomic instability through either spontaneous ribonucleotide cleavage via internal transesterification or by inducing mutagenesis, recombination, and chromosome rearrangements. Ribonucleotides misincorporated in genomic DNA can be removed by the ribonucleotide excision repair (RER) pathway in which RNase HII initiates the repair by cleaving the 5'-phosphate of the ribonucleotide. Herein, based on in vitro reconstituted nucleosome core particles (NCPs) containing a single ribonucleotide at different positions, we studied the kinetics of ribonucleotide cleavage via the internal transesterification reaction and repair of the ribonucleotides by RNase HII in NCPs. Our results show that ribonucleotide cleavage via the internal transesterification in NCPs is suppressed compared to that in free DNA. DNA bending and structural rigidity account for the suppressed ribonucleotide cleavage in NCPs. Ribonucleotide repair by RNase HII in NCPs exhibits a strong correlation between the translational and rotational positions of the ribonucleotides. An embedded ribonucleotide located at the entry site while facing outward in NCP is repaired as efficiently as that in free DNA. However, the repair of those located in the central part of NCPs and facing inward are inhibited by up to 273-fold relative to those in free dsDNA. The difference in repair efficiency appears to arise from their different accessibility to repair enzymes in NCPs. This study reveals that a ribonucleotide misincorporated in DNA assembled into NCPs is protected against cleavage. Hence, the spontaneous cleavage of the misincorporated ribonucleotides under physiological conditions is not an essential threat to the stability of chromatin DNA. Instead, their decreased repair efficiency in NCPs may result in numerous and persistent ribonucleotides in genomic DNA, which could exert other deleterious effects on DNA such as mutagenesis and recombination.
Collapse
Affiliation(s)
- Mengtian Ren
- State Key Laboratory of Elemento-Organic Chemistry and Department of Chemical Biology, College of Chemistry , Nankai University , Tianjin 300071 , China
| | - Yiran Cheng
- State Key Laboratory of Elemento-Organic Chemistry and Department of Chemical Biology, College of Chemistry , Nankai University , Tianjin 300071 , China
| | - Qian Duan
- State Key Laboratory of Elemento-Organic Chemistry and Department of Chemical Biology, College of Chemistry , Nankai University , Tianjin 300071 , China
| | - Chuanzheng Zhou
- State Key Laboratory of Elemento-Organic Chemistry and Department of Chemical Biology, College of Chemistry , Nankai University , Tianjin 300071 , China
| |
Collapse
|
16
|
Nussinov R, Tsai CJ, Shehu A, Jang H. Computational Structural Biology: Successes, Future Directions, and Challenges. Molecules 2019; 24:molecules24030637. [PMID: 30759724 PMCID: PMC6384756 DOI: 10.3390/molecules24030637] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 02/05/2019] [Accepted: 02/10/2019] [Indexed: 02/06/2023] Open
Abstract
Computational biology has made powerful advances. Among these, trends in human health have been uncovered through heterogeneous 'big data' integration, and disease-associated genes were identified and classified. Along a different front, the dynamic organization of chromatin is being elucidated to gain insight into the fundamental question of genome regulation. Powerful conformational sampling methods have also been developed to yield a detailed molecular view of cellular processes. when combining these methods with the advancements in the modeling of supramolecular assemblies, including those at the membrane, we are finally able to get a glimpse into how cells' actions are regulated. Perhaps most intriguingly, a major thrust is on to decipher the mystery of how the brain is coded. Here, we aim to provide a broad, yet concise, sketch of modern aspects of computational biology, with a special focus on computational structural biology. We attempt to forecast the areas that computational structural biology will embrace in the future and the challenges that it may face. We skirt details, highlight successes, note failures, and map directions.
Collapse
Affiliation(s)
- Ruth Nussinov
- Computational Structural Biology Section, Basic Science Program, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA.
- Sackler Institute of Molecular Medicine, Department of Human Genetics and Molecular Medicine, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel.
| | - Chung-Jung Tsai
- Computational Structural Biology Section, Basic Science Program, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA.
| | - Amarda Shehu
- Departments of Computer Science, Department of Bioengineering, and School of Systems Biology, George Mason University, Fairfax, VA 22030, USA.
| | - Hyunbum Jang
- Computational Structural Biology Section, Basic Science Program, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA.
| |
Collapse
|