1
|
Yu L, Shen N, Ren J, Xin H, Cui Y. Resource distribution, pharmacological activity, toxicology and clinical drugs of β-Carboline alkaloids: An updated and systematic review. Fitoterapia 2025; 180:106326. [PMID: 39645053 DOI: 10.1016/j.fitote.2024.106326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 11/29/2024] [Accepted: 12/01/2024] [Indexed: 12/09/2024]
Abstract
β-Carboline alkaloids are a broad class of indole alkaloids that were first isolated from Peganum harmala L., a traditional Chinese herbal remedy. β-Carboline alkaloids have been found to have many pharmacological activities, including anti-inflammatory, antioxidant, and anti-cancer properties. β-Carboline alkaloids have been studied, and nine therapeutic medications based on its structural skeleton have been utilized to treat a range of illnesses. These compounds' potent pharmacological action and high druggability have garnered a lot of interest. This review systematically summarized resource distribution, pharmacological activity, toxicology and clinical drugs of β-Carboline alkaloids. These alkaloids are mostly found in plants, particularly (Peganum harmala L.), although they are also present in food, bacteria, fungus, and animals. By inhibiting NF-κB, MAPKs, and PI3K-AKT multiple signal pathways, they demonstrate a wide range of pharmacological activities, including anti-inflammatory, oxidative, neurological, cancer, fungal, and leishmania pharmacological activity. Toxicology revealed that β-Carboline alkaloids can produce confusion, irritability, dyskinesia, nausea, vomiting, and audiovisual hallucinations in addition to stimulating the central nervous system and inhibiting metabolism. Clinical drugs based on β-Carboline alkaloids have been used for clinical treatment of arrhythmia, cerebrovascular diseases and dysfunction, hypertension, epilepsy, malaria and mydriasis diseases. It will prompt us to redefine β-Carboline alkaloids. For β-Carboline alkaloids that inspires pharmacological applications in medicine and the development of novel medications containing these alkaloids, it will be a useful resource.
Collapse
Affiliation(s)
- Lili Yu
- School of Medicine, Linyi University, Linyi 276000, Shandong, China
| | - Na Shen
- School of Medicine, Linyi University, Linyi 276000, Shandong, China
| | - Jiani Ren
- School of Medicine, Linyi University, Linyi 276000, Shandong, China
| | - Huawei Xin
- School of Medicine, Linyi University, Linyi 276000, Shandong, China.
| | - Yulei Cui
- School of Medicine, Linyi University, Linyi 276000, Shandong, China.
| |
Collapse
|
2
|
Nitiss KC, Bandak A, Berger JM, Nitiss JL. Genome Instability Induced by Topoisomerase Misfunction. Int J Mol Sci 2024; 25:10247. [PMID: 39408578 PMCID: PMC11477040 DOI: 10.3390/ijms251910247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 09/19/2024] [Accepted: 09/20/2024] [Indexed: 10/20/2024] Open
Abstract
Topoisomerases alter DNA topology by making transient DNA strand breaks (DSBs) in DNA. The DNA cleavage reaction mechanism includes the formation of a reversible protein/DNA complex that allows rapid resealing of the transient break. This mechanism allows changes in DNA topology with minimal risks of persistent DNA damage. Nonetheless, small molecules, alternate DNA structures, or mutations in topoisomerase proteins can impede the resealing of the transient breaks, leading to genome instability and potentially cell death. The consequences of high levels of enzyme/DNA adducts differ for type I and type II topoisomerases. Top1 action on DNA containing ribonucleotides leads to 2-5 nucleotide deletions in repeated sequences, while mutant Top1 enzymes can generate large deletions. By contrast, small molecules that target Top2, or mutant Top2 enzymes with elevated levels of cleavage lead to small de novo duplications. Both Top1 and Top2 have the potential to generate large rearrangements and translocations. Thus, genome instability due to topoisomerase mis-function is a potential pathogenic mechanism especially leading to oncogenic progression. Recent studies support the potential roles of topoisomerases in genetic changes in cancer cells, highlighting the need to understand how cells limit genome instability induced by topoisomerases. This review highlights recent studies that bear on these questions.
Collapse
Affiliation(s)
- Karin C. Nitiss
- Pharmaceutical Sciences Department, University of Illinois Chicago, Rockford, IL 61107, USA;
| | - Afif Bandak
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins School of Medicine, Baltimore, MD 20215, USA; (A.B.); (J.M.B.)
| | - James M. Berger
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins School of Medicine, Baltimore, MD 20215, USA; (A.B.); (J.M.B.)
| | - John L. Nitiss
- Pharmaceutical Sciences Department, University of Illinois Chicago, Rockford, IL 61107, USA;
| |
Collapse
|
3
|
Cho JE, Shaltz S, Yakovleva L, Shuman S, Jinks-Robertson S. Deletions initiated by the vaccinia virus TopIB protein in yeast. DNA Repair (Amst) 2024; 137:103664. [PMID: 38484460 PMCID: PMC10994728 DOI: 10.1016/j.dnarep.2024.103664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 02/14/2024] [Accepted: 03/01/2024] [Indexed: 04/06/2024]
Abstract
The type IB topoisomerase of budding yeast (yTop1) generates small deletions in tandem repeats through a sequential cleavage mechanism and larger deletions with random endpoints through the nonhomologous end-joining (NHEJ) pathway. Vaccinia virus Top1 (vTop1) is a minimized version of the eukaryal TopIB enzymes and uniquely has a strong consensus cleavage sequence: the pentanucleotide (T/C)CCTTp↓. To define the relationship between the position of TopIB cleavage and mutagenic outcomes, we expressed vTop1 in yeast top1Δ strains containing reporter constructs with a single CCCTT site, tandem CCCTT sites, or CCCTT sites separated by 42 bp. vTop1 cleavage at a single CCCTT site was associated with small, NHEJ-dependent deletions. As observed with yTop1, vTop1 generated 5-bp deletions at tandem CCCTT sites. In contrast to yTop1-initiated deletions, however, 5-bp deletions associated with vTop1 expression were not affected by the level of ribonucleotides in genomic DNA. vTop1 expression was associated with a 47-bp deletion when CCCTT sites were separated by 42 bp. Unlike yTop1-initiated large deletions, the vTop1-mediated 47-bp deletion did not require NHEJ, consistent with a model in which re-ligation of enzyme-associated double-strand breaks is catalyzed by vTop1.
Collapse
Affiliation(s)
- Jang Eun Cho
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Samantha Shaltz
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Lyudmila Yakovleva
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Stewart Shuman
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Sue Jinks-Robertson
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA.
| |
Collapse
|
4
|
Bandak AF, Blower TR, Nitiss KC, Gupta R, Lau AY, Guha R, Nitiss JL, Berger JM. Naturally mutagenic sequence diversity in a human type II topoisomerase. Proc Natl Acad Sci U S A 2023; 120:e2302064120. [PMID: 37406101 PMCID: PMC10334734 DOI: 10.1073/pnas.2302064120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 05/31/2023] [Indexed: 07/07/2023] Open
Abstract
Type II topoisomerases transiently cleave duplex DNA as part of a strand passage mechanism that helps control chromosomal organization and superstructure. Aberrant DNA cleavage can result in genomic instability, and how topoisomerase activity is controlled to prevent unwanted breaks is poorly understood. Using a genetic screen, we identified mutations in the beta isoform of human topoisomerase II (hTOP2β) that render the enzyme hypersensitive to the chemotherapeutic agent etoposide. Several of these variants were unexpectedly found to display hypercleavage behavior in vitro and to be capable of inducing cell lethality in a DNA repair-deficient background; surprisingly, a subset of these mutations were also observed in TOP2B sequences from cancer genome databases. Using molecular dynamics simulations and computational network analyses, we found that many of the mutations obtained from the screen map to interfacial points between structurally coupled elements, and that dynamical modeling could be used to identify other damage-inducing TOP2B alleles present in cancer genome databases. This work establishes that there is an innate link between DNA cleavage predisposition and sensitivity to topoisomerase II poisons, and that certain sequence variants of human type II topoisomerases found in cancer cells can act as DNA-damaging agents. Our findings underscore the potential for hTOP2β to function as a clastogen capable of generating DNA damage that may promote or support cellular transformation.
Collapse
Affiliation(s)
- Afif F. Bandak
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD21205
| | - Tim R. Blower
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD21205
| | - Karin C. Nitiss
- Pharmaceutical Sciences Department, University of Illinois College of Pharmacy, Rockford, IL61107
- Biomedical Sciences Department, University of Illinois College of Medicine, Rockford, IL61107
| | - Raveena Gupta
- Pharmaceutical Sciences Department, University of Illinois College of Pharmacy, Rockford, IL61107
- Biomedical Sciences Department, University of Illinois College of Medicine, Rockford, IL61107
| | - Albert Y. Lau
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD21205
| | - Ria Guha
- Pharmaceutical Sciences Department, University of Illinois College of Pharmacy, Rockford, IL61107
- Biomedical Sciences Department, University of Illinois College of Medicine, Rockford, IL61107
| | - John L. Nitiss
- Pharmaceutical Sciences Department, University of Illinois College of Pharmacy, Rockford, IL61107
| | - James M. Berger
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD21205
| |
Collapse
|
5
|
Kobayashi M, Wakaguri H, Shimizu M, Higasa K, Matsuda F, Honjo T. Ago2 and a miRNA reduce Topoisomerase 1 for enhancing DNA cleavage in antibody diversification by activation-induced cytidine deaminase. Proc Natl Acad Sci U S A 2023; 120:e2216918120. [PMID: 37094168 PMCID: PMC10161001 DOI: 10.1073/pnas.2216918120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Accepted: 03/31/2023] [Indexed: 04/26/2023] Open
Abstract
Activation-induced cytidine deaminase (AID) is the essential enzyme for imprinting immunological memory through class switch recombination (CSR) and somatic hypermutation (SHM) of the immunoglobulin (Ig) gene. AID-dependent reduction of Topoisomerase 1 (Top1) promotes DNA cleavage that occurs upon Ig gene diversification, whereas the mechanism behind AID-induced Top1 reduction remains unclear. Here, we clarified the contribution of the microRNA-Ago2 complex in AID-dependent Top1 decrease. Ago2 binds to Top1 3'UTR with two regions of AID-dependent Ago2-binding sites (5'- and 3'dABs). Top1 3'UTR knockout (3'UTRKO) in B lymphoma cells leads to decreases in DNA break efficiency in the IgH gene accompanied by a reduction in CSR and SHM frequencies. Furthermore, AID-dependent Top1 protein reduction and Ago2-binding to Top1 mRNA are down-regulated in 3'UTRKO cells. Top1 mRNA in the highly translated fractions of the sucrose gradient is decreased in an AID-dependent and Top1 3'UTR-mediated manner, resulting in a decrease in Top1 protein synthesis. Both AID and Ago2 localize in the mRNA-binding protein fractions and they interact with each other. Furthermore, we found some candidate miRNAs which possibly bind to 5'- and 3'dAB in Top1 mRNA. Among them, miR-92a-3p knockdown induces the phenotypes of 3'UTRKO cells to wild-type cells whereas it does not impact on 3'UTRKO cells. Taken together, the Ago2-miR-92a-3p complex will be recruited to Top1 3'UTR in an AID-dependent manner and posttranscriptionally reduces Top1 protein synthesis. These consequences cause the increase in a non-B-DNA structure, enhance DNA cleavage by Top1 in the Ig gene and contribute to immunological memory formation.
Collapse
Affiliation(s)
- Maki Kobayashi
- Immunology and Genomic Medicine, Center for Cancer Immunotherapy and Immunobiology, Graduate School of Medicine, Kyoto University, Kyoto606-8501, Japan
| | - Hiroyuki Wakaguri
- Center for Genomic Medicine, Graduate School of Medicine, Kyoto University, Kyoto606-8501, Japan
| | - Masakazu Shimizu
- Center for Genomic Medicine, Graduate School of Medicine, Kyoto University, Kyoto606-8501, Japan
| | - Koichiro Higasa
- Center for Genomic Medicine, Graduate School of Medicine, Kyoto University, Kyoto606-8501, Japan
| | - Fumihiko Matsuda
- Center for Genomic Medicine, Graduate School of Medicine, Kyoto University, Kyoto606-8501, Japan
| | - Tasuku Honjo
- Immunology and Genomic Medicine, Center for Cancer Immunotherapy and Immunobiology, Graduate School of Medicine, Kyoto University, Kyoto606-8501, Japan
| |
Collapse
|
6
|
Sun Y, Soans E, Mishina M, Petricci E, Pommier Y, Nitiss KC, Nitiss JL. Requirements for MRN endonuclease processing of topoisomerase II-mediated DNA damage in mammalian cells. Front Mol Biosci 2022; 9:1007064. [PMID: 36213114 PMCID: PMC9537633 DOI: 10.3389/fmolb.2022.1007064] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 08/29/2022] [Indexed: 12/03/2022] Open
Abstract
During a normal topoisomerase II (TOP2) reaction, the enzyme forms a covalent enzyme DNA intermediate consisting of a 5′ phosphotyrosyl linkage between the enzyme and DNA. While the enzyme typically rejoins the transient breakage after strand passage, a variety of conditions including drugs targeting TOP2 can inhibit DNA resealing, leading to enzyme-mediated DNA damage. A critical aspect of the repair of TOP2-mediated damage is the removal of the TOP2 protein covalently bound to DNA. While proteolysis plays a role in repairing this damage, nucleolytic enzymes must remove the phosphotyrosyl-linked peptide bound to DNA. The MRN complex has been shown to participate in the removal of TOP2 protein from DNA following cellular treatment with TOP2 poisons. In this report we used an optimized ICE (In vivo Complex of Enzyme) assay to measure covalent TOP2/DNA complexes. In agreement with previous independent reports, we find that the absence or inhibition of the MRE11 endonuclease results in elevated levels of both TOP2α and TOP2β covalent complexes. We also examined levels of TOP2 covalent complexes in cells treated with the proteasome inhibitor MG132. Although MRE11 inhibition plus MG132 was not synergistic in etoposide-treated cells, ectopic overexpression of MRE11 resulted in removal of TOP2 even in the presence of MG132. We also found that VCP/p97 inhibition led to elevated TOP2 covalent complexes and prevented the removal of TOP2 covalent complexes by MRE11 overexpression. Our results demonstrate the existence of multiple pathways for proteolytic processing of TOP2 prior to nucleolytic processing, and that MRE11 can process TOP2 covalent complexes even when the proteasome is inhibited. The interactions between VCP/p97 and proteolytic processing of TOP2 covalent complexes merit additional investigation.
Collapse
Affiliation(s)
- Yilun Sun
- Pharmaceutical Sciences Department, University of Illinois College of Pharmacy, Rockford, IL, United States
- Laboratory of Molecular Pharmacology, Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
- *Correspondence: Yilun Sun, ; John L. Nitiss,
| | - Eroica Soans
- St. Jude Children’s Research Hospital Memphis, Memphis, TN, United States
| | - Margarita Mishina
- St. Jude Children’s Research Hospital Memphis, Memphis, TN, United States
| | | | - Yves Pommier
- Laboratory of Molecular Pharmacology, Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Karin C. Nitiss
- Pharmaceutical Sciences Department, University of Illinois College of Pharmacy, Rockford, IL, United States
| | - John L. Nitiss
- Pharmaceutical Sciences Department, University of Illinois College of Pharmacy, Rockford, IL, United States
- *Correspondence: Yilun Sun, ; John L. Nitiss,
| |
Collapse
|
7
|
Eisenreich W, Rudel T, Heesemann J, Goebel W. Link Between Antibiotic Persistence and Antibiotic Resistance in Bacterial Pathogens. Front Cell Infect Microbiol 2022; 12:900848. [PMID: 35928205 PMCID: PMC9343593 DOI: 10.3389/fcimb.2022.900848] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 06/21/2022] [Indexed: 12/15/2022] Open
Abstract
Both, antibiotic persistence and antibiotic resistance characterize phenotypes of survival in which a bacterial cell becomes insensitive to one (or even) more antibiotic(s). However, the molecular basis for these two antibiotic-tolerant phenotypes is fundamentally different. Whereas antibiotic resistance is genetically determined and hence represents a rather stable phenotype, antibiotic persistence marks a transient physiological state triggered by various stress-inducing conditions that switches back to the original antibiotic sensitive state once the environmental situation improves. The molecular basics of antibiotic resistance are in principle well understood. This is not the case for antibiotic persistence. Under all culture conditions, there is a stochastically formed, subpopulation of persister cells in bacterial populations, the size of which depends on the culture conditions. The proportion of persisters in a bacterial population increases under different stress conditions, including treatment with bactericidal antibiotics (BCAs). Various models have been proposed to explain the formation of persistence in bacteria. We recently hypothesized that all physiological culture conditions leading to persistence converge in the inability of the bacteria to re-initiate a new round of DNA replication caused by an insufficient level of the initiator complex ATP-DnaA and hence by the lack of formation of a functional orisome. Here, we extend this hypothesis by proposing that in this persistence state the bacteria become more susceptible to mutation-based antibiotic resistance provided they are equipped with error-prone DNA repair functions. This is - in our opinion - in particular the case when such bacterial populations are exposed to BCAs.
Collapse
Affiliation(s)
- Wolfgang Eisenreich
- Bavarian NMR Center – Structural Membrane Biochemistry, Department of Chemistry, Technische Universität München, Garching, Germany
- *Correspondence: Wolfgang Eisenreich,
| | - Thomas Rudel
- Chair of Microbiology, Biocenter, University of Würzburg, Würzburg, Germany
| | - Jürgen Heesemann
- Max von Pettenkofer-Institute, Ludwig Maximilian University of Munich, München, Germany
| | - Werner Goebel
- Max von Pettenkofer-Institute, Ludwig Maximilian University of Munich, München, Germany
| |
Collapse
|
8
|
Sun Y, Nitiss JL, Pommier Y. SUMO: A Swiss Army Knife for Eukaryotic Topoisomerases. Front Mol Biosci 2022; 9:871161. [PMID: 35463961 PMCID: PMC9019546 DOI: 10.3389/fmolb.2022.871161] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 03/11/2022] [Indexed: 01/03/2023] Open
Abstract
Topoisomerases play crucial roles in DNA metabolism that include replication, transcription, recombination, and chromatin structure by manipulating DNA structures arising in double-stranded DNA. These proteins play key enzymatic roles in a variety of cellular processes and are also likely to play structural roles. Topoisomerases allow topological transformations by introducing transient breaks in DNA by a transesterification reaction between a tyrosine residue of the enzyme and DNA. The cleavage reaction leads to a unique enzyme intermediate that allows cutting DNA while minimizing the potential for damage-induced genetic changes. Nonetheless, topoisomerase-mediated cleavage has the potential for inducing genome instability if the enzyme-mediated DNA resealing is impaired. Regulation of topoisomerase functions is accomplished by post-translational modifications including phosphorylation, polyADP-ribosylation, ubiquitylation, and SUMOylation. These modifications modulate enzyme activity and likely play key roles in determining sites of enzyme action and enzyme stability. Topoisomerase-mediated DNA cleavage and rejoining are affected by a variety of conditions including the action of small molecules, topoisomerase mutations, and DNA structural forms which permit the conversion of the short-lived cleavage intermediate to persistent topoisomerase DNA-protein crosslink (TOP-DPC). Recognition and processing of TOP-DPCs utilizes many of the same post-translational modifications that regulate enzyme activity. This review focuses on SUMOylation of topoisomerases, which has been demonstrated to be a key modification of both type I and type II topoisomerases. Special emphasis is placed on recent studies that indicate how SUMOylation regulates topoisomerase function in unperturbed cells and the unique roles that SUMOylation plays in repairing damage arising from topoisomerase malfunction.
Collapse
Affiliation(s)
- Yilun Sun
- Developmental Therapeutics Branch and Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, United States
| | - John L. Nitiss
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois, Rockford, IL, United States
| | - Yves Pommier
- Developmental Therapeutics Branch and Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, United States
| |
Collapse
|
9
|
Trapped topoisomerase II initiates formation of de novo duplications via the nonhomologous end-joining pathway in yeast. Proc Natl Acad Sci U S A 2020; 117:26876-26884. [PMID: 33046655 DOI: 10.1073/pnas.2008721117] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Topoisomerase II (Top2) is an essential enzyme that resolves catenanes between sister chromatids as well as supercoils associated with the over- or under-winding of duplex DNA. Top2 alters DNA topology by making a double-strand break (DSB) in DNA and passing an intact duplex through the break. Each component monomer of the Top2 homodimer nicks one of the DNA strands and forms a covalent phosphotyrosyl bond with the 5' end. Stabilization of this intermediate by chemotherapeutic drugs such as etoposide leads to persistent and potentially toxic DSBs. We describe the isolation of a yeast top2 mutant (top2-F1025Y,R1128G) the product of which generates a stabilized cleavage intermediate in vitro. In yeast cells, overexpression of the top2-F1025Y,R1128G allele is associated with a mutation signature that is characterized by de novo duplications of DNA sequence that depend on the nonhomologous end-joining pathway of DSB repair. Top2-associated duplications are promoted by the clean removal of the enzyme from DNA ends and are suppressed when the protein is removed as part of an oligonucleotide. TOP2 cells treated with etoposide exhibit the same mutation signature, as do cells that overexpress the wild-type protein. These results have implications for genome evolution and are relevant to the clinical use of chemotherapeutic drugs that target Top2.
Collapse
|