1
|
Wei X, Cheng M, Wang L, Teng X, Guo D, Xin X, Chen G, Li S, Li F. Clinicopathological and molecular genetic analysis of 13 cases of primary retroperitoneal Ewing sarcoma. Ann Diagn Pathol 2024; 72:152321. [PMID: 38759563 DOI: 10.1016/j.anndiagpath.2024.152321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/24/2024] [Accepted: 04/24/2024] [Indexed: 05/19/2024]
Abstract
Retroperitoneal Ewing sarcomas (RES) are very rare and mostly described in case reports. The purpose of this study was to retrospectively analyze the clinicopathology, molecular characteristics, biological behavior, and therapeutic information of 13 cases of primary RES with immunohistochemical staining, fluorescence in situ hybridization, RT-PCR and NGS sequencing detection techniques. The thirteen patients included eight males and five females with a mean age of 34 years. Morphologically, the tumors were comprised of small round or epithelial-like cells with vacuolated cytoplasm (6/13,46 %) arranged in diffuse, nested (8/13,62 %) and perivascular (7/13,54 %) patterns. Unusual morphologic patterns, such as meningioma-like swirling structures and sieve-like structures were relatively novel findings. Immunohistochemical studies showed CD99 (12/13; 92 %), CD56 (11/13; 85 %), NKX2.2 (9/13; 69 %), PAX7 (10/11;91 %) and CD117(6/9;67 %) to be positive.12 cases (92 %) demonstrated EWSR1 rearrangement and 3 cases displayed EWSR1::FLI1 fusion by FISH. ERCC4 splice-site variant, a novel pathogenic variant, was discovered for the first time via RNA sequencing. With a median follow-up duration of 14 months (6 to 79 months), 8/13 (62 %) patients died, while 5/13(38 %) survived. Three cases recurred, and five patients developed metastasis to the liver (2 cases), lung (2 cases) and bone (1 case). RES is an aggressive, high-grade tumor, prone to multiple recurrences and metastases, with distinctive morphologic, immunohistochemical, and molecular genetic features. ERCC4 splicing mutation, which is a novel pathogenic variant discovered for the first time, with possible significance for understanding the disease, as well as the development of targeted drugs.
Collapse
Affiliation(s)
- Xuejing Wei
- Department of Pathology and Medical Research Center, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China; Department of Pathology, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Ming Cheng
- Department of Pathology, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Lingling Wang
- Department of Pathology, Beijing Shijitan Hospital, Capital Medical University, Beijing 100038, China
| | - Xiaojing Teng
- Department of Pathology, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Dandan Guo
- Department of Pathology and Medical Research Center, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China
| | - Xin Xin
- Department of Pathology and Medical Research Center, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China
| | - Guangyong Chen
- Department of Pathology, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China.
| | - Siyuan Li
- Key Laboratory for Xinjiang Endemic & Ethnic Diseases, Shihezi University School of Medicine, Shihezi 832002, China.
| | - Feng Li
- Department of Pathology and Medical Research Center, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China; Key Laboratory for Xinjiang Endemic & Ethnic Diseases, Shihezi University School of Medicine, Shihezi 832002, China.
| |
Collapse
|
2
|
Prosz A, Sahgal P, Huffman BM, Sztupinszki Z, Morris CX, Chen D, Börcsök J, Diossy M, Tisza V, Spisak S, Likasitwatanakul P, Rusz O, Csabai I, Cecchini M, Baca Y, Elliott A, Enzinger P, Singh H, Ubellaker J, Lazaro JB, Cleary JM, Szallasi Z, Sethi NS. Mutational signature-based identification of DNA repair deficient gastroesophageal adenocarcinomas for therapeutic targeting. NPJ Precis Oncol 2024; 8:87. [PMID: 38589664 PMCID: PMC11001913 DOI: 10.1038/s41698-024-00561-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 02/22/2024] [Indexed: 04/10/2024] Open
Abstract
Homologous recombination (HR) and nucleotide excision repair (NER) are the two most frequently disabled DNA repair pathways in cancer. HR-deficient breast, ovarian, pancreatic and prostate cancers respond well to platinum chemotherapy and PARP inhibitors. However, the frequency of HR deficiency in gastric and esophageal adenocarcinoma (GEA) still lacks diagnostic and functional validation. Using whole exome and genome sequencing data, we found that a significant subset of GEA, but very few colorectal adenocarcinomas, show evidence of HR deficiency by mutational signature analysis (HRD score). High HRD gastric cancer cell lines demonstrated functional HR deficiency by RAD51 foci assay and increased sensitivity to platinum chemotherapy and PARP inhibitors. Of clinical relevance, analysis of three different GEA patient cohorts demonstrated that platinum treated HR deficient cancers had better outcomes. A gastric cancer cell line with strong sensitivity to cisplatin showed HR proficiency but exhibited NER deficiency by two photoproduct repair assays. Single-cell RNA-sequencing revealed that, in addition to inducing apoptosis, cisplatin treatment triggered ferroptosis in a NER-deficient gastric cancer, validated by intracellular GSH assay. Overall, our study provides preclinical evidence that a subset of GEAs harbor genomic features of HR and NER deficiency and may therefore benefit from platinum chemotherapy and PARP inhibitors.
Collapse
Affiliation(s)
- Aurel Prosz
- Danish Cancer Institute, Copenhagen, Denmark
| | - Pranshu Sahgal
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Computational Health Informatics Program, Boston Children's Hospital, Boston, MA, USA
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard University, Cambridge, MA, USA
| | - Brandon M Huffman
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Division of Gastrointestinal Oncology, Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Zsofia Sztupinszki
- Danish Cancer Institute, Copenhagen, Denmark
- Computational Health Informatics Program, Boston Children's Hospital, Boston, MA, USA
| | - Clare X Morris
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - David Chen
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | | | - Miklos Diossy
- Danish Cancer Institute, Copenhagen, Denmark
- Computational Health Informatics Program, Boston Children's Hospital, Boston, MA, USA
| | - Viktoria Tisza
- Institute of Molecular Life Sciences, HUN-REN Research Centre for Natural Sciences, Budapest, Hungary
| | - Sandor Spisak
- Institute of Molecular Life Sciences, HUN-REN Research Centre for Natural Sciences, Budapest, Hungary
| | - Pornlada Likasitwatanakul
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard University, Cambridge, MA, USA
| | - Orsolya Rusz
- 2nd Department of Pathology, SE NAP, Brain Metastasis Research Group, Semmelweis University, Budapest, Hungary
| | - Istvan Csabai
- Department of Physics of Complex Systems, Eötvös Loránd University, Budapest, Hungary
| | - Michael Cecchini
- Department of Medical Oncology, Center for Gastrointestinal Cancers, Yale Medical Center, New Haven, CT, USA
| | | | | | - Peter Enzinger
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Division of Gastrointestinal Oncology, Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Harshabad Singh
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Division of Gastrointestinal Oncology, Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Jessalyn Ubellaker
- Department of Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Jean-Bernard Lazaro
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Center for DNA Damage and Repair (CDDR), Dana-Farber Cancer Institute, Boston, MA, USA
| | - James M Cleary
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Division of Gastrointestinal Oncology, Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Zoltan Szallasi
- Danish Cancer Institute, Copenhagen, Denmark.
- Computational Health Informatics Program, Boston Children's Hospital, Boston, MA, USA.
- Department of Bioinformatics and Department of Pathology, Forensic and Insurance Medicine, Semmelweis University, Budapest, Hungary.
| | - Nilay S Sethi
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard University, Cambridge, MA, USA.
- Division of Gastrointestinal Oncology, Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.
| |
Collapse
|
3
|
Prosz A, Duan H, Tisza V, Sahgal P, Topka S, Klus GT, Börcsök J, Sztupinszki Z, Hanlon T, Diossy M, Vizkeleti L, Stormoen DR, Csabai I, Pappot H, Vijai J, Offit K, Ried T, Sethi N, Mouw KW, Spisak S, Pathania S, Szallasi Z. Nucleotide excision repair deficiency is a targetable therapeutic vulnerability in clear cell renal cell carcinoma. Sci Rep 2023; 13:20567. [PMID: 37996508 PMCID: PMC10667362 DOI: 10.1038/s41598-023-47946-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 11/20/2023] [Indexed: 11/25/2023] Open
Abstract
Due to a demonstrated lack of DNA repair deficiencies, clear cell renal cell carcinoma (ccRCC) has not benefitted from targeted synthetic lethality-based therapies. We investigated whether nucleotide excision repair (NER) deficiency is present in an identifiable subset of ccRCC cases that would render those tumors sensitive to therapy targeting this specific DNA repair pathway aberration. We used functional assays that detect UV-induced 6-4 pyrimidine-pyrimidone photoproducts to quantify NER deficiency in ccRCC cell lines. We also measured sensitivity to irofulven, an experimental cancer therapeutic agent that specifically targets cells with inactivated transcription-coupled nucleotide excision repair (TC-NER). In order to detect NER deficiency in clinical biopsies, we assessed whole exome sequencing data for the presence of an NER deficiency associated mutational signature previously identified in ERCC2 mutant bladder cancer. Functional assays showed NER deficiency in ccRCC cells. Some cell lines showed irofulven sensitivity at a concentration that is well tolerated by patients. Prostaglandin reductase 1 (PTGR1), which activates irofulven, was also associated with this sensitivity. Next generation sequencing data of the cell lines showed NER deficiency-associated mutational signatures. A significant subset of ccRCC patients had the same signature and high PTGR1 expression. ccRCC cell line-based analysis showed that NER deficiency is likely present in this cancer type. Approximately 10% of ccRCC patients in the TCGA cohort showed mutational signatures consistent with ERCC2 inactivation associated NER deficiency and also substantial levels of PTGR1 expression. These patients may be responsive to irofulven, a previously abandoned anticancer agent that has minimal activity in NER-proficient cells.
Collapse
Affiliation(s)
- Aurel Prosz
- Danish Cancer Institute, Copenhagen, Denmark
| | - Haohui Duan
- Center for Personalized Cancer Therapy, University of Massachusetts, Boston, MA, USA
- Department of Biology, University of Massachusetts, Boston, MA, USA
| | - Viktoria Tisza
- Computational Health Informatics Program, Boston Children's Hospital, Boston, MA, USA
- Institute of Enzymology, HUN-REN Research Centre for Natural Sciences, Budapest, Hungary
| | - Pranshu Sahgal
- Computational Health Informatics Program, Boston Children's Hospital, Boston, MA, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Broad Institute of Massachusetts Institute of Technology (MIT), Harvard University, Cambridge, MA, USA
| | - Sabine Topka
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Niehaus Center for Inherited Cancer Genomics, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Gregory T Klus
- Computational Health Informatics Program, Boston Children's Hospital, Boston, MA, USA
- Genetics Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Judit Börcsök
- Danish Cancer Institute, Copenhagen, Denmark
- Biotech Research & Innovation Centre, University of Copenhagen, Copenhagen, Denmark
| | - Zsofia Sztupinszki
- Danish Cancer Institute, Copenhagen, Denmark
- Computational Health Informatics Program, Boston Children's Hospital, Boston, MA, USA
| | - Timothy Hanlon
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Miklos Diossy
- Danish Cancer Institute, Copenhagen, Denmark
- Computational Health Informatics Program, Boston Children's Hospital, Boston, MA, USA
| | - Laura Vizkeleti
- Department of Bioinformatics, Semmelweis University, Budapest, Hungary
| | - Dag Rune Stormoen
- Department of Oncology, Rigshospitalet, University Hospital of Copenhagen, Copenhagen, Denmark
| | - Istvan Csabai
- Department of Physics of Complex Systems, Eötvös Loránd University, Budapest, Hungary
| | - Helle Pappot
- Department of Oncology, Rigshospitalet, University Hospital of Copenhagen, Copenhagen, Denmark
| | - Joseph Vijai
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Niehaus Center for Inherited Cancer Genomics, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Medicine, Weill Cornell Medical College, New York, NY, USA
- Clinical Genetics Service, Department of Medicine, Memorial Sloan Kettering, New York, NY, USA
| | - Kenneth Offit
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Niehaus Center for Inherited Cancer Genomics, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Medicine, Weill Cornell Medical College, New York, NY, USA
- Clinical Genetics Service, Department of Medicine, Memorial Sloan Kettering, New York, NY, USA
| | - Thomas Ried
- Genetics Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Nilay Sethi
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Broad Institute of Massachusetts Institute of Technology (MIT), Harvard University, Cambridge, MA, USA
| | - Kent W Mouw
- Biotech Research & Innovation Centre, University of Copenhagen, Copenhagen, Denmark
- Department of Radiation Oncology, Brigham & Women's Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Sandor Spisak
- Institute of Enzymology, HUN-REN Research Centre for Natural Sciences, Budapest, Hungary.
| | - Shailja Pathania
- Center for Personalized Cancer Therapy, University of Massachusetts, Boston, MA, USA.
- Department of Biology, University of Massachusetts, Boston, MA, USA.
| | - Zoltan Szallasi
- Danish Cancer Institute, Copenhagen, Denmark.
- Computational Health Informatics Program, Boston Children's Hospital, Boston, MA, USA.
- Department of Bioinformatics, Semmelweis University, Budapest, Hungary.
| |
Collapse
|
4
|
Wooten J, Mavingire N, Damar K, Loaiza-Perez A, Brantley E. Triumphs and challenges in exploiting poly(ADP-ribose) polymerase inhibition to combat triple-negative breast cancer. J Cell Physiol 2023; 238:1625-1640. [PMID: 37042191 DOI: 10.1002/jcp.31015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 03/14/2023] [Indexed: 04/13/2023]
Abstract
Poly(ADP-ribose) polymerase 1 (PARP1) regulates a myriad of DNA repair mechanisms to preserve genomic integrity following DNA damage. PARP inhibitors (PARPi) confer synthetic lethality in malignancies with a deficiency in the homologous recombination (HR) pathway. Patients with triple-negative breast cancer (TNBC) fail to respond to most targeted therapies because their tumors lack expression of the estrogen receptor, progesterone receptor, and human epidermal growth factor receptor 2. Certain patients with TNBC harbor mutations in HR mediators such as breast cancer susceptibility gene 1 (BRCA1) and breast cancer susceptibility gene 2 (BRCA2), enabling them to respond to PARPi. PARPi exploits the synthetic lethality of BRCA-mutant cells. However, de novo and acquired PARPi resistance frequently ensue. In this review, we discuss the roles of PARP in mediating DNA repair processes in breast epithelial cells, mechanisms of PARPi resistance in TNBC, and recent advances in the development of agents designed to overcome PARPi resistance in TNBC.
Collapse
Affiliation(s)
- Jonathan Wooten
- Department of Basic Sciences, Division of Pharmacology, School of Medicine, Loma Linda University Health, Loma Linda, California, USA
- Center for Health Disparities and Molecular Medicine, School of Medicine, Loma Linda University Health, Loma Linda, California, USA
| | - Nicole Mavingire
- Department of Basic Sciences, Division of Pharmacology, School of Medicine, Loma Linda University Health, Loma Linda, California, USA
| | - Katherine Damar
- Department of Basic Sciences, Division of Pharmacology, School of Medicine, Loma Linda University Health, Loma Linda, California, USA
| | - Andrea Loaiza-Perez
- Facultad de Medicina, Instituto de Oncología Ángel H. Roffo (IOAHR), Universidad de Buenos Aires, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Eileen Brantley
- Department of Basic Sciences, Division of Pharmacology, School of Medicine, Loma Linda University Health, Loma Linda, California, USA
- Center for Health Disparities and Molecular Medicine, School of Medicine, Loma Linda University Health, Loma Linda, California, USA
| |
Collapse
|
5
|
Prosz A, Duan H, Tisza V, Sahgal P, Topka S, Klus GT, Börcsök J, Sztupinszki Z, Hanlon T, Diossy M, Vizkeleti L, Stormoen DR, Csabai I, Pappot H, Vijai J, Offit K, Ried T, Sethi N, Mouw KW, Spisak S, Pathania S, Szallasi Z. Nucleotide excision repair deficiency is a targetable therapeutic vulnerability in clear cell renal cell carcinoma. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.07.527498. [PMID: 36798363 PMCID: PMC9934582 DOI: 10.1101/2023.02.07.527498] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Purpose Due to a demonstrated lack of DNA repair deficiencies, clear cell renal cell carcinoma (ccRCC) has not benefitted from targeted synthetic lethality-based therapies. We investigated whether nucleotide excision repair (NER) deficiency is present in an identifiable subset of ccRCC cases that would render those tumors sensitive to therapy targeting this specific DNA repair pathway aberration. Experimental Design We used functional assays that detect UV-induced 6-4 pyrimidine-pyrimidone photoproducts to quantify NER deficiency in ccRCC cell lines. We also measured sensitivity to irofulven, an experimental cancer therapeutic agent that specifically targets cells with inactivated transcription-coupled nucleotide excision repair (TC-NER). In order to detect NER deficiency in clinical biopsies, we assessed whole exome sequencing data for the presence of an NER deficiency associated mutational signature previously identified in ERCC2 mutant bladder cancer. Results Functional assays showed NER deficiency in ccRCC cells. Irofulven sensitivity increased in some cell lines. Prostaglandin reductase 1 (PTGR1), which activates irofulven, was also associated with this sensitivity. Next generation sequencing data of the cell lines showed NER deficiency-associated mutational signatures. A significant subset of ccRCC patients had the same signature and high PTGR1 expression. Conclusions ccRCC cell line based analysis showed that NER deficiency is likely present in this cancer type. Approximately 10% of ccRCC patients in the TCGA cohort showed mutational signatures consistent with ERCC2 inactivation associated NER deficiency and also substantial levels of PTGR1 expression. These patients may be responsive to irofulven, a previously abandoned anticancer agent that has minimal activity in NER-proficient cells.
Collapse
Affiliation(s)
- Aurel Prosz
- Danish Cancer Society Research Center, Copenhagen, Denmark
| | - Haohui Duan
- Center for Personalized Cancer Therapy, University of Massachusetts, Boston, MA
- Department of Biology, University of Massachusetts, Boston, MA
| | - Viktoria Tisza
- Computational Health Informatics Program, Boston Children’s Hospital, Boston, MA
- Institute of Enzymology, Research Centre for Natural Sciences, Budapest, Hungary
| | - Pranshu Sahgal
- Computational Health Informatics Program, Boston Children’s Hospital, Boston, MA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard University, Cambridge, MA, USA
| | - Sabine Topka
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, New York
- Niehaus Center for Inherited Cancer Genomics, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Gregory T Klus
- Computational Health Informatics Program, Boston Children’s Hospital, Boston, MA
- Genetics Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Judit Börcsök
- Danish Cancer Society Research Center, Copenhagen, Denmark
- Biotech Research & Innovation Centre, University of Copenhagen, Copenhagen, Denmark
| | - Zsofia Sztupinszki
- Danish Cancer Society Research Center, Copenhagen, Denmark
- Computational Health Informatics Program, Boston Children’s Hospital, Boston, MA
| | - Timothy Hanlon
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, MA
| | - Miklos Diossy
- Danish Cancer Society Research Center, Copenhagen, Denmark
- Computational Health Informatics Program, Boston Children’s Hospital, Boston, MA
| | - Laura Vizkeleti
- Department of Bioinformatics, Semmelweis University, Budapest, Hungary
| | - Dag Rune Stormoen
- Department of Oncology, Rigshospitalet, University Hospital of Copenhagen, Denmark
| | - Istvan Csabai
- Department of Physics of Complex Systems, Eötvös Loránd University, Budapest, Hungary
| | - Helle Pappot
- Department of Oncology, Rigshospitalet, University Hospital of Copenhagen, Denmark
| | - Joseph Vijai
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
- Niehaus Center for Inherited Cancer Genomics, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, New York
- Department of Medicine, Weill Cornell Medical College, New York,New York
- Clinical Genetics Service, Department of Medicine, Memorial Sloan Kettering, New York, New York
| | - Kenneth Offit
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, New York
- Niehaus Center for Inherited Cancer Genomics, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, New York
- Department of Medicine, Weill Cornell Medical College, New York,New York
- Clinical Genetics Service, Department of Medicine, Memorial Sloan Kettering, New York, New York
| | - Thomas Ried
- Genetics Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Nilay Sethi
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard University, Cambridge, MA, USA
| | - Kent W. Mouw
- Biotech Research & Innovation Centre, University of Copenhagen, Copenhagen, Denmark
- Department of Radiation Oncology, Brigham & Women’s Hospital, Boston, MA
- Harvard Medical School, Boston, MA
| | - Sandor Spisak
- Institute of Enzymology, Research Centre for Natural Sciences, Budapest, Hungary
| | - Shailja Pathania
- Center for Personalized Cancer Therapy, University of Massachusetts, Boston, MA
- Department of Biology, University of Massachusetts, Boston, MA
| | - Zoltan Szallasi
- Danish Cancer Society Research Center, Copenhagen, Denmark
- Computational Health Informatics Program, Boston Children’s Hospital, Boston, MA
- Department of Bioinformatics, Semmelweis University, Budapest, Hungary
| |
Collapse
|
6
|
PARP Inhibitors and Proteins Interacting with SLX4. Cancers (Basel) 2023; 15:cancers15030997. [PMID: 36765954 PMCID: PMC9913592 DOI: 10.3390/cancers15030997] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 01/31/2023] [Accepted: 01/31/2023] [Indexed: 02/08/2023] Open
Abstract
PARP inhibitors are small molecules currently used with success in the treatment of certain cancer patients. Their action was first shown to be specific to cells with DNA repair deficiencies, such as BRCA-mutant cancers. However, recent work has suggested clinical interest of these drugs beyond this group of patients. Preclinical data on relationships between the activity of PARP inhibitors and other proteins involved in DNA repair exist, and this review will only highlight findings on the SLX4 protein and its interacting protein partners. As suggested from these available data and depending on further validations, new treatment strategies could be developed in order to broaden the use for PARP inhibitors in cancer patients.
Collapse
|
7
|
A nuclease-mimetic platinum nanozyme induces concurrent DNA platination and oxidative cleavage to overcome cancer drug resistance. Nat Commun 2022; 13:7361. [PMID: 36450764 PMCID: PMC9712435 DOI: 10.1038/s41467-022-35022-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 11/15/2022] [Indexed: 12/03/2022] Open
Abstract
Platinum (Pt) resistance in cancer almost inevitably occurs during clinical Pt-based chemotherapy. The spontaneous nucleotide-excision repair of cancer cells is a representative process that leads to Pt resistance, which involves the local DNA bending to facilitate the recruitment of nucleotide-excision repair proteins and subsequent elimination of Pt-DNA adducts. By exploiting the structural vulnerability of this process, we herein report a nuclease-mimetic Pt nanozyme that can target cancer cell nuclei and induce concurrent DNA platination and oxidative cleavage to overcome Pt drug resistance. We show that the Pt nanozyme, unlike cisplatin and conventional Pt nanoparticles, specifically induces the nanozyme-catalyzed cleavage of the formed Pt-DNA adducts by generating in situ reactive oxygen species, which impairs the damage recognition factors-induced DNA bending prerequisite for nucleotide-excision repair. The recruitment of downstream effectors of nucleotide-excision repair to DNA lesion sites, including xeroderma pigmentosum groups A and F, is disrupted by the Pt nanozyme in cisplatin-resistant cancer cells, allowing excessive accumulation of the Pt-DNA adducts for highly efficient cancer therapy. Our study highlights the potential benefits of applying enzymatic activities to the use of the Pt nanomedicines, providing a paradigm shift in DNA damaging chemotherapy.
Collapse
|
8
|
Jiang H, Zeng W, Zhang X, Pei Y, Zhang H, Li Y. The role of gut microbiota in patients with benign and malignant brain tumors: a pilot study. Bioengineered 2022; 13:7847-7859. [PMID: 35291914 PMCID: PMC9208447 DOI: 10.1080/21655979.2022.2049959] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Gut microbiota is associated with the growth of various tumors, including malignant gliomas, through the brain-gut axis. Moreover, the gut microbiota in patients with malignant tumors may considerably differ from those with benign tumors. However, the associations of gut microbiota with benign and malignant brain tumors remain unclear. Hence, in order to explore these underlying relationships, patients with benign meningioma (n = 32), malignant glioma (n = 27), and healthy individuals (n = 41) were selected to participate in this study. The results showed that the diversity of the microbial ecosystem in brain tumor patients were less than the healthy controls, while no significant differences were observed between the meningioma and glioma groups. The microbial composition also differed significantly between individuals with brain tumors and healthy participants. In meningioma group, pathogenic bacteria like Enterobacteriaceae were increased, whereas certain carcinogenic bacteria were overrepresented in the glioma group, including Fusobacterium and Akkermansia. Furthermore, benign and malignant brain tumor patients lacked SCFA-producing probiotics. Thus, a microbial biomarker panel including Fusobacterium, Akkermansia, Escherichia/Shigella, Lachnospira, Agathobacter, and Bifidobacterium was established. Diagnostic models confirmed that this panel could distinguish between brain tumor patients and healthy patients. Additionally, gut microbiota can affect the differentiation and proliferation of brain tumors via several metabolic pathways based on annotations from the Kyoto Encyclopedia of Genes and Genomes (KEGG). This is the first study designed to investigate whether gut microbiota differs between benign and malignant brain tumor patients, and our work concluded that intestinal flora is a valuable tool for the diagnosis and treatment of brain tumors.
Collapse
Affiliation(s)
- Haixiao Jiang
- Department of Clinical Medicine,School of Medicine, Yangzhou University, Yangzhou, Jiangsu, China.,Department of Neurosurgery, Clinical Medical College of Yangzhou University, Yangzhou, Jiangsu, China
| | - Wei Zeng
- Department of Clinical Medicine,School of Medicine, Yangzhou University, Yangzhou, Jiangsu, China.,Department of Neurosurgery, Clinical Medical College of Yangzhou University, Yangzhou, Jiangsu, China
| | - Xiaoli Zhang
- Department of Clinical Medicine,School of Medicine, Yangzhou University, Yangzhou, Jiangsu, China.,Department of Medical Imaging, The Affiliated Hospital of Yangzhou University, Yangzhou, Jiangsu, China
| | - Yunlong Pei
- Department of Neurosurgery, Clinical Medical College of Yangzhou University, Yangzhou, Jiangsu, China
| | - Hengzhu Zhang
- Department of Clinical Medicine,School of Medicine, Yangzhou University, Yangzhou, Jiangsu, China.,Department of Neurosurgery, Clinical Medical College of Yangzhou University, Yangzhou, Jiangsu, China
| | - Yuping Li
- Department of Clinical Medicine,School of Medicine, Yangzhou University, Yangzhou, Jiangsu, China.,Department of Neurosurgery, Clinical Medical College of Yangzhou University, Yangzhou, Jiangsu, China
| |
Collapse
|
9
|
Sankaranarayanan RA, Peil J, Vogg ATJ, Bolm C, Terhorst S, Classen A, Bauwens M, Maurer J, Mottaghy F, Morgenroth A. Auger Emitter Conjugated PARP Inhibitor for Therapy in Triple Negative Breast Cancers: A Comparative In-Vitro Study. Cancers (Basel) 2022; 14:cancers14010230. [PMID: 35008392 PMCID: PMC8750932 DOI: 10.3390/cancers14010230] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 12/20/2021] [Accepted: 12/30/2021] [Indexed: 01/27/2023] Open
Abstract
Simple Summary Triple negative breast cancer (TNBC) is an aggressive subtype of breast cancer, with a high recurrence rate. Since treatment of BRCAmut TNBC patients with PARP inhibitor (PARPi), targeting the nuclear protein PARP1, shows varied responses, its therapeutic efficacy is currently evaluated in combination with chemotherapy. Auger emitters (AEs) are radionuclides that can cause DNA damage when delivered close to the DNA. Due to the nuclear location of PARP1, radiolabelling of PARPi with AEs provide an efficient nuclear delivery mechanism. This study shows the radiosynthesis of an AE radiolabelled PARPi ([125I]-PARPi-01) and its therapeutic effect as monotherapy or in combination with chemotherapeutics in a panel of TNBC cell lines. We found that [125I]-PARPi-01 efficiently induces DNA damage with therapeutic effect irrespective of BRCA mutation. All responsive cell lines have homologous recombination deficiency. Short pretreatment with doxorubicin significantly reduces clonogenic survival of both responsive and resistant cell lines. Abstract PARP1 inhibitors (PARPi) are currently approved for BRCAmut metastatic breast cancer, but they have shown limited response in triple negative breast cancer (TNBC) patients. Combination of an Auger emitter with PARPis enables PARP inhibition and DNA strand break induction simultaneously. This will enhance cytotoxicity and additionally allow a theranostic approach. This study presents the radiosynthesis of the Auger emitter [125I] coupled olaparib derivative: [125I]-PARPi-01, and its therapeutic evaluation in a panel of TNBC cell lines. Specificity was tested by a blocking assay. DNA strand break induction was analysed by γH2AX immunofluorescence staining. Cell cycle analysis and apoptosis assays were studied using flow cytometry in TNBC cell lines (BRCAwt/mut). Anchorage independent growth potential was evaluated using soft agar assay. [125I]-PARPi-01 showed PARP1-specificity and higher cytotoxicity than olaparib in TNBC cell lines irrespective of BRCA their status. Cell lines harbouring DNA repair deficiency showed response to [125I]-PARPi-01 monotherapy. Combined treatment with Dox-NP further enhanced therapeutic efficiency in metastatic resistant BRCAwt cell lines. The clonogenic survival was significantly reduced after treatment with [125I]-PARPi-01 in all TNBC lines investigated. Therapeutic efficacy was further enhanced after combined treatment with chemotherapeutics. [125I]-PARPi-01 is a promising radiotherapeutic agent for low radiation dosages, and mono/combined therapies of TNBC.
Collapse
Affiliation(s)
- Ramya Ambur Sankaranarayanan
- Department of Nuclear Medicine, University Hospital Aachen, RWTH Aachen University, 52074 Aachen, Germany; (R.A.S.); (J.P.); (A.T.J.V.); (M.B.); (F.M.)
| | - Jennifer Peil
- Department of Nuclear Medicine, University Hospital Aachen, RWTH Aachen University, 52074 Aachen, Germany; (R.A.S.); (J.P.); (A.T.J.V.); (M.B.); (F.M.)
| | - Andreas T. J. Vogg
- Department of Nuclear Medicine, University Hospital Aachen, RWTH Aachen University, 52074 Aachen, Germany; (R.A.S.); (J.P.); (A.T.J.V.); (M.B.); (F.M.)
| | - Carsten Bolm
- Institute of Organic Chemistry, RWTH Aachen University, 52056 Aachen, Germany; (C.B.); (S.T.); (A.C.)
| | - Steven Terhorst
- Institute of Organic Chemistry, RWTH Aachen University, 52056 Aachen, Germany; (C.B.); (S.T.); (A.C.)
| | - Arno Classen
- Institute of Organic Chemistry, RWTH Aachen University, 52056 Aachen, Germany; (C.B.); (S.T.); (A.C.)
| | - Matthias Bauwens
- Department of Nuclear Medicine, University Hospital Aachen, RWTH Aachen University, 52074 Aachen, Germany; (R.A.S.); (J.P.); (A.T.J.V.); (M.B.); (F.M.)
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Center (MUMC+), 6229HX Maastricht, The Netherlands
- School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University, 6229HX Maastricht, The Netherlands
| | - Jochen Maurer
- Department of Molecular Gynecology, University Hospital Aachen, RWTH Aachen University, 52074 Aachen, Germany;
| | - Felix Mottaghy
- Department of Nuclear Medicine, University Hospital Aachen, RWTH Aachen University, 52074 Aachen, Germany; (R.A.S.); (J.P.); (A.T.J.V.); (M.B.); (F.M.)
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Center (MUMC+), 6229HX Maastricht, The Netherlands
| | - Agnieszka Morgenroth
- Department of Nuclear Medicine, University Hospital Aachen, RWTH Aachen University, 52074 Aachen, Germany; (R.A.S.); (J.P.); (A.T.J.V.); (M.B.); (F.M.)
- Correspondence:
| |
Collapse
|
10
|
Börcsök J, Sztupinszki Z, Bekele R, Gao SP, Diossy M, Samant AS, Dillon KM, Tisza V, Spisák S, Rusz O, Csabai I, Pappot H, Frazier ZJ, Konieczkowski DJ, Liu D, Vasani N, Rodrigues JA, Solit DB, Hoffman-Censits JH, Plimack ER, Rosenberg JE, Lazaro JB, Taplin ME, Iyer G, Brunak S, Lozsa R, Van Allen EM, Szüts D, Mouw KW, Szallasi Z. Identification of a Synthetic Lethal Relationship between Nucleotide Excision Repair Deficiency and Irofulven Sensitivity in Urothelial Cancer. Clin Cancer Res 2020; 27:2011-2022. [PMID: 33208343 DOI: 10.1158/1078-0432.ccr-20-3316] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 10/16/2020] [Accepted: 11/04/2020] [Indexed: 11/16/2022]
Abstract
PURPOSE Cisplatin-based chemotherapy is a first-line treatment for muscle-invasive and metastatic urothelial cancer. Approximately 10% of bladder urothelial tumors have a somatic missense mutation in the nucleotide excision repair (NER) gene, ERCC2, which confers increased sensitivity to cisplatin-based chemotherapy. However, a significant subset of patients is ineligible to receive cisplatin-based therapy due to medical contraindications, and no NER-targeted approaches are available for platinum-ineligible or platinum-refractory ERCC2-mutant cases. EXPERIMENTAL DESIGN We used a series of NER-proficient and NER-deficient preclinical tumor models to test sensitivity to irofulven, an abandoned anticancer agent. In addition, we used available clinical and sequencing data from multiple urothelial tumor cohorts to develop and validate a composite mutational signature of ERCC2 deficiency and cisplatin sensitivity. RESULTS We identified a novel synthetic lethal relationship between tumor NER deficiency and sensitivity to irofulven. Irofulven specifically targets cells with inactivation of the transcription-coupled NER (TC-NER) pathway and leads to robust responses in vitro and in vivo, including in models with acquired cisplatin resistance, while having minimal effect on cells with intact NER. We also found that a composite mutational signature of ERCC2 deficiency was strongly associated with cisplatin response in patients and was also associated with cisplatin and irofulven sensitivity in preclinical models. CONCLUSIONS Tumor NER deficiency confers sensitivity to irofulven, a previously abandoned anticancer agent, with minimal activity in NER-proficient cells. A composite mutational signature of NER deficiency may be useful in identifying patients likely to respond to NER-targeting agents, including cisplatin and irofulven.See related commentary by Jiang and Greenberg, p. 1833.
Collapse
Affiliation(s)
- Judit Börcsök
- Danish Cancer Society Research Center, Copenhagen, Denmark
| | | | - Raie Bekele
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
- Harvard Medical School, Boston, Massachusetts
| | - Sizhi P Gao
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Miklos Diossy
- Danish Cancer Society Research Center, Copenhagen, Denmark
| | - Amruta S Samant
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Kasia M Dillon
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Viktoria Tisza
- Computational Health Informatics Program, Boston Children's Hospital, Boston, Massachusetts
| | - Sándor Spisák
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Orsolya Rusz
- 2nd Department of Pathology, SE NAP, Brain Metastasis Research Group, Semmelweis University, Budapest, Hungary
| | - Istvan Csabai
- Department of Physics of Complex Systems, Eötvös Loránd University, Budapest, Hungary
| | - Helle Pappot
- Department of Oncology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Zoë J Frazier
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - David J Konieczkowski
- Department of Radiation Oncology, Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, The Ohio State University, Columbus, Ohio
| | - David Liu
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Naresh Vasani
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - James A Rodrigues
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - David B Solit
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York
- Genitourinary Oncology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
- Marie-Josee and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
- Weill Cornell Medical College, New York, New York
| | - Jean H Hoffman-Censits
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, Maryland
| | - Elizabeth R Plimack
- Department of Hematology/Oncology, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Jonathan E Rosenberg
- Genitourinary Oncology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
- Weill Cornell Medical College, New York, New York
| | - Jean-Bernard Lazaro
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Mary-Ellen Taplin
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Gopa Iyer
- Genitourinary Oncology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Søren Brunak
- Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen, Denmark
| | - Rita Lozsa
- Institute of Enzymology, Research Centre for Natural Sciences, Budapest, Hungary
| | - Eliezer M Van Allen
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Dávid Szüts
- Institute of Enzymology, Research Centre for Natural Sciences, Budapest, Hungary
| | - Kent W Mouw
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts.
- Department of Radiation Oncology, Brigham & Women's Hospital, Boston, Massachusetts
- Harvard Medical School, Boston, Massachusetts
| | - Zoltan Szallasi
- Danish Cancer Society Research Center, Copenhagen, Denmark.
- Computational Health Informatics Program, Boston Children's Hospital, Boston, Massachusetts
- 2nd Department of Pathology, SE NAP, Brain Metastasis Research Group, Semmelweis University, Budapest, Hungary
| |
Collapse
|
11
|
Lee KJ, Mann E, Wright G, Piett CG, Nagel ZD, Gassman NR. Exploiting DNA repair defects in triple negative breast cancer to improve cell killing. Ther Adv Med Oncol 2020; 12:1758835920958354. [PMID: 32994807 PMCID: PMC7502856 DOI: 10.1177/1758835920958354] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 08/19/2020] [Indexed: 12/13/2022] Open
Abstract
Background: The lack of molecular targets for triple negative breast cancer (TNBC) has limited treatment options and reduced survivorship. Identifying new molecular targets may help improve patient survival and decrease recurrence and metastasis. As DNA repair defects are prevalent in breast cancer, we evaluated the expression and repair capacities of DNA repair proteins in preclinical models. Methods: DNA repair capacity was analyzed in four TNBC cell lines, MDA-MB-157 (MDA-157), MDA-MB-231 (MDA-231), MDA-MB-468 (MDA-468), and HCC1806, using fluorescence multiplex host cell reactivation (FM-HCR) assays. Expression of DNA repair genes was analyzed with RNA-seq, and protein expression was evaluated with immunoblot. Responses to the combination of DNA damage response inhibitors and primary chemotherapy drugs doxorubicin or carboplatin were evaluated in the cell lines. Results: Defects in base excision and nucleotide excision repair were observed in preclinical TNBC models. Gene expression analysis showed a limited correlation between these defects. Loss in protein expression was a better indicator of these DNA repair defects. Over-expression of PARP1, XRCC1, RPA, DDB1, and ERCC1 was observed in TNBC preclinical models, and likely contributed to altered sensitivity to chemotherapy and DNA damage response (DDR) inhibitors. Improved cell killing was achieved when primary therapy was combined with DDR inhibitors for ATM, ATR, or CHK1. Conclusion: Base excision and nucleotide excision repair pathways may offer new molecular targets for TNBC. The functional status of DNA repair pathways should be considered when evaluating new therapies and may improve the targeting for primary and combination therapies with DDR inhibitors.
Collapse
Affiliation(s)
- Kevin J Lee
- College of Medicine, Mitchell Cancer Institute, University of South Alabama, Mobile, AL, USA
| | - Elise Mann
- College of Medicine, University of South Alabama, Mobile, AL, USA
| | - Griffin Wright
- College of Medicine, Mitchell Cancer Institute, University of South Alabama, Mobile, AL, USA
| | - Cortt G Piett
- Harvard T.H. Chan School of Public Health, Harvard University, Boston, MA, USA
| | - Zachary D Nagel
- Harvard T.H. Chan School of Public Health, Harvard University, Boston, MA, USA
| | - Natalie R Gassman
- Mitchell Cancer Institute, University of South Alabama, 1660 Springhill Avenue, Mobile, AL 36607, USA
| |
Collapse
|