1
|
Falini B, Sorcini D, Perriello VM, Sportoletti P. Functions of the native NPM1 protein and its leukemic mutant. Leukemia 2024:10.1038/s41375-024-02476-4. [PMID: 39690184 DOI: 10.1038/s41375-024-02476-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 11/11/2024] [Accepted: 11/14/2024] [Indexed: 12/19/2024]
Abstract
The nucleophosmin (NPM1) gene encodes for the most abundant nucleolar protein. Thanks to its property to act as histone chaperone and to shuttle between the nucleus and cytoplasm, the NPM1 protein is involved in multiple cellular function that are here extensively reviewed and include the formation of the nucleolus through liquid-liquid phase separation, regulation of ribosome biogenesis and transport, control of DNA repair and centrosome duplication as well as response to nucleolar stress. NPM1 is mutated in about 30-35% of adult acute myeloid leukemia (AML). Due to its unique biological and clinical features, NPM1-mutated AML is regarded as a distinct leukemia entity in the WHO 5th edition and ICC classifications of myeloid malignancies. The NPM1 mutant undergoes changes at the C-terminus of the protein that leads to its delocalization in the cytoplasm of the leukemic cells. Here, we focus also on its biological functions discussing the murine models of NPM1 mutations and the various mechanisms that occur at cytoplasmic and nuclear levels to promote and maintain NPM1-mutated AML.
Collapse
Affiliation(s)
- Brunangelo Falini
- Institute of Hematology and Center for Hemato-Oncological research (CREO), University of Perugia and Santa Maria della Misericordia Hospital, Perugia, Italy.
| | - Daniele Sorcini
- Institute of Hematology and Center for Hemato-Oncological research (CREO), University of Perugia and Santa Maria della Misericordia Hospital, Perugia, Italy
| | - Vincenzo Maria Perriello
- Institute of Hematology and Center for Hemato-Oncological research (CREO), University of Perugia and Santa Maria della Misericordia Hospital, Perugia, Italy
| | - Paolo Sportoletti
- Institute of Hematology and Center for Hemato-Oncological research (CREO), University of Perugia and Santa Maria della Misericordia Hospital, Perugia, Italy
| |
Collapse
|
2
|
Tang S, Wang Y, Luo R, Fang R, Liu Y, Xiang H, Ran P, Tong Y, Sun M, Tan S, Huang W, Huang J, Lv J, Xu N, Yao Z, Zhang Q, Xu Z, Yue X, Yu Z, Akesu S, Ding Y, Xu C, Lu W, Zhou Y, Hou Y, Ding C. Proteomic characterization identifies clinically relevant subgroups of soft tissue sarcoma. Nat Commun 2024; 15:1381. [PMID: 38360860 PMCID: PMC10869728 DOI: 10.1038/s41467-024-45306-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Accepted: 01/18/2024] [Indexed: 02/17/2024] Open
Abstract
Soft tissue sarcoma is a broad family of mesenchymal malignancies exhibiting remarkable histological diversity. We portray the proteomic landscape of 272 soft tissue sarcomas representing 12 major subtypes. Hierarchical classification finds the similarity of proteomic features between angiosarcoma and epithelial sarcoma, and elevated expression of SHC1 in AS and ES is correlated with poor prognosis. Moreover, proteomic clustering classifies patients of soft tissue sarcoma into 3 proteomic clusters with diverse driven pathways and clinical outcomes. In the proteomic cluster featured with the high cell proliferation rate, APEX1 and NPM1 are found to promote cell proliferation and drive the progression of cancer cells. The classification based on immune signatures defines three immune subtypes with distinctive tumor microenvironments. Further analysis illustrates the potential association between immune evasion markers (PD-L1 and CD80) and tumor metastasis in soft tissue sarcoma. Overall, this analysis uncovers sarcoma-type-specific changes in proteins, providing insights about relationships of soft tissue sarcoma.
Collapse
Affiliation(s)
- Shaoshuai Tang
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Institutes of Biomedical Sciences, Human Phenome Institute, Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200433, China
| | - Yunzhi Wang
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Institutes of Biomedical Sciences, Human Phenome Institute, Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200433, China
| | - Rongkui Luo
- Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Rundong Fang
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Institutes of Biomedical Sciences, Human Phenome Institute, Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200433, China
| | - Yufeng Liu
- Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Hang Xiang
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Institutes of Biomedical Sciences, Human Phenome Institute, Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200433, China
| | - Peng Ran
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Institutes of Biomedical Sciences, Human Phenome Institute, Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200433, China
| | - Yexin Tong
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Institutes of Biomedical Sciences, Human Phenome Institute, Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200433, China
| | - Mingjun Sun
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Institutes of Biomedical Sciences, Human Phenome Institute, Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200433, China
| | - Subei Tan
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Institutes of Biomedical Sciences, Human Phenome Institute, Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200433, China
| | - Wen Huang
- Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jie Huang
- Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jiacheng Lv
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Institutes of Biomedical Sciences, Human Phenome Institute, Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200433, China
| | - Ning Xu
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Institutes of Biomedical Sciences, Human Phenome Institute, Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200433, China
| | - Zhenmei Yao
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Institutes of Biomedical Sciences, Human Phenome Institute, Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200433, China
| | - Qiao Zhang
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Institutes of Biomedical Sciences, Human Phenome Institute, Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200433, China
| | - Ziyan Xu
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Institutes of Biomedical Sciences, Human Phenome Institute, Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200433, China
| | - Xuetong Yue
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Institutes of Biomedical Sciences, Human Phenome Institute, Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200433, China
| | - Zixiang Yu
- Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Sujie Akesu
- Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yuqin Ding
- Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai, China
- Shanghai Institute of Medical Imaging, Shanghai, China
| | - Chen Xu
- Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai, China.
| | - Weiqi Lu
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China.
| | - Yuhong Zhou
- Department of Medical Oncology, Zhongshan Hospital, Fudan University, Shanghai, China.
| | - Yingyong Hou
- Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai, China.
| | - Chen Ding
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Institutes of Biomedical Sciences, Human Phenome Institute, Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200433, China.
| |
Collapse
|
3
|
Sokolova V, Lee G, Mullins A, Mody P, Watanabe S, Tan D. DNA-translocation-independent role of INO80 remodeler in DNA damage repairs. J Biol Chem 2023; 299:105245. [PMID: 37696438 PMCID: PMC10570696 DOI: 10.1016/j.jbc.2023.105245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 08/22/2023] [Accepted: 09/04/2023] [Indexed: 09/13/2023] Open
Abstract
Chromatin remodelers utilize ATP hydrolysis to reposition histone octamers on DNA, facilitating transcription by promoting histone displacements. Although their actions on chromatin with damaged DNA are assumed to be similar, the precise mechanisms by which they modulate damaged nucleosomes and their specific roles in DNA damage response (DDR) remain unclear. INO80-C, a versatile chromatin remodeler, plays a crucial role in the efficient repair of various types of damage. In this study, we have demonstrated that both abasic sites and UV-irradiation damage abolish the DNA translocation activity of INO80-C. Additionally, we have identified compromised ATP hydrolysis within the Ino80 catalytic subunit as the primary cause of the inhibition of DNA translocation, while its binding to damaged nucleosomes remains unaffected. Moreover, we have uncovered a novel function of INO80-C that operates independently of its DNA translocation activity, namely, its facilitation of apurinic/apyrimidinic (AP) site cleavage by the AP-endonuclease 1 (APE1). Our findings provide valuable insights into the role of the INO80-C chromatin remodeler in DDR, thereby advancing our understanding of chromatin remodeling during DNA damage repairs.
Collapse
Affiliation(s)
- Vladyslava Sokolova
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, New York, USA
| | - Gahyun Lee
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, New York, USA
| | - Amber Mullins
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, New York, USA
| | - Preesha Mody
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, New York, USA
| | - Shinya Watanabe
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
| | - Dongyan Tan
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, New York, USA.
| |
Collapse
|
4
|
Jeilani M, Billington K, Sunter JD, Dean S, Wheeler RJ. Nucleolar targeting in an early-branching eukaryote suggests a general mechanism for ribosome protein sorting. J Cell Sci 2022; 135:jcs259701. [PMID: 36052646 PMCID: PMC9659390 DOI: 10.1242/jcs.259701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Accepted: 08/24/2022] [Indexed: 11/20/2022] Open
Abstract
The compartmentalised eukaryotic cell demands accurate targeting of proteins to the organelles in which they function, whether membrane-bound (like the nucleus) or non-membrane-bound (like the nucleolus). Nucleolar targeting relies on positively charged localisation signals and has received rejuvenated interest since the widespread recognition of liquid-liquid phase separation (LLPS) as a mechanism contributing to nucleolus formation. Here, we exploit a new genome-wide analysis of protein localisation in the early-branching eukaryote Trypanosoma brucei to analyse general nucleolar protein properties. T. brucei nucleolar proteins have similar properties to those in common model eukaryotes, specifically basic amino acids. Using protein truncations and addition of candidate targeting sequences to proteins, we show both homopolymer runs and distributed basic amino acids give nucleolar partition, further aided by a nuclear localisation signal (NLS). These findings are consistent with phase separation models of nucleolar formation and physical protein properties being a major contributing mechanism for eukaryotic nucleolar targeting, conserved from the last eukaryotic common ancestor. Importantly, cytoplasmic ribosome proteins, unlike mitochondrial ribosome proteins, have more basic residues - pointing to adaptation of physicochemical properties to assist segregation.
Collapse
Affiliation(s)
- Milad Jeilani
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK
| | - Karen Billington
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford OX3 0BP, UK
| | - Jack Daniel Sunter
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford OX3 0BP, UK
| | - Samuel Dean
- Warwick Medical School, Warwick University, Warwick CV4 7AL, UK
| | - Richard John Wheeler
- Peter Medawar Building for Pathogen Research, Nuffield Department of Medicine, University of Oxford, Oxford OX1 3SY, UK
| |
Collapse
|
5
|
Komaniecka N, Porras M, Cairn L, Santas JA, Ferreiro N, Penedo JC, Bañuelos S. Conformational Rearrangements Regulating the DNA Repair Protein APE1. Int J Mol Sci 2022; 23:ijms23148015. [PMID: 35887361 PMCID: PMC9324194 DOI: 10.3390/ijms23148015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 07/15/2022] [Accepted: 07/15/2022] [Indexed: 02/06/2023] Open
Abstract
Apurinic apyrimidinic endonuclease 1 (APE1) is a key enzyme of the Base Excision Repair (BER) pathway, which primarily manages oxidative lesions of DNA. Once the damaged base is removed, APE1 recognises the resulting abasic site and cleaves the phosphodiester backbone to allow for the correction by subsequent enzymes of the BER machinery. In spite of a wealth of information on APE1 structure and activity, its regulation mechanism still remains to be understood. Human APE1 consists of a globular catalytic domain preceded by a flexible N-terminal extension, which might be involved in the interaction with DNA. Moreover, the binding of the nuclear chaperone nucleophosmin (NPM1) to this region has been reported to impact APE1 catalysis. To evaluate intra- and inter-molecular conformational rearrangements upon DNA binding, incision, and interaction with NPM1, we used Förster resonance energy transfer (FRET), a fluorescence spectroscopy technique sensitive to molecular distances. Our results suggest that the N-terminus approaches the DNA at the downstream side of the abasic site and enables the building of a predictive model of the full-length APE1/DNA complex. Furthermore, the spatial configuration of the N-terminal tail is sensitive to NPM1, which could be related to the regulation of APE1.
Collapse
Affiliation(s)
- Nina Komaniecka
- Biofisika Institute (UPV/EHU, CSIC), University of the Basque Country (UPV/EHU), 48940 Leioa, Spain; (N.K.); (M.P.); (L.C.); (J.A.S.); (N.F.)
| | - Marta Porras
- Biofisika Institute (UPV/EHU, CSIC), University of the Basque Country (UPV/EHU), 48940 Leioa, Spain; (N.K.); (M.P.); (L.C.); (J.A.S.); (N.F.)
- Department of Biochemistry and Molecular Biology, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain
| | - Louis Cairn
- Biofisika Institute (UPV/EHU, CSIC), University of the Basque Country (UPV/EHU), 48940 Leioa, Spain; (N.K.); (M.P.); (L.C.); (J.A.S.); (N.F.)
| | - Jon Ander Santas
- Biofisika Institute (UPV/EHU, CSIC), University of the Basque Country (UPV/EHU), 48940 Leioa, Spain; (N.K.); (M.P.); (L.C.); (J.A.S.); (N.F.)
- Department of Biochemistry and Molecular Biology, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain
| | - Nerea Ferreiro
- Biofisika Institute (UPV/EHU, CSIC), University of the Basque Country (UPV/EHU), 48940 Leioa, Spain; (N.K.); (M.P.); (L.C.); (J.A.S.); (N.F.)
- Department of Biochemistry and Molecular Biology, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain
| | - Juan Carlos Penedo
- Centre of Biophotonics, Laboratory for Biophysics and Biomolecular Dynamics, Scottish Universities Physics Alliance (SUPA) School of Physics and Astronomy, University of St. Andrews, St. Andrews KY16 9SS, UK;
- Centre of Biophotonics, Laboratory for Biophysics and Biomolecular Dynamics, Biomedical Sciences Research Complex, School of Biology, University of St. Andrews, St. Andrews KY16 9ST, UK
| | - Sonia Bañuelos
- Biofisika Institute (UPV/EHU, CSIC), University of the Basque Country (UPV/EHU), 48940 Leioa, Spain; (N.K.); (M.P.); (L.C.); (J.A.S.); (N.F.)
- Department of Biochemistry and Molecular Biology, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain
- Correspondence: ; Tel.: +34-94-601-3347
| |
Collapse
|
6
|
Luo W, Li J, Li Z, Lin T, Zhang L, Yang W, Mai Y, Liu R, Chen M, Dai C, Yang H, Lu J, Li H, Guan G, Huang M, Liu P, Li Z. HO-1 nuclear accumulation and interaction with NPM1 protect against stress-induced endothelial senescence independent of its enzymatic activity. Cell Death Dis 2021; 12:738. [PMID: 34312365 PMCID: PMC8313700 DOI: 10.1038/s41419-021-04035-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 07/13/2021] [Accepted: 07/14/2021] [Indexed: 02/07/2023]
Abstract
Heme oxygenase-1 (HO-1) has attracted accumulating attention for its antioxidant enzymatic activity. However, the exact regulatory role of its non-enzymatic activity in the cardiovascular system remains unaddressed. Here, we show that HO-1 was accumulated in the nuclei of stress-induced senescent endothelial cells, and conferred protection against endothelial senescence independent of its enzymatic activity. Overexpression of ΔHO-1, a truncated HO-1 without transmembrane segment (TMS), inhibited H2O2-induced endothelial senescence. Overexpression of ΔHO-1H25A, the catalytically inactive form of ΔHO-1, also exhibited anti-senescent effect. In addition, infection of recombinant adenovirus encoding ΔHO-1 with three nuclear localization sequences (NLS), alleviated endothelial senescence induced by knockdown of endogenous HO-1 by CRISPR/Cas9. Moreover, repression of HO-1 nuclear translocation by silencing of signal peptide peptidase (SPP), which is responsible for enzymatic cleavage of the TMS of HO-1, exacerbated endothelial senescence. Mechanistically, nuclear HO-1 interacted with NPM1 N-terminal portion, prevented NPM1 translocation from nucleolus to nucleoplasm, thus disrupted NPM1/p53/MDM2 interactions and inhibited p53 activation by NPM1, finally resisted endothelial senescence. This study provides a novel understanding of HO-1 as a promising therapeutic strategy for vascular senescence-related cardiovascular diseases.
Collapse
Affiliation(s)
- Wenwei Luo
- Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, National and Local United Engineering Lab of Druggability and New Drugs Evaluation, Guangdong Engineering Laboratory of Druggability and New Drug Evaluation, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-sen University, Guangzhou, China
| | - Jingyan Li
- Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, National and Local United Engineering Lab of Druggability and New Drugs Evaluation, Guangdong Engineering Laboratory of Druggability and New Drug Evaluation, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-sen University, Guangzhou, China
- International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Ziqing Li
- Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, National and Local United Engineering Lab of Druggability and New Drugs Evaluation, Guangdong Engineering Laboratory of Druggability and New Drug Evaluation, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-sen University, Guangzhou, China
| | - Tong Lin
- Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, National and Local United Engineering Lab of Druggability and New Drugs Evaluation, Guangdong Engineering Laboratory of Druggability and New Drug Evaluation, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-sen University, Guangzhou, China
| | - Lili Zhang
- Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, National and Local United Engineering Lab of Druggability and New Drugs Evaluation, Guangdong Engineering Laboratory of Druggability and New Drug Evaluation, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-sen University, Guangzhou, China
| | - Wanqi Yang
- Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, National and Local United Engineering Lab of Druggability and New Drugs Evaluation, Guangdong Engineering Laboratory of Druggability and New Drug Evaluation, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-sen University, Guangzhou, China
| | - Yanqi Mai
- Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, National and Local United Engineering Lab of Druggability and New Drugs Evaluation, Guangdong Engineering Laboratory of Druggability and New Drug Evaluation, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-sen University, Guangzhou, China
| | - Ruiming Liu
- Department of Vascular and Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Meiting Chen
- Emergency Department, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Chunmei Dai
- Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, National and Local United Engineering Lab of Druggability and New Drugs Evaluation, Guangdong Engineering Laboratory of Druggability and New Drug Evaluation, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-sen University, Guangzhou, China
| | - Hanwei Yang
- Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, National and Local United Engineering Lab of Druggability and New Drugs Evaluation, Guangdong Engineering Laboratory of Druggability and New Drug Evaluation, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-sen University, Guangzhou, China
| | - Jing Lu
- Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, National and Local United Engineering Lab of Druggability and New Drugs Evaluation, Guangdong Engineering Laboratory of Druggability and New Drug Evaluation, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-sen University, Guangzhou, China
| | - Hong Li
- Department of Biochemistry and Molecular Biology, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Guimei Guan
- Department of Obstetrics and Gynecology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Min Huang
- Institute of Clinical Pharmacology and Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Peiqing Liu
- Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, National and Local United Engineering Lab of Druggability and New Drugs Evaluation, Guangdong Engineering Laboratory of Druggability and New Drug Evaluation, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-sen University, Guangzhou, China.
| | - Zhuoming Li
- Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, National and Local United Engineering Lab of Druggability and New Drugs Evaluation, Guangdong Engineering Laboratory of Druggability and New Drug Evaluation, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
7
|
Mercatelli D, Pedace E, Veltri P, Giorgi FM, Guzzi PH. Exploiting the molecular basis of age and gender differences in outcomes of SARS-CoV-2 infections. Comput Struct Biotechnol J 2021; 19:4092-4100. [PMID: 34306570 PMCID: PMC8271029 DOI: 10.1016/j.csbj.2021.07.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 07/06/2021] [Accepted: 07/06/2021] [Indexed: 12/15/2022] Open
Abstract
Motivation: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection (coronavirus disease, 2019; COVID-19) is associated with adverse outcomes in patients. It has been observed that lethality seems to be related to the age of patients. While ageing has been extensively demonstrated to be accompanied by some modifications at the gene expression level, a possible link with COVID-19 manifestation still need to be investigated at the molecular level. Objectives: This study aims to shed out light on a possible link between the increased COVID-19 lethality and the molecular changes that occur in elderly people. Methods: We considered public datasets of ageing-related genes and their expression at the tissue level. We selected human proteins interacting with viral ones that are known to be related to the ageing process. Finally, we investigated changes in the expression level of coding genes at the tissue, gender and age level. Results: We observed a significant intersection between some SARS-CoV-2 interactors and ageing-related genes, suggesting that those genes are particularly affected by COVID-19 infection. Our analysis evidenced that virus infection particularly involves ageing molecular mechanisms centred around proteins EEF2, NPM1, HMGA1, HMGA2, APEX1, CHEK1, PRKDC, and GPX4. We found that HMGA1 and NPM1 have different expressions in the lung of males, while HMGA1, APEX1, CHEK1, EEF2, and NPM1 present changes in expression in males due to ageing effects. Conclusion: Our study generated a mechanistic framework to clarify the correlation between COVID-19 incidence in elderly patients and molecular mechanisms of ageing. We also provide testable hypotheses for future investigation and pharmacological solutions tailored to specific age ranges.
Collapse
Affiliation(s)
| | | | - Pierangelo Veltri
- University of Catanzaro, Department of Medical and Surgical Sciences, Italy
| | | | - Pietro Hiram Guzzi
- University of Catanzaro, Department of Medical and Surgical Sciences, Italy
| |
Collapse
|
8
|
Molecular Mechanisms Regulating the DNA Repair Protein APE1: A Focus on Its Flexible N-Terminal Tail Domain. Int J Mol Sci 2021; 22:ijms22126308. [PMID: 34208390 PMCID: PMC8231204 DOI: 10.3390/ijms22126308] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 06/08/2021] [Accepted: 06/09/2021] [Indexed: 02/06/2023] Open
Abstract
APE1 (DNA (apurinic/apyrimidinic site) endonuclease 1) is a key enzyme of one of the major DNA repair routes, the BER (base excision repair) pathway. APE1 fulfils additional functions, acting as a redox regulator of transcription factors and taking part in RNA metabolism. The mechanisms regulating APE1 are still being deciphered. Structurally, human APE1 consists of a well-characterized globular catalytic domain responsible for its endonuclease activity, preceded by a conformationally flexible N-terminal extension, acquired along evolution. This N-terminal tail appears to play a prominent role in the modulation of APE1 and probably in BER coordination. Thus, it is primarily involved in mediating APE1 localization, post-translational modifications, and protein–protein interactions, with all three factors jointly contributing to regulate the enzyme. In this review, recent insights on the regulatory role of the N-terminal region in several aspects of APE1 function are covered. In particular, interaction of this region with nucleophosmin (NPM1) might modulate certain APE1 activities, representing a paradigmatic example of the interconnection between various regulatory factors.
Collapse
|
9
|
Russo LC, Ferruzo PYM, Forti FL. Nucleophosmin Protein Dephosphorylation by DUSP3 Is a Fine-Tuning Regulator of p53 Signaling to Maintain Genomic Stability. Front Cell Dev Biol 2021; 9:624933. [PMID: 33777934 PMCID: PMC7991746 DOI: 10.3389/fcell.2021.624933] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Accepted: 02/08/2021] [Indexed: 01/06/2023] Open
Abstract
The dual-specificity phosphatase 3 (DUSP3), an atypical protein tyrosine phosphatase (PTP), regulates cell cycle checkpoints and DNA repair pathways under conditions of genotoxic stress. DUSP3 interacts with the nucleophosmin protein (NPM) in the cell nucleus after UV-radiation, implying a potential role for this interaction in mechanisms of genomic stability. Here, we show a high-affinity binding between DUSP3-NPM and NPM tyrosine phosphorylation after UV stress, which is increased in DUSP3 knockdown cells. Specific antibodies designed to the four phosphorylated NPM’s tyrosines revealed that DUSP3 dephosphorylates Y29, Y67, and Y271 after UV-radiation. DUSP3 knockdown causes early nucleolus exit of NPM and ARF proteins allowing them to disrupt the HDM2-p53 interaction in the nucleoplasm after UV-stress. The anticipated p53 release from proteasome degradation increased p53-Ser15 phosphorylation, prolonged p53 half-life, and enhanced p53 transcriptional activity. The regular dephosphorylation of NPM’s tyrosines by DUSP3 balances the p53 functioning and favors the repair of UV-promoted DNA lesions needed for the maintenance of genomic stability.
Collapse
Affiliation(s)
- Lilian C Russo
- Laboratory of Biomolecular Systems Signalling, Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| | - Pault Y M Ferruzo
- Laboratory of Biomolecular Systems Signalling, Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| | - Fabio L Forti
- Laboratory of Biomolecular Systems Signalling, Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
10
|
López DJ, Rodríguez JA, Bañuelos S. Nucleophosmin, a multifunctional nucleolar organizer with a role in DNA repair. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2020; 1868:140532. [PMID: 32853771 DOI: 10.1016/j.bbapap.2020.140532] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 08/05/2020] [Accepted: 08/07/2020] [Indexed: 12/12/2022]
Abstract
Nucleophosmin (NPM1) is a mostly nucleolar protein with crucial functions in cell growth and homeostasis, including regulation of ribosome biogenesis and stress response. Such multiple activities rely on its ability to interact with nucleic acids and with hundreds of proteins, as well as on a dynamic subcellular distribution. NPM1 is thus regulated by a complex interplay between localization and interactions, further modulated by post-translational modifications. NPM1 is a homopentamer, with globular domains connected by long, intrinsically disordered linkers. This configuration allows NPM1 to engage in liquid-liquid phase separation phenomena, which could underlie a key role in nucleolar organization. Here, we will discuss NPM1 conformational and functional versatility, emphasizing its emerging, and still largely unexplored, role in DNA damage repair. Since NPM1 is altered in a subtype of acute myeloid leukaemia (AML), we will also present ongoing research on the molecular mechanisms underlying its pathogenic role and potential NPM1-targeting therapeutic strategies.
Collapse
Affiliation(s)
- David J López
- Biofisika Institute (UPV/EHU, CSIC) and Department of Biochemistry and Molecular Biology, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - José A Rodríguez
- Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Sonia Bañuelos
- Biofisika Institute (UPV/EHU, CSIC) and Department of Biochemistry and Molecular Biology, University of the Basque Country (UPV/EHU), Leioa, Spain.
| |
Collapse
|