1
|
Al-Rahahleh RQ, Sobol RW. Poly-ADP-ribosylation dynamics, signaling, and analysis. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2024. [PMID: 39221603 DOI: 10.1002/em.22623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 08/15/2024] [Accepted: 08/16/2024] [Indexed: 09/04/2024]
Abstract
ADP-ribosylation is a reversible post-translational modification that plays a role as a signaling mechanism in various cellular processes. This modification is characterized by its structural diversity, highly dynamic nature, and short half-life. Hence, it is tightly regulated at many levels by cellular factors that fine-tune its formation, downstream signaling, and degradation that together impacts cellular outcomes. Poly-ADP-ribosylation is an essential signaling mechanism in the DNA damage response that mediates the recruitment of DNA repair factors to sites of DNA damage via their poly-ADP-ribose (PAR)-binding domains (PBDs). PAR readers, encoding PBDs, convey the PAR signal to mediate cellular outcomes that in some cases can be dictated by PAR structural diversity. Several PBD families have been identified, each with variable PAR-binding affinity and specificity, that also recognize and bind to distinct parts of the PAR chain. PARylation signaling has emerged as an attractive target for the treatment of specific cancer types, as the inhibition of PAR formation or degradation can selectively eliminate cancer cells with specific DNA repair defects and can enhance radiation or chemotherapy response. In this review, we summarize the key players of poly-ADP-ribosylation and its regulation and highlight PBDs as tools for studying PARylation dynamics and the expanding potential to target PARylation signaling in cancer treatment.
Collapse
Affiliation(s)
- Rasha Q Al-Rahahleh
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School, Legorreta Cancer Center, Brown University, Providence, Rhode Island, USA
| | - Robert W Sobol
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School, Legorreta Cancer Center, Brown University, Providence, Rhode Island, USA
| |
Collapse
|
2
|
Saville KM, Al-Rahahleh RQ, Siddiqui AH, Andrews ME, Roos WP, Koczor CA, Andrews JF, Hayat F, Migaud ME, Sobol RW. Oncometabolite 2-hydroxyglutarate suppresses basal protein levels of DNA polymerase beta that enhances alkylating agent and PARG inhibition induced cytotoxicity. DNA Repair (Amst) 2024; 140:103700. [PMID: 38897003 PMCID: PMC11239280 DOI: 10.1016/j.dnarep.2024.103700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 05/10/2024] [Accepted: 05/29/2024] [Indexed: 06/21/2024]
Abstract
Mutations in isocitrate dehydrogenase isoform 1 (IDH1) are primarily found in secondary glioblastoma (GBM) and low-grade glioma but are rare in primary GBM. The standard treatment for GBM includes radiation combined with temozolomide, an alkylating agent. Fortunately, IDH1 mutant gliomas are sensitive to this treatment, resulting in a more favorable prognosis. However, it's estimated that up to 75 % of IDH1 mutant gliomas will progress to WHO grade IV over time and develop resistance to alkylating agents. Therefore, understanding the mechanism(s) by which IDH1 mutant gliomas confer sensitivity to alkylating agents is crucial for developing targeted chemotherapeutic approaches. The base excision repair (BER) pathway is responsible for repairing most base damage induced by alkylating agents. Defects in this pathway can lead to hypersensitivity to these agents due to unresolved DNA damage. The coordinated assembly and disassembly of BER protein complexes are essential for cell survival and for maintaining genomic integrity following alkylating agent exposure. These complexes rely on poly-ADP-ribose formation, an NAD+-dependent post-translational modification synthesized by PARP1 and PARP2 during the BER process. At the lesion site, poly-ADP-ribose facilitates the recruitment of XRCC1. This scaffold protein helps assemble BER proteins like DNA polymerase beta (Polβ), a bifunctional DNA polymerase containing both DNA synthesis and 5'-deoxyribose-phosphate lyase (5'dRP lyase) activity. Here, we confirm that IDH1 mutant glioma cells have defective NAD+ metabolism, but still produce sufficient nuclear NAD+ for robust PARP1 activation and BER complex formation in response to DNA damage. However, the overproduction of 2-hydroxyglutarate, an oncometabolite produced by the IDH1 R132H mutant protein, suppresses BER capacity by reducing Polβ protein levels. This defines a novel mechanism by which the IDH1 mutation in gliomas confers cellular sensitivity to alkylating agents and to inhibitors of the poly-ADP-ribose glycohydrolase, PARG.
Collapse
Affiliation(s)
- Kate M Saville
- Department of Pharmacology & Mitchell Cancer Institute, University of South Alabama, Mobile, AL 36604, United States
| | - Rasha Q Al-Rahahleh
- Department of Pharmacology & Mitchell Cancer Institute, University of South Alabama, Mobile, AL 36604, United States; Department of Pathology and Laboratory Medicine, Warren Alpert Medical School & Legorreta Cancer Center, Brown University, Providence, RI 02912, United States
| | - Aisha H Siddiqui
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School & Legorreta Cancer Center, Brown University, Providence, RI 02912, United States
| | - Morgan E Andrews
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School & Legorreta Cancer Center, Brown University, Providence, RI 02912, United States
| | - Wynand P Roos
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School & Legorreta Cancer Center, Brown University, Providence, RI 02912, United States
| | - Christopher A Koczor
- Department of Pharmacology & Mitchell Cancer Institute, University of South Alabama, Mobile, AL 36604, United States
| | - Joel F Andrews
- Department Biochemistry and Molecular Biology & Mitchell Cancer Institute, University of South Alabama, Mobile, AL 36604, United States
| | - Faisal Hayat
- Department of Pharmacology & Mitchell Cancer Institute, University of South Alabama, Mobile, AL 36604, United States
| | - Marie E Migaud
- Department of Pharmacology & Mitchell Cancer Institute, University of South Alabama, Mobile, AL 36604, United States
| | - Robert W Sobol
- Department of Pharmacology & Mitchell Cancer Institute, University of South Alabama, Mobile, AL 36604, United States; Department of Pathology and Laboratory Medicine, Warren Alpert Medical School & Legorreta Cancer Center, Brown University, Providence, RI 02912, United States.
| |
Collapse
|
3
|
Zhan J, Huang L, Niu L, Lu W, Sun C, Liu S, Ding Z, Li E. Regulation of CD73 on NAD metabolism: Unravelling the interplay between tumour immunity and tumour metabolism. Cell Commun Signal 2024; 22:387. [PMID: 39090604 PMCID: PMC11292923 DOI: 10.1186/s12964-024-01755-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 07/18/2024] [Indexed: 08/04/2024] Open
Abstract
CD73, a cell surface-bound nucleotidase, serves as a crucial metabolic and immune checkpoint. Several studies have shown that CD73 is widely expressed on immune cells and plays a critical role in immune escape, cell adhesion and migration as a costimulatory molecule for T cells and a factor in adenosine production. However, recent studies have revealed that the protumour effects of CD73 are not limited to merely inhibiting the antitumour immune response. Nicotinamide adenine dinucleotide (NAD+) is a vital bioactive molecule in organisms that plays essential regulatory roles in diverse biological processes within tumours. Accumulating evidence has demonstrated that CD73 is involved in the transport and metabolism of NAD, thereby regulating tumour biological processes to promote growth and proliferation. This review provides a holistic view of CD73-regulated NAD + metabolism as a complex network and further highlights the emerging roles of CD73 as a novel target for cancer therapies.
Collapse
Affiliation(s)
- Jianhao Zhan
- Department of General Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, 1 Minde Road, Nanchang, 330006, China
- HuanKui Academy, Nanchang University, Nanchang, 330006, Jiangxi Province, China
| | - Le Huang
- Department of General Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, 1 Minde Road, Nanchang, 330006, China
- HuanKui Academy, Nanchang University, Nanchang, 330006, Jiangxi Province, China
| | - Liyan Niu
- HuanKui Academy, Nanchang University, Nanchang, 330006, Jiangxi Province, China
| | - Wenhui Lu
- Department of General Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, 1 Minde Road, Nanchang, 330006, China
| | - Chengpeng Sun
- HuanKui Academy, Nanchang University, Nanchang, 330006, Jiangxi Province, China
| | - Shanshan Liu
- School of Basic Medical Sciences, Nanchang University, Nanchang, 330006, Jiangxi province, China
| | - Zijun Ding
- School of Ophthalmology and Optometry, Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Enliang Li
- Department of General Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, 1 Minde Road, Nanchang, 330006, China.
| |
Collapse
|
4
|
Acharya G, Mani C, Sah N, Saamarthy K, Young R, Reedy MB, Sobol RW, Palle K. CHK1 inhibitor induced PARylation by targeting PARG causes excessive replication and metabolic stress and overcomes chemoresistance in ovarian cancer. Cell Death Discov 2024; 10:278. [PMID: 38862485 PMCID: PMC11166985 DOI: 10.1038/s41420-024-02040-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 05/17/2024] [Accepted: 05/22/2024] [Indexed: 06/13/2024] Open
Abstract
Chemoresistance contributes to the majority of deaths in women with ovarian cancer (OC). Altered DNA repair and metabolic signaling is implicated in mediating therapeutic resistance. DNA damage checkpoint kinase 1 (CHK1) integrates cell cycle and DNA repair in replicating cells, and its inhibition causes replication stress, repair deficiency and cell cycle dysregulation. We observed elevated Poly-ADP-ribosylation (PAR) of proteins (PARylation) and subsequent decrease in cellular NAD+ levels in OC cells treated with the CHK1 inhibitor prexasertib, indicating activation of NAD+ dependent DNA repair enzymes poly-ADP-ribose polymerases (PARP1/2). While multiple PARP inhibitors are in clinical use in treating OC, tumor resistance to these drugs is highly imminent. We reasoned that inhibition of dePARylation by targeting Poly (ADP-ribose) glycohydrolase (PARG) would disrupt metabolic and DNA repair crosstalk to overcome chemoresistance. Although PARG inhibition (PARGi) trapped PARylation of the proteins and activated CHK1, it did not cause any significant OC cell death. However, OC cells deficient in CHK1 were hypersensitive to PARGi, suggesting a role for metabolic and DNA repair crosstalk in protection of OC cells. Correspondingly, OC cells treated with a combination of CHK1 and PARG inhibitors exhibited excessive replication stress-mediated DNA lesions, cell cycle dysregulation, and mitotic catastrophe compared to individual drugs. Interestingly, increased PARylation observed in combination treatment resulted in depletion of NAD+ levels. These decreased NAD+ levels were also paralleled with reduced aldehyde dehydrogenase (ALDH) activity, which requires NAD+ to maintain cancer stem cells. Furthermore, prexasertib and PARGi combinations exhibited synergistic cell death in OC cells, including an isogenic chemoresistant cell line and 3D organoid models of primary patient-derived OC cell lines. Collectively, our data highlight a novel crosstalk between metabolism and DNA repair involving replication stress and NAD+-dependent PARylation, and suggest a novel combination therapy of CHK1 and PARG inhibitors to overcome chemoresistance in OC.
Collapse
Affiliation(s)
- Ganesh Acharya
- Department of Cell Biology and Biochemistry, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Chinnadurai Mani
- Department of Cell Biology and Biochemistry, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Naresh Sah
- Department of Cell Biology and Biochemistry, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Karunakar Saamarthy
- Department of Cell Biology and Biochemistry, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Robert Young
- Department of Cell Biology and Biochemistry, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Mark B Reedy
- Department of Obstetrics & Gynecology, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Robert W Sobol
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School, & Legorreta Cancer Center, Brown University, Providence, RI, USA
| | - Komaraiah Palle
- Department of Cell Biology and Biochemistry, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA.
- Department of Obstetrics & Gynecology, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA.
| |
Collapse
|
5
|
Popov AA, Petruseva IO, Lavrik OI. Activity of DNA Repair Systems in the Cells of Long-Lived Rodents and Bats. BIOCHEMISTRY. BIOKHIMIIA 2024; 89:1014-1023. [PMID: 38981697 DOI: 10.1134/s0006297924060038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 03/15/2024] [Accepted: 04/03/2024] [Indexed: 07/11/2024]
Abstract
Damages of various origin accumulated in the genomic DNA can lead to the breach of genome stability, and are considered to be one of the main factors involved in cellular senescence. DNA repair systems in mammalian cells ensure effective damage removal and repair of the genome structure, therefore, activity of these systems is expected to be correlated with high maximum lifespan observed in the long-lived mammals. This review discusses current results of the studies focused on determination of the DNA repair system activity and investigation of the properties of its key regulatory proteins in the cells of long-lived rodents and bats. Based on the works discussed in the review, it could be concluded that the long-lived rodents and bats in general demonstrate high efficiency in functioning and regulation of DNA repair systems. Nevertheless, a number of questions around the study of DNA repair in the cells of long-lived rodents and bats remain poorly understood, answers to which could open up new avenues for further research.
Collapse
Affiliation(s)
- Aleksei A Popov
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch Russian Academy of Sciences, Novosibirsk, 630090, Russia
| | - Irina O Petruseva
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch Russian Academy of Sciences, Novosibirsk, 630090, Russia
| | - Olga I Lavrik
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch Russian Academy of Sciences, Novosibirsk, 630090, Russia.
- Novosibirsk National Research State University, Novosibirsk, 630090, Russia
| |
Collapse
|
6
|
Sobol RW. Mouse models to explore the biological and organismic role of DNA polymerase beta. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2024; 65 Suppl 1:57-71. [PMID: 38619421 PMCID: PMC11027944 DOI: 10.1002/em.22593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 03/14/2024] [Accepted: 03/19/2024] [Indexed: 04/16/2024]
Abstract
Gene knock-out (KO) mouse models for DNA polymerase beta (Polβ) revealed that loss of Polβ leads to neonatal lethality, highlighting the critical organismic role for this DNA polymerase. While biochemical analysis and gene KO cell lines have confirmed its biochemical role in base excision repair and in TET-mediated demethylation, more long-lived mouse models continue to be developed to further define its organismic role. The Polb-KO mouse was the first of the Cre-mediated tissue-specific KO mouse models. This technology was exploited to investigate roles for Polβ in V(D)J recombination (variable-diversity-joining rearrangement), DNA demethylation, gene complementation, SPO11-induced DNA double-strand break repair, germ cell genome stability, as well as neuronal differentiation, susceptibility to genotoxin-induced DNA damage, and cancer onset. The revolution in knock-in (KI) mouse models was made possible by CRISPR/cas9-mediated gene editing directly in C57BL/6 zygotes. This technology has helped identify phenotypes associated with germline or somatic mutants of Polβ. Such KI mouse models have helped uncover the importance of key Polβ active site residues or specific Polβ enzyme activities, such as the PolbY265C mouse that develops lupus symptoms. More recently, we have used this KI technology to mutate the Polb gene with two codon changes, yielding the PolbL301R/V303R mouse. In this KI mouse model, the expressed Polβ protein cannot bind to its obligate heterodimer partner, Xrcc1. Although the expressed mutant Polβ protein is proteolytically unstable and defective in recruitment to sites of DNA damage, the homozygous PolbL301R/V303R mouse is viable and fertile, yet small in stature. We expect that this and additional targeted mouse models under development are poised to reveal new biological and organismic roles for Polβ.
Collapse
Affiliation(s)
- Robert W. Sobol
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School & Legorreta Cancer Center, Brown University, Providence, RI 02912
| |
Collapse
|
7
|
Almohdar D, Gulkis M, Ortiz A, Tang Q, Sobol RW, Çağlayan M. Impact of polβ/XRCC1 Interaction Variants on the Efficiency of Nick Sealing by DNA Ligase IIIα in the Base Excision Repair Pathway. J Mol Biol 2024; 436:168410. [PMID: 38135179 PMCID: PMC11090158 DOI: 10.1016/j.jmb.2023.168410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 12/17/2023] [Accepted: 12/17/2023] [Indexed: 12/24/2023]
Abstract
Base excision repair (BER) requires a coordination from gap filling by DNA polymerase (pol) β to subsequent nick sealing by DNA ligase (LIG) IIIα at downstream steps of the repair pathway. X-ray cross-complementing protein 1 (XRCC1), a non-enzymatic scaffolding protein, forms repair complexes with polβ and LIGIIIα. Yet, the impact of the polβ mutations that affect XRCC1 interaction and protein stability on the repair pathway coordination during nick sealing by LIGIIIα remains unknown. Our results show that the polβ colon cancer-associated variant T304 exhibits a reduced interaction with XRCC1 and the mutations in the interaction interface of V303 loop (L301R/V303R/V306R) and at the lysine residues (K206A/K244A) that prevent ubiquitin-mediated degradation of the protein exhibit a diminished repair protein complex formation with XRCC1. Furthermore, we demonstrate no significant effect on gap and nick DNA binding affinity of wild-type polβ by these mutations. Finally, our results reveal that XRCC1 leads to an efficient channeling of nick repair products after nucleotide incorporation by polβ variants to LIGIIIα, which is compromised by the L301R/V303R/V306R and K206A/K244A mutations. Overall, our findings provide insight into how the mutations in the polβ/XRCC1 interface and the regions affecting protein stability could dictate accurate BER pathway coordination at the downstream steps involving nick sealing by LIGIIIα.
Collapse
Affiliation(s)
- Danah Almohdar
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, FL 32610, USA
| | - Mitchell Gulkis
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, FL 32610, USA
| | - Abigail Ortiz
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, FL 32610, USA
| | - Qun Tang
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, FL 32610, USA
| | - Robert W Sobol
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School & Legorreta Cancer Center, Brown University, Providence, RI 02912, USA
| | - Melike Çağlayan
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, FL 32610, USA.
| |
Collapse
|
8
|
Chini CCS, Cordeiro HS, Tran NLK, Chini EN. NAD metabolism: Role in senescence regulation and aging. Aging Cell 2024; 23:e13920. [PMID: 37424179 PMCID: PMC10776128 DOI: 10.1111/acel.13920] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 06/15/2023] [Accepted: 06/20/2023] [Indexed: 07/11/2023] Open
Abstract
The geroscience hypothesis proposes that addressing the biology of aging could directly prevent the onset or mitigate the severity of multiple chronic diseases. Understanding the interplay between key aspects of the biological hallmarks of aging is essential in delivering the promises of the geroscience hypothesis. Notably, the nucleotide nicotinamide adenine dinucleotide (NAD) interfaces with several biological hallmarks of aging, including cellular senescence, and changes in NAD metabolism have been shown to be involved in the aging process. The relationship between NAD metabolism and cellular senescence appears to be complex. On the one hand, the accumulation of DNA damage and mitochondrial dysfunction induced by low NAD+ can promote the development of senescence. On the other hand, the low NAD+ state that occurs during aging may inhibit SASP development as this secretory phenotype and the development of cellular senescence are both highly metabolically demanding. However, to date, the impact of NAD+ metabolism on the progression of the cellular senescence phenotype has not been fully characterized. Therefore, to explore the implications of NAD metabolism and NAD replacement therapies, it is essential to consider their interactions with other hallmarks of aging, including cellular senescence. We propose that a comprehensive understanding of the interplay between NAD boosting strategies and senolytic agents is necessary to advance the field.
Collapse
Affiliation(s)
- Claudia Christiano Silva Chini
- Metabolism and Molecular Nutrition Laboratory, Kogod Center on Aging, Department of Anesthesiology and Perioperative MedicineMayo Clinic College of MedicineRochesterMinnesotaUSA
- Metabolism and Molecular Nutrition Laboratory, Kogod Center on Aging, Department of Anesthesiology and Perioperative MedicineMayo Clinic College of MedicineJacksonvilleFloridaUSA
| | - Heidi Soares Cordeiro
- Metabolism and Molecular Nutrition Laboratory, Kogod Center on Aging, Department of Anesthesiology and Perioperative MedicineMayo Clinic College of MedicineRochesterMinnesotaUSA
- Metabolism and Molecular Nutrition Laboratory, Kogod Center on Aging, Department of Anesthesiology and Perioperative MedicineMayo Clinic College of MedicineJacksonvilleFloridaUSA
| | - Ngan Le Kim Tran
- Center for Clinical and Translational Science and Mayo Clinic Graduate School of Biomedical SciencesMayo ClinicJacksonvilleFloridaUSA
| | - Eduardo Nunes Chini
- Metabolism and Molecular Nutrition Laboratory, Kogod Center on Aging, Department of Anesthesiology and Perioperative MedicineMayo Clinic College of MedicineRochesterMinnesotaUSA
- Metabolism and Molecular Nutrition Laboratory, Kogod Center on Aging, Department of Anesthesiology and Perioperative MedicineMayo Clinic College of MedicineJacksonvilleFloridaUSA
| |
Collapse
|
9
|
Al-Rahahleh RQ, Saville KM, Andrews JF, Wu Z, Koczor CA, Sobol RW. Overexpression of the WWE domain of RNF146 modulates poly-(ADP)-ribose dynamics at sites of DNA damage. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.29.573650. [PMID: 38234836 PMCID: PMC10793466 DOI: 10.1101/2023.12.29.573650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
Protein poly-ADP-ribosylation (PARylation) is a post-translational modification formed by transfer of successive units of ADP-ribose to target proteins to form poly-ADP-ribose (PAR) chains. PAR plays a critical role in the DNA damage response (DDR) by acting as a signaling platform to promote the recruitment of DNA repair factors to the sites of DNA damage that bind via their PAR-binding domains (PBDs). Several classes of PBD families have been recognized, which identify distinct parts of the PAR chain. Proteins encoding PBDs play an essential role in conveying the PAR-mediated signal through their interaction with PAR chains, which mediates many cellular functions, including the DDR. The WWE domain identifies the iso-ADP-ribose moiety of the PAR chain. We recently described the WWE domain of RNF146 as a robust genetically encoded probe, when fused to EGFP, for detection of PAR in live cells. Here, we evaluated other PBD candidates as molecular PAR probes in live cells, including several other WWE domains and an engineered macrodomain. In addition, we demonstrate unique PAR dynamics when tracked by different PAR binding domains, a finding that that can be exploited for modulation of the PAR-dependent DNA damage response.
Collapse
Affiliation(s)
- Rasha Q. Al-Rahahleh
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School & Legorreta Cancer Center, Brown University, Providence, RI 02912
- Department of Pharmacology & Mitchell Cancer Institute, College of Medicine, University of South Alabama, Mobile, AL 36604, USA
| | - Kate M. Saville
- Department of Pharmacology & Mitchell Cancer Institute, College of Medicine, University of South Alabama, Mobile, AL 36604, USA
| | - Joel F. Andrews
- Department of Pharmacology & Mitchell Cancer Institute, College of Medicine, University of South Alabama, Mobile, AL 36604, USA
| | - Zhijin Wu
- Department of Biostatistics, Brown University, Providence, RI 02912
| | - Christopher A. Koczor
- Department of Pharmacology & Mitchell Cancer Institute, College of Medicine, University of South Alabama, Mobile, AL 36604, USA
| | - Robert W. Sobol
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School & Legorreta Cancer Center, Brown University, Providence, RI 02912
- Department of Pharmacology & Mitchell Cancer Institute, College of Medicine, University of South Alabama, Mobile, AL 36604, USA
| |
Collapse
|
10
|
Chen J, Wang Q, Li R, Li Z, Jiang Q, Yan F, Ye J. The role of sirtuins in the regulatin of oxidative stress during the progress and therapy of type 2 diabetes mellitus. Life Sci 2023; 333:122187. [PMID: 37858715 DOI: 10.1016/j.lfs.2023.122187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 10/12/2023] [Accepted: 10/16/2023] [Indexed: 10/21/2023]
Abstract
Type 2 diabetes mellitus (T2DM) is a chronic metabolic disorder characterized by insulin resistance and impaired glucose homeostasis. Oxidative stress, arising from an imbalance between reactive oxygen species (ROS) production and antioxidant defense systems, plays a significant role in the development and progression of T2DM. The sirtuin family, particularly Sirt1, Sirt3, and Sirt6, have emerged as key regulators of oxidative stress in various cellular processes. This review aims to explore the role of the sirtuin family in oxidative stress during the progression of T2DM and their potential as therapeutic targets. We discussed the mechanisms through which sirtuins modulate oxidative stress, their impact on insulin sensitivity, and beta-cell function involved in T2DM. Furthermore, we highlight drugs targeting sirtuin activation and related complications in T2DM. This review summarizes the role as well as mechanism of sirtuins in the regulation of oxidative stress in T2DM and available drugs targeting sirtuins in clinic, which may provide novel insights into the mechanism and therapy of T2DM.
Collapse
Affiliation(s)
- Jiawen Chen
- Department of Ophthalmology, The First Affiliated Hospital of Yangtze University, Jingzhou, Hubei 434000, PR China; State Key Laboratory of Natural Medicines, Research Center of Biostatistics and Computational Pharmacy, China Pharmaceutical University, Nanjing 211198, PR China
| | - Qi Wang
- Department of Ophthalmology, The First Affiliated Hospital of Yangtze University, Jingzhou, Hubei 434000, PR China
| | - Ruiyan Li
- School of Life Science and Technology, China Pharmaceutical University, Nanjing 210006, China
| | - Zhe Li
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Cardiovascular research Institute, Wuhan University, Wuhan 430060, China
| | - Qizhou Jiang
- School of Life Science and Technology, China Pharmaceutical University, Nanjing 210006, China
| | - Fangrong Yan
- State Key Laboratory of Natural Medicines, Research Center of Biostatistics and Computational Pharmacy, China Pharmaceutical University, Nanjing 211198, PR China.
| | - Junmei Ye
- School of Life Science and Technology, China Pharmaceutical University, Nanjing 210006, China.
| |
Collapse
|
11
|
Yao W, Pei Z, Zhang X. NAD +: A key metabolic regulator with great therapeutic potential for myocardial infarction via Sirtuins family. Heliyon 2023; 9:e21890. [PMID: 38027748 PMCID: PMC10663897 DOI: 10.1016/j.heliyon.2023.e21890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/19/2023] [Accepted: 10/31/2023] [Indexed: 12/01/2023] Open
Abstract
Myocardial infarction (MI) is one of the complex phenotypes of coronary artery disease, which results from the interaction of multiple genetic and environmental factors. Nicotinamide Adenine Dinucleotide (NAD+) is an important cofactor regulating metabolic homeostasis and a rate-limiting substrate for sirtuin (SIRT) deacetylase. Numerous NAD+ studies have shown that it can be used as an anti-MI treatment. However, there have been few systematic reviews of the overall role of NAD+ in treating MI. MI, which has long been a global health problem, still lacks effective treatment till now, and the discovery of NAD+ provides a new perspective on its adjuvant treatment. This review summarizes the role of NAD+ signaling in SIRTs in alleviating MI.
Collapse
Affiliation(s)
- Wei Yao
- Department of Internal Medicine, Affiliated Zhong Shan Hospital of Dalian University, Dalian, 116001, China
| | - Zuowei Pei
- Department of Cardiology, Central Hospital of Dalian University of Technology, Dalian, 116089, China
- Department of Central Laboratory, Central Hospital of Dalian University of Technology, Dalian, 116033, China
- Faculty of Medicine, Dalian University of Technology, Dalian, 116024, China
| | - Xiaoqing Zhang
- Department of Infection, Affiliated Zhongshan Hospital of Dalian University, Dalian, 116001, China
| |
Collapse
|
12
|
Alegre GFS, Pastore GM. NAD+ Precursors Nicotinamide Mononucleotide (NMN) and Nicotinamide Riboside (NR): Potential Dietary Contribution to Health. Curr Nutr Rep 2023; 12:445-464. [PMID: 37273100 PMCID: PMC10240123 DOI: 10.1007/s13668-023-00475-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/19/2023] [Indexed: 06/06/2023]
Abstract
PURPOSE OF REVIEW NAD+ is a vital molecule that takes part as a redox cofactor in several metabolic reactions besides being used as a substrate in important cellular signaling in regulation pathways for energetic, genotoxic, and infectious stress. In stress conditions, NAD+ biosynthesis and levels decrease as well as the activity of consuming enzymes rises. Dietary precursors can promote NAD+ biosynthesis and increase intracellular levels, being a potential strategy for reversing physiological decline and preventing diseases. In this review, we will show the biochemistry and metabolism of NAD+ precursors NR (nicotinamide riboside) and NMN (nicotinamide mononucleotide), the latest findings on their beneficial physiological effects, their interplay with gut microbiota, and the future perspectives for research in nutrition and food science fields. RECENT FINDINGS NMN and NR demonstrated protect against diabetes, Alzheimer disease, endothelial dysfunction, and inflammation. They also reverse gut dysbiosis and promote beneficial effects at intestinal and extraintestinal levels. NR and NMN have been found in vegetables, meat, and milk, and microorganisms in fermented beverages can also produce them. NMN and NR can be obtained through the diet either in their free form or as metabolites derivate from the digestion of NAD+. The prospection of NR and NMN to find potential food sources and their dietary contribution in increasing NAD+ levels are still an unexplored field of research. Moreover, it could enable the development of new functional foods and processing strategies to maintain and enhance their physiological benefits, besides the studies of new raw materials for extraction and biotechnological development.
Collapse
Affiliation(s)
- Gabriela Fabiana Soares Alegre
- Department of Food Science and Nutrition, Faculty of Food Engineering, State University of Campinas, Campinas, Brazil.
- Laboratory of Bioflavours and Bioactive Compounds-Rua Monteiro Lobato, Cidade Universitária "Zeferino Vaz" Barão Geraldo, 80-CEP 13083-862, Campinas, SP, Brazil.
| | - Glaucia Maria Pastore
- Department of Food Science and Nutrition, Faculty of Food Engineering, State University of Campinas, Campinas, Brazil
- Laboratory of Bioflavours and Bioactive Compounds-Rua Monteiro Lobato, Cidade Universitária "Zeferino Vaz" Barão Geraldo, 80-CEP 13083-862, Campinas, SP, Brazil
| |
Collapse
|
13
|
Montali I, Ceccatelli Berti C, Morselli M, Acerbi G, Barili V, Pedrazzi G, Montanini B, Boni C, Alfieri A, Pesci M, Loglio A, Degasperi E, Borghi M, Perbellini R, Penna A, Laccabue D, Rossi M, Vecchi A, Tiezzi C, Reverberi V, Boarini C, Abbati G, Massari M, Lampertico P, Missale G, Ferrari C, Fisicaro P. Deregulated intracellular pathways define novel molecular targets for HBV-specific CD8 T cell reconstitution in chronic hepatitis B. J Hepatol 2023; 79:50-60. [PMID: 36893853 DOI: 10.1016/j.jhep.2023.02.035] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 02/23/2023] [Accepted: 02/24/2023] [Indexed: 03/11/2023]
Abstract
BACKGROUND & AIMS In chronic HBV infection, elevated reactive oxygen species levels derived from dysfunctional mitochondria can cause increased protein oxidation and DNA damage in exhausted virus-specific CD8 T cells. The aim of this study was to understand how these defects are mechanistically interconnected to further elucidate T cell exhaustion pathogenesis and, doing so, to devise novel T cell-based therapies. METHODS DNA damage and repair mechanisms, including parylation, CD38 expression, and telomere length were studied in HBV-specific CD8 T cells from chronic HBV patients. Correction of intracellular signalling alterations and improvement of antiviral T cell functions by the NAD precursor nicotinamide mononucleotide and by CD38 inhibition was assessed. RESULTS Elevated DNA damage was associated with defective DNA repair processes, including NAD-dependent parylation, in HBV-specific CD8 cells of chronic HBV patients. NAD depletion was indicated by the overexpression of CD38, the major NAD consumer, and by the significant improvement of DNA repair mechanisms, and mitochondrial and proteostasis functions by NAD supplementation, which could also improve the HBV-specific antiviral CD8 T cell function. CONCLUSIONS Our study delineates a model of CD8 T cell exhaustion whereby multiple interconnected intracellular defects, including telomere shortening, are causally related to NAD depletion suggesting similarities between T cell exhaustion and cell senescence. Correction of these deregulated intracellular functions by NAD supplementation can also restore antiviral CD8 T cell activity and thus represents a promising potential therapeutic strategy for chronic HBV infection. IMPACT AND IMPLICATIONS Correction of HBV-specific CD8 T cell dysfunction is believed to represent a rational strategy to cure chronic HBV infection, which however requires a deep understanding of HBV immune pathogenesis to identify the most important targets for functional T cell reconstitution strategies. This study identifies a central role played by NAD depletion in the intracellular vicious circle that maintains CD8 T cell exhaustion, showing that its replenishment can correct impaired intracellular mechanisms and reconstitute efficient antiviral CD8 T cell function, with implications for the design of novel immune anti-HBV therapies. As these intracellular defects are likely shared with other chronic virus infections where CD8 exhaustion can affect virus clearance, these results can likely also be of pathogenetic relevance for other infection models.
Collapse
Affiliation(s)
- Ilaria Montali
- Department of Medicine and Surgery, University of Parma, Parma, Italy; Laboratory of Viral Immunopathology, Unit of Infectious Diseases and Hepatology, Azienda Ospedaliero-Universitaria di Parma, Parma, Italy
| | | | - Marco Morselli
- Laboratory of Biochemistry and Molecular Biology, Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
| | - Greta Acerbi
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Valeria Barili
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Giuseppe Pedrazzi
- Department of Neuroscience - Biophysics and Medical Physics Unit, University of Parma, Parma, Italy
| | - Barbara Montanini
- Laboratory of Biochemistry and Molecular Biology, Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
| | - Carolina Boni
- Laboratory of Viral Immunopathology, Unit of Infectious Diseases and Hepatology, Azienda Ospedaliero-Universitaria di Parma, Parma, Italy
| | - Arianna Alfieri
- Laboratory of Viral Immunopathology, Unit of Infectious Diseases and Hepatology, Azienda Ospedaliero-Universitaria di Parma, Parma, Italy
| | - Marco Pesci
- Laboratory of Viral Immunopathology, Unit of Infectious Diseases and Hepatology, Azienda Ospedaliero-Universitaria di Parma, Parma, Italy
| | - Alessandro Loglio
- Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Division of Gastroenterology and Hepatology, Milan, Italy
| | - Elisabetta Degasperi
- Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Division of Gastroenterology and Hepatology, Milan, Italy
| | - Marta Borghi
- Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Division of Gastroenterology and Hepatology, Milan, Italy
| | - Riccardo Perbellini
- Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Division of Gastroenterology and Hepatology, Milan, Italy
| | - Amalia Penna
- Laboratory of Viral Immunopathology, Unit of Infectious Diseases and Hepatology, Azienda Ospedaliero-Universitaria di Parma, Parma, Italy
| | - Diletta Laccabue
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Marzia Rossi
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Andrea Vecchi
- Laboratory of Viral Immunopathology, Unit of Infectious Diseases and Hepatology, Azienda Ospedaliero-Universitaria di Parma, Parma, Italy
| | - Camilla Tiezzi
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Valentina Reverberi
- Laboratory of Viral Immunopathology, Unit of Infectious Diseases and Hepatology, Azienda Ospedaliero-Universitaria di Parma, Parma, Italy
| | - Chiara Boarini
- Division of Internal Medicine 2 and Center for Hemochromatosis, University of Modena and Reggio Emilia, Modena, Italy
| | - Gianluca Abbati
- Division of Internal Medicine 2 and Center for Hemochromatosis, University of Modena and Reggio Emilia, Modena, Italy
| | - Marco Massari
- Unit of Infectious Diseases, Azienda USL-IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Pietro Lampertico
- Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Division of Gastroenterology and Hepatology, Milan, Italy; CRC "A. M. and A. Migliavacca" Center for Liver Disease, Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Gabriele Missale
- Department of Medicine and Surgery, University of Parma, Parma, Italy; Laboratory of Viral Immunopathology, Unit of Infectious Diseases and Hepatology, Azienda Ospedaliero-Universitaria di Parma, Parma, Italy
| | - Carlo Ferrari
- Department of Medicine and Surgery, University of Parma, Parma, Italy; Laboratory of Viral Immunopathology, Unit of Infectious Diseases and Hepatology, Azienda Ospedaliero-Universitaria di Parma, Parma, Italy.
| | - Paola Fisicaro
- Laboratory of Viral Immunopathology, Unit of Infectious Diseases and Hepatology, Azienda Ospedaliero-Universitaria di Parma, Parma, Italy.
| |
Collapse
|
14
|
Svetlova M, Solovjeva L, Kropotov A, Nikiforov A. The Impact of NAD Bioavailability on DNA Double-Strand Break Repair Capacity in Human Dermal Fibroblasts after Ionizing Radiation. Cells 2023; 12:1518. [PMID: 37296639 PMCID: PMC10252650 DOI: 10.3390/cells12111518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 05/25/2023] [Accepted: 05/30/2023] [Indexed: 06/12/2023] Open
Abstract
Nicotinamide adenine dinucleotide (NAD) serves as a substrate for protein deacetylases sirtuins and poly(ADP-ribose) polymerases, which are involved in the regulation of DNA double-strand break (DSB) repair molecular machinery by various mechanisms. However, the impact of NAD bioavailability on DSB repair remains poorly characterized. Herein, using immunocytochemical analysis of γH2AX, a marker for DSB, we investigated the effect of the pharmacological modulation of NAD levels on DSB repair capacity in human dermal fibroblasts exposed to moderate doses of ionizing radiation (IR). We demonstrated that NAD boosting with nicotinamide riboside did not affect the efficiency of DSB elimination after the exposure of cells to IR at 1 Gy. Moreover, even after irradiation at 5 Gy, we did not observe any decrease in intracellular NAD content. We also showed that, when the NAD pool was almost completely depleted by inhibition of its biosynthesis from nicotinamide, cells were still able to eliminate IR-induced DSB, though the activation of ATM kinase, its colocalization with γH2AX and DSB repair capacity were reduced in comparison to cells with normal NAD levels. Our results suggest that NAD-dependent processes, such as protein deacetylation and ADP-ribosylation, are important but not indispensable for DSB repair induced by moderate doses of IR.
Collapse
Affiliation(s)
- Maria Svetlova
- Institute of Cytology, Russian Academy of Sciences, St. Petersburg 194064, Russia; (L.S.); (A.K.)
| | | | | | - Andrey Nikiforov
- Institute of Cytology, Russian Academy of Sciences, St. Petersburg 194064, Russia; (L.S.); (A.K.)
| |
Collapse
|
15
|
De Rosa M, Barnes RP, Nyalapatla PR, Wipf P, Opresko PL. OGG1 and MUTYH repair activities promote telomeric 8-oxoguanine induced cellular senescence. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.10.536247. [PMID: 37090589 PMCID: PMC10120708 DOI: 10.1101/2023.04.10.536247] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
Abstract
Telomeres are prone to formation of the common oxidative lesion 8-oxoguanine (8oxoG), and the acute production of 8oxoG damage at telomeres is sufficient to drive rapid cellular senescence. OGG1 and MUTYH glycosylases initiate base excision repair (BER) at 8oxoG sites to remove the lesion or prevent mutation. Here, we show OGG1 loss or inhibition, or MUTYH loss, partially rescues telomeric 8oxoG-induced senescence, and loss of both glycosylases results in a near complete rescue. Loss of these glycosylases also suppresses 8oxoG-induced telomere fragility and dysfunction, indicating that single-stranded break (SSB) intermediates arising downstream of glycosylase activity impair telomere replication. The failure to initiate BER in glycosylase-deficient cells suppresses PARylation at SSB intermediates and confers resistance to the synergistic effects of PARP inhibitors on damage-induced senescence. Our studies reveal that inefficient completion of 8oxoG BER at telomeres triggers cellular senescence via SSB intermediates which impair telomere replication and stability.
Collapse
Affiliation(s)
- Mariarosaria De Rosa
- Department of Environmental and Occupational Health, University of Pittsburgh School of Public Health, Pittsburgh, PA, USA
- UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | - Ryan P. Barnes
- Department of Environmental and Occupational Health, University of Pittsburgh School of Public Health, Pittsburgh, PA, USA
- UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | | | - Peter Wipf
- UPMC Hillman Cancer Center, Pittsburgh, PA, USA
- Deparment of Chemistry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Patricia L. Opresko
- Department of Environmental and Occupational Health, University of Pittsburgh School of Public Health, Pittsburgh, PA, USA
- UPMC Hillman Cancer Center, Pittsburgh, PA, USA
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| |
Collapse
|
16
|
Metabolic Activation of PARP as a SARS-CoV-2 Therapeutic Target-Is It a Bait for the Virus or the Best Deal We Could Ever Make with the Virus? Is AMBICA the Potential Cure? Biomolecules 2023; 13:biom13020374. [PMID: 36830743 PMCID: PMC9953159 DOI: 10.3390/biom13020374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 02/10/2023] [Accepted: 02/11/2023] [Indexed: 02/18/2023] Open
Abstract
The COVID-19 pandemic has had a great impact on global health and is an economic burden. Even with vaccines and anti-viral medications we are still scrambling to get a balance. In this perspective, we have shed light upon an extremely feasible approach by which we can control the SARS-CoV-2 infection and the associated complications, bringing some solace to this ongoing turmoil. We are providing some insights regarding an ideal agent which could prevent SARS-CoV-2 multiplication. If we could identify an agent which is an activator of metabolism and is also bioactive, we could prevent corona activation (AMBICA). Some naturally occurring lipid molecules best fit this identity as an agent which has the capacity to replenish our host cells, specifically immune cells, with ATP. It could also act as a source for providing a substrate for host cell PARP family members for MARylation and PARylation processes, leading to manipulation of the viral macro domain function, resulting in curbing the virulence and propagation of SARS-CoV-2. Identification of the right lipid molecule or combination of lipid molecules will fulfill the criteria. This perspective has focused on a unique angle of host-pathogen interaction and will open up a new dimension in treating COVID-19 infection.
Collapse
|
17
|
Zakharenko AL, Malakhova AA, Dyrkheeva NS, Okorokova LS, Medvedev SP, Zakian SM, Kabilov MR, Tupikin AA, Lavrik OI. PARP1 Gene Knockout Suppresses Expression of DNA Base Excision Repair Genes. DOKL BIOCHEM BIOPHYS 2023; 508:6-11. [PMID: 36653586 PMCID: PMC10042944 DOI: 10.1134/s1607672922700028] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/14/2022] [Accepted: 12/14/2022] [Indexed: 01/20/2023]
Abstract
The effect of PARP1 knockout in HEK293 cells on the gene expression of DNA base excision repair (BER) proteins was studied. It was shown that the expression of all differentially expressed genes (DEGs) of BER was reduced by knockout. The expression of the DNA glycosylase gene NEIL1, which is considered to be one of the common "hubs" for binding BER proteins, has changed the most. The expression of genes of auxiliary subunits of DNA polymerases δ and ε is also significantly reduced. The PARP1 gene knockout cell line obtained is an adequate cell model for studying the activity of the BER process in the absence of PARP1 and testing drugs aimed at inhibiting repair processes. It has been found for the first time that knockout of the PARP1 gene results in a significant change in the level of expression of proteins responsible for ribosome biogenesis and the functioning of the proteasome.
Collapse
Affiliation(s)
- A L Zakharenko
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - A A Malakhova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia.,Federal Research Centre Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia.,Meshalkin National Medical Research Center of the Ministry of Health of the Russian Federation, Novosibirsk, Russia
| | - N S Dyrkheeva
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | | | - S P Medvedev
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia.,Federal Research Centre Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia.,Meshalkin National Medical Research Center of the Ministry of Health of the Russian Federation, Novosibirsk, Russia
| | - S M Zakian
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia.,Federal Research Centre Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia.,Meshalkin National Medical Research Center of the Ministry of Health of the Russian Federation, Novosibirsk, Russia
| | - M R Kabilov
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - A A Tupikin
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - O I Lavrik
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia.
| |
Collapse
|
18
|
Koczor CA, Saville KM, Al-Rahahleh RQ, Andrews JF, Li J, Sobol RW. Quantitative Analysis of Nuclear Poly(ADP-Ribose) Dynamics in Response to Laser-Induced DNA Damage. Methods Mol Biol 2023; 2609:43-59. [PMID: 36515828 PMCID: PMC9920208 DOI: 10.1007/978-1-0716-2891-1_3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Poly(ADP-ribose) (PAR), catalyzed by members of the poly(ADP-ribose) polymerase family of enzymes, is a posttranslational modification with a critical role in most mechanisms of DNA repair. Upon activation of poly(ADP-ribose) polymerase isoforms 1 and 2 (PARP-1 and PARP-2), the proteins of the base excision repair (BER) and single-strand break repair (SSBR) pathways form DNA lesion-dependent, transient complexes to facilitate repair. PAR is central to the temporal dynamics of BER/SSBR complex assembly and disassembly. To enhance cellular PAR analysis, we developed LivePAR, a fluorescently tagged PAR-binding fusion protein and genetically encoded imaging probe for live cell, quantitative analysis of PAR in mammalian cells. LivePAR has the advantage that it enables real-time imaging of PAR formation in cells and significantly overcomes limitations of immunocytochemistry for PAR analysis. This chapter describes the protocols needed to develop cells expressing LivePAR or EGFP-tagged BER proteins and to evaluate laser-induced formation of PAR and comparison to the assembly of the BER proteins XRCC1 and DNA polymerase-β.
Collapse
Affiliation(s)
- Christopher A Koczor
- Mitchell Cancer Institute, University of South Alabama, Mobile, AL, USA
- Department of Pharmacology, College of Medicine, University of South Alabama, Mobile, AL, USA
| | - Kate M Saville
- Mitchell Cancer Institute, University of South Alabama, Mobile, AL, USA
- Department of Pharmacology, College of Medicine, University of South Alabama, Mobile, AL, USA
| | - Rasha Q Al-Rahahleh
- Mitchell Cancer Institute, University of South Alabama, Mobile, AL, USA
- Department of Pharmacology, College of Medicine, University of South Alabama, Mobile, AL, USA
- Department of Pathology and Laboratory Medicine & Legorreta Cancer Center, Brown University, Providence, RI, USA
| | - Joel F Andrews
- Mitchell Cancer Institute, University of South Alabama, Mobile, AL, USA
| | - Jianfeng Li
- Mitchell Cancer Institute, University of South Alabama, Mobile, AL, USA
- Department of Pharmacology, College of Medicine, University of South Alabama, Mobile, AL, USA
| | - Robert W Sobol
- Mitchell Cancer Institute, University of South Alabama, Mobile, AL, USA.
- Department of Pharmacology, College of Medicine, University of South Alabama, Mobile, AL, USA.
- Department of Pathology and Laboratory Medicine & Legorreta Cancer Center, Brown University, Providence, RI, USA.
| |
Collapse
|
19
|
Abstract
The understanding of the molecular and cellular basis of aging has grown exponentially over recent years, and it is now accepted within the scientific community that aging is a malleable process; just as it can be accelerated, it can also be slowed and even reversed. This has far-reaching implications for our attitude and approach toward aging, presenting the opportunity to enter a new era of cellular regenerative medicine to not only manage the external signs of aging but also to develop therapies that support the body to repair and restore itself back to a state of internal well-being. A wealth of evidence now demonstrates that a decline in cellular nicotinamide adenine dinucleotide (NAD+) is a feature of aging and may play a role in the process. NAD+ plays a pivotal role in cellular metabolism and is a co-substrate for enzymes that play key roles in pathways that modify aging. Thus, interventions that increase NAD+ may slow aspects of the aging trajectory, and there is great interest in methods for cellular NAD+ restoration. Given these recent advancements in understanding the cellular aging process, it is important that there is an integration between the basic scientists who are investigating the underlying mechanisms of cellular aging and the surgeons and aesthetic practitioners who are providing antiaging therapies. This will allow the effective translation of this vastly complex area of biology into clinical practice so that people can continue to not only stay looking younger for longer but also experience improved health and wellness.
Collapse
|
20
|
Koczor CA, Haider AJ, Saville KM, Li J, Andrews JF, Beiser AV, Sobol RW. Live Cell Detection of Poly(ADP-Ribose) for Use in Genetic and Genotoxic Compound Screens. Cancers (Basel) 2022; 14:3676. [PMID: 35954352 PMCID: PMC9367489 DOI: 10.3390/cancers14153676] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 07/19/2022] [Accepted: 07/25/2022] [Indexed: 02/04/2023] Open
Abstract
Poly(ADP-ribose) (PAR) is a molecular scaffold that aids in the formation of DNA repair protein complexes. Tools to sensitively quantify PAR in live cells have been lacking. We recently described the LivePAR probe (EGFP fused to the RNF146-encoded WWE PAR binding domain) to measure PAR formation at sites of laser micro-irradiation in live cells. Here, we present two methods that expand on the use of LivePAR and its WWE domain. First, LivePAR enriches in the nucleus of cells following genotoxic challenge. Image quantitation can identify single-cell PAR formation following genotoxic stress at concentrations lower than PAR ELISA or PAR immunoblot, with greater sensitivity to genotoxic stress than CometChip. In a second approach, we used the RNF146-encoded WWE domain to develop a split luciferase probe for analysis in a 96-well plate assay. We then applied these PAR analysis tools to demonstrate their broad applicability. First, we show that both approaches can identify genetic modifications that alter PARylation levels, such as hyper-PARylation in BRCA2-deficient cancer cells. Second, we demonstrate the utility of the WWE split luciferase assay to characterize the cellular response of genotoxins, PARP inhibitors, and PARG inhibitors, thereby providing a screening method to identify PAR modulating compounds.
Collapse
Affiliation(s)
- Christopher A. Koczor
- Department of Pharmacology, College of Medicine, University of South Alabama, Mobile, AL 36688, USA; (C.A.K.); (K.M.S.); (J.L.); (A.V.B.)
- Mitchell Cancer Institute, University of South Alabama, Mobile, AL 36604, USA; (A.J.H.); (J.F.A.)
| | - Aaron J. Haider
- Mitchell Cancer Institute, University of South Alabama, Mobile, AL 36604, USA; (A.J.H.); (J.F.A.)
| | - Kate M. Saville
- Department of Pharmacology, College of Medicine, University of South Alabama, Mobile, AL 36688, USA; (C.A.K.); (K.M.S.); (J.L.); (A.V.B.)
- Mitchell Cancer Institute, University of South Alabama, Mobile, AL 36604, USA; (A.J.H.); (J.F.A.)
| | - Jianfeng Li
- Department of Pharmacology, College of Medicine, University of South Alabama, Mobile, AL 36688, USA; (C.A.K.); (K.M.S.); (J.L.); (A.V.B.)
- Mitchell Cancer Institute, University of South Alabama, Mobile, AL 36604, USA; (A.J.H.); (J.F.A.)
| | - Joel F. Andrews
- Mitchell Cancer Institute, University of South Alabama, Mobile, AL 36604, USA; (A.J.H.); (J.F.A.)
| | - Alison V. Beiser
- Department of Pharmacology, College of Medicine, University of South Alabama, Mobile, AL 36688, USA; (C.A.K.); (K.M.S.); (J.L.); (A.V.B.)
- Mitchell Cancer Institute, University of South Alabama, Mobile, AL 36604, USA; (A.J.H.); (J.F.A.)
| | - Robert W. Sobol
- Department of Pharmacology, College of Medicine, University of South Alabama, Mobile, AL 36688, USA; (C.A.K.); (K.M.S.); (J.L.); (A.V.B.)
- Mitchell Cancer Institute, University of South Alabama, Mobile, AL 36604, USA; (A.J.H.); (J.F.A.)
| |
Collapse
|
21
|
Li J, Koczor CA, Saville KM, Hayat F, Beiser A, McClellan S, Migaud ME, Sobol RW. Overcoming Temozolomide Resistance in Glioblastoma via Enhanced NAD + Bioavailability and Inhibition of Poly-ADP-Ribose Glycohydrolase. Cancers (Basel) 2022; 14:3572. [PMID: 35892832 PMCID: PMC9331395 DOI: 10.3390/cancers14153572] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/17/2022] [Accepted: 07/20/2022] [Indexed: 02/04/2023] Open
Abstract
Glioblastoma multiforme (GBM) is an incurable brain cancer with an average survival of approximately 15 months. Temozolomide (TMZ) is a DNA alkylating agent for the treatment of GBM. However, at least 50% of the patients treated with TMZ show poor response, primarily due to elevated expression of the repair protein O6-methylguanine-DNA methyltransferase (MGMT) or due to defects in the mismatch repair (MMR) pathway. These resistance mechanisms are either somatic or arise in response to treatment, highlighting the need to uncover treatments to overcome resistance. We found that administration of the NAD+ precursor dihydronicotinamide riboside (NRH) to raise cellular NAD+ levels combined with PARG inhibition (PARGi) triggers hyperaccumulation of poly(ADP-ribose) (PAR), resulting from both DNA damage-induced and replication-stress-induced PARP1 activation. Here, we show that the NRH/PARGi combination enhances the cytotoxicity of TMZ. Specifically, NRH rapidly increases NAD+ levels in both TMZ-sensitive and TMZ-resistant GBM-derived cells and enhances the accumulation of PAR following TMZ treatment. Furthermore, NRH promotes hyperaccumulation of PAR in the presence of TMZ and PARGi. This combination strongly suppresses the cell growth of GBM cells depleted of MSH6 or cells expressing MGMT, suggesting that this regimen may improve the efficacy of TMZ to overcome treatment resistance in GBM.
Collapse
Affiliation(s)
- Jianfeng Li
- Department of Pharmacology, College of Medicine, University of South Alabama, Mobile, AL 36688, USA; (J.L.); (C.A.K.); (K.M.S.); (F.H.); (A.B.); (M.E.M.)
- Mitchell Cancer Institute, University of South Alabama, Mobile, AL 36604, USA
| | - Christopher A. Koczor
- Department of Pharmacology, College of Medicine, University of South Alabama, Mobile, AL 36688, USA; (J.L.); (C.A.K.); (K.M.S.); (F.H.); (A.B.); (M.E.M.)
- Mitchell Cancer Institute, University of South Alabama, Mobile, AL 36604, USA
| | - Kate M. Saville
- Department of Pharmacology, College of Medicine, University of South Alabama, Mobile, AL 36688, USA; (J.L.); (C.A.K.); (K.M.S.); (F.H.); (A.B.); (M.E.M.)
- Mitchell Cancer Institute, University of South Alabama, Mobile, AL 36604, USA
| | - Faisal Hayat
- Department of Pharmacology, College of Medicine, University of South Alabama, Mobile, AL 36688, USA; (J.L.); (C.A.K.); (K.M.S.); (F.H.); (A.B.); (M.E.M.)
- Mitchell Cancer Institute, University of South Alabama, Mobile, AL 36604, USA
| | - Alison Beiser
- Department of Pharmacology, College of Medicine, University of South Alabama, Mobile, AL 36688, USA; (J.L.); (C.A.K.); (K.M.S.); (F.H.); (A.B.); (M.E.M.)
- Mitchell Cancer Institute, University of South Alabama, Mobile, AL 36604, USA
| | - Steven McClellan
- Mitchell Cancer Institute Flow Cytometry SRL, University of South Alabama, Mobile, AL 36604, USA;
| | - Marie E. Migaud
- Department of Pharmacology, College of Medicine, University of South Alabama, Mobile, AL 36688, USA; (J.L.); (C.A.K.); (K.M.S.); (F.H.); (A.B.); (M.E.M.)
- Mitchell Cancer Institute, University of South Alabama, Mobile, AL 36604, USA
| | - Robert W. Sobol
- Department of Pharmacology, College of Medicine, University of South Alabama, Mobile, AL 36688, USA; (J.L.); (C.A.K.); (K.M.S.); (F.H.); (A.B.); (M.E.M.)
- Mitchell Cancer Institute, University of South Alabama, Mobile, AL 36604, USA
| |
Collapse
|
22
|
Ruszkiewicz JA, Bürkle A, Mangerich A. Fueling genome maintenance: On the versatile roles of NAD + in preserving DNA integrity. J Biol Chem 2022; 298:102037. [PMID: 35595095 PMCID: PMC9194868 DOI: 10.1016/j.jbc.2022.102037] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 05/05/2022] [Accepted: 05/09/2022] [Indexed: 12/13/2022] Open
Abstract
NAD+ is a versatile biomolecule acting as a master regulator and substrate in various cellular processes, including redox regulation, metabolism, and various signaling pathways. In this article, we concisely and critically review the role of NAD+ in mechanisms promoting genome maintenance. Numerous NAD+-dependent reactions are involved in the preservation of genome stability, the cellular DNA damage response, and other pathways regulating nucleic acid metabolism, such as gene expression and cell proliferation pathways. Of note, NAD+ serves as a substrate to ADP-ribosyltransferases, sirtuins, and potentially also eukaryotic DNA ligases, all of which regulate various aspects of DNA integrity, damage repair, and gene expression. Finally, we critically analyze recent developments in the field as well as discuss challenges associated with therapeutic actions intended to raise NAD+ levels.
Collapse
Affiliation(s)
- Joanna A Ruszkiewicz
- Molecular Toxicology Group, Department of Biology, University of Konstanz, Konstanz, Germany.
| | - Alexander Bürkle
- Molecular Toxicology Group, Department of Biology, University of Konstanz, Konstanz, Germany.
| | - Aswin Mangerich
- Molecular Toxicology Group, Department of Biology, University of Konstanz, Konstanz, Germany.
| |
Collapse
|
23
|
Aksenova AY, Zhuk AS, Lada AG, Zotova IV, Stepchenkova EI, Kostroma II, Gritsaev SV, Pavlov YI. Genome Instability in Multiple Myeloma: Facts and Factors. Cancers (Basel) 2021; 13:5949. [PMID: 34885058 PMCID: PMC8656811 DOI: 10.3390/cancers13235949] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/20/2021] [Accepted: 11/22/2021] [Indexed: 02/06/2023] Open
Abstract
Multiple myeloma (MM) is a malignant neoplasm of terminally differentiated immunoglobulin-producing B lymphocytes called plasma cells. MM is the second most common hematologic malignancy, and it poses a heavy economic and social burden because it remains incurable and confers a profound disability to patients. Despite current progress in MM treatment, the disease invariably recurs, even after the transplantation of autologous hematopoietic stem cells (ASCT). Biological processes leading to a pathological myeloma clone and the mechanisms of further evolution of the disease are far from complete understanding. Genetically, MM is a complex disease that demonstrates a high level of heterogeneity. Myeloma genomes carry numerous genetic changes, including structural genome variations and chromosomal gains and losses, and these changes occur in combinations with point mutations affecting various cellular pathways, including genome maintenance. MM genome instability in its extreme is manifested in mutation kataegis and complex genomic rearrangements: chromothripsis, templated insertions, and chromoplexy. Chemotherapeutic agents used to treat MM add another level of complexity because many of them exacerbate genome instability. Genome abnormalities are driver events and deciphering their mechanisms will help understand the causes of MM and play a pivotal role in developing new therapies.
Collapse
Affiliation(s)
- Anna Y. Aksenova
- Laboratory of Amyloid Biology, St. Petersburg State University, 199034 St. Petersburg, Russia
| | - Anna S. Zhuk
- International Laboratory “Computer Technologies”, ITMO University, 197101 St. Petersburg, Russia;
| | - Artem G. Lada
- Department of Microbiology and Molecular Genetics, University of California, Davis, CA 95616, USA;
| | - Irina V. Zotova
- Department of Genetics and Biotechnology, St. Petersburg State University, 199034 St. Petersburg, Russia; (I.V.Z.); (E.I.S.)
- Vavilov Institute of General Genetics, St. Petersburg Branch, Russian Academy of Sciences, 199034 St. Petersburg, Russia
| | - Elena I. Stepchenkova
- Department of Genetics and Biotechnology, St. Petersburg State University, 199034 St. Petersburg, Russia; (I.V.Z.); (E.I.S.)
- Vavilov Institute of General Genetics, St. Petersburg Branch, Russian Academy of Sciences, 199034 St. Petersburg, Russia
| | - Ivan I. Kostroma
- Russian Research Institute of Hematology and Transfusiology, 191024 St. Petersburg, Russia; (I.I.K.); (S.V.G.)
| | - Sergey V. Gritsaev
- Russian Research Institute of Hematology and Transfusiology, 191024 St. Petersburg, Russia; (I.I.K.); (S.V.G.)
| | - Youri I. Pavlov
- Eppley Institute for Research in Cancer, Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Departments of Biochemistry and Molecular Biology, Microbiology and Pathology, Genetics Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE 68198, USA
| |
Collapse
|
24
|
Li J, M. Saville K, Ibrahim M, Zeng X, McClellan S, Angajala A, Beiser A, Andrews JF, Sun M, Koczor CA, Clark J, Hayat F, Makarov MV, Wilk A, Yates NA, Migaud ME, Sobol RW. NAD + bioavailability mediates PARG inhibition-induced replication arrest, intra S-phase checkpoint and apoptosis in glioma stem cells. NAR Cancer 2021; 3:zcab044. [PMID: 34806016 PMCID: PMC8600031 DOI: 10.1093/narcan/zcab044] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 10/20/2021] [Accepted: 11/10/2021] [Indexed: 01/31/2023] Open
Abstract
Elevated expression of the DNA damage response proteins PARP1 and poly(ADP-ribose) glycohydrolase (PARG) in glioma stem cells (GSCs) suggests that glioma may be a unique target for PARG inhibitors (PARGi). While PARGi-induced cell death is achieved when combined with ionizing radiation, as a single agent PARG inhibitors appear to be mostly cytostatic. Supplementation with the NAD+ precursor dihydronicotinamide riboside (NRH) rapidly increased NAD+ levels in GSCs and glioma cells, inducing PARP1 activation and mild suppression of replication fork progression. Administration of NRH+PARGi triggers hyperaccumulation of poly(ADP-ribose) (PAR), intra S-phase arrest and apoptosis in GSCs but minimal PAR induction or cytotoxicity in normal astrocytes. PAR accumulation is regulated by select PARP1- and PAR-interacting proteins. The involvement of XRCC1 highlights the base excision repair pathway in responding to replication stress while enhanced interaction of PARP1 with PCNA, RPA and ORC2 upon PAR accumulation implicates replication associated PARP1 activation and assembly with pre-replication complex proteins upon initiation of replication arrest, the intra S-phase checkpoint and the onset of apoptosis.
Collapse
Affiliation(s)
- Jianfeng Li
- Mitchell Cancer Institute, University of South Alabama, Mobile, AL 36604, USA,Department of Pharmacology, College of Medicine, University of South Alabama, Mobile, AL 36604, USA
| | - Kate M. Saville
- Mitchell Cancer Institute, University of South Alabama, Mobile, AL 36604, USA,Department of Pharmacology, College of Medicine, University of South Alabama, Mobile, AL 36604, USA
| | - Md Ibrahim
- Mitchell Cancer Institute, University of South Alabama, Mobile, AL 36604, USA,Department of Pharmacology, College of Medicine, University of South Alabama, Mobile, AL 36604, USA
| | - Xuemei Zeng
- Biomedical Mass Spectrometry Center, University of Pittsburgh Schools of the Health Sciences, Pittsburgh, PA 15213, USA
| | - Steve McClellan
- Mitchell Cancer Institute, University of South Alabama, Mobile, AL 36604, USA
| | - Anusha Angajala
- Mitchell Cancer Institute, University of South Alabama, Mobile, AL 36604, USA,Department of Pharmacology, College of Medicine, University of South Alabama, Mobile, AL 36604, USA
| | - Alison Beiser
- Mitchell Cancer Institute, University of South Alabama, Mobile, AL 36604, USA,Department of Pharmacology, College of Medicine, University of South Alabama, Mobile, AL 36604, USA
| | - Joel F Andrews
- Mitchell Cancer Institute, University of South Alabama, Mobile, AL 36604, USA
| | - Mai Sun
- Biomedical Mass Spectrometry Center, University of Pittsburgh Schools of the Health Sciences, Pittsburgh, PA 15213, USA
| | - Christopher A Koczor
- Mitchell Cancer Institute, University of South Alabama, Mobile, AL 36604, USA,Department of Pharmacology, College of Medicine, University of South Alabama, Mobile, AL 36604, USA
| | - Jennifer Clark
- Mitchell Cancer Institute, University of South Alabama, Mobile, AL 36604, USA,Department of Pharmacology, College of Medicine, University of South Alabama, Mobile, AL 36604, USA
| | - Faisal Hayat
- Mitchell Cancer Institute, University of South Alabama, Mobile, AL 36604, USA,Department of Pharmacology, College of Medicine, University of South Alabama, Mobile, AL 36604, USA
| | - Mikhail V Makarov
- Mitchell Cancer Institute, University of South Alabama, Mobile, AL 36604, USA,Department of Pharmacology, College of Medicine, University of South Alabama, Mobile, AL 36604, USA
| | - Anna Wilk
- Mitchell Cancer Institute, University of South Alabama, Mobile, AL 36604, USA,Department of Pharmacology, College of Medicine, University of South Alabama, Mobile, AL 36604, USA
| | - Nathan A Yates
- Biomedical Mass Spectrometry Center, University of Pittsburgh Schools of the Health Sciences, Pittsburgh, PA 15213, USA,Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Marie E Migaud
- Mitchell Cancer Institute, University of South Alabama, Mobile, AL 36604, USA,Department of Pharmacology, College of Medicine, University of South Alabama, Mobile, AL 36604, USA
| | - Robert W Sobol
- To whom correspondence should be addressed. Tel: +1 251 445 9846;
| |
Collapse
|
25
|
Temporal dynamics of base excision/single-strand break repair protein complex assembly/disassembly are modulated by the PARP/NAD +/SIRT6 axis. Cell Rep 2021; 37:109917. [PMID: 34731617 PMCID: PMC8607749 DOI: 10.1016/j.celrep.2021.109917] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 08/03/2021] [Accepted: 10/11/2021] [Indexed: 01/04/2023] Open
Abstract
Assembly and disassembly of DNA repair protein complexes at DNA damage sites are essential for maintaining genomic integrity. Investigating factors coordinating assembly of the base excision repair (BER) proteins DNA polymerase β (Polβ) and XRCC1 to DNA lesion sites identifies a role for Polβ in regulating XRCC1 disassembly from DNA repair complexes and, conversely, demonstrates Polβ’s dependence on XRCC1 for complex assembly. LivePAR, a genetically encoded probe for live-cell imaging of poly(ADP-ribose) (PAR), reveals that Polβ and XRCC1 require PAR for repair-complex assembly, with PARP1 and PARP2 playing unique roles in complex dynamics. Further, BER complex assembly is modulated by attenuation/augmentation of NAD+ biosynthesis. Finally, SIRT6 does not modulate PARP1 or PARP2 activation but does regulate XRCC1 recruitment, leading to diminished Polβ abundance at sites of DNA damage. These findings highlight coordinated yet independent roles for PARP1, PARP2, and SIRT6 and their regulation by NAD+ bioavailability to facilitate BER. Koczor et al. use quantitative confocal microscopy to characterize DNA-damage-induced poly(ADP-ribose) (PAR) formation and assembly/disassembly kinetics in human cells. These studies highlight the coordinated yet independent roles for XRCC1, POLΒ, PARP1, PARP2, and SIRT6 (and regulation by NAD+) to facilitate BER/SSBR protein complex dynamics.
Collapse
|
26
|
Bobulescu IA, Pop LM, Mani C, Turner K, Rivera C, Khatoon S, Kairamkonda S, Hannan R, Palle K. Renal Lipid Metabolism Abnormalities in Obesity and Clear Cell Renal Cell Carcinoma. Metabolites 2021; 11:608. [PMID: 34564424 PMCID: PMC8470169 DOI: 10.3390/metabo11090608] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 09/03/2021] [Accepted: 09/03/2021] [Indexed: 02/07/2023] Open
Abstract
Clear cell renal cell carcinoma is the most common and deadly type of cancer affecting the kidney, and is characterized histologically by large intracellular lipid deposits. These deposits are thought to result from lipid metabolic reprogramming occurring in tumor cells, but the exact mechanisms and implications of these metabolic alterations are incompletely understood. Obesity is an independent risk factor for clear cell renal cell carcinoma, and is also associated with lipid accumulation in noncancerous epithelial cells of the proximal tubule, where clear cell renal cell carcinoma originates. This article explores the potential link between obesity-associated renal lipid metabolic disturbances and lipid metabolic reprogramming in clear cell renal cell carcinoma, and discusses potential implications for future research.
Collapse
Affiliation(s)
- Ion Alexandru Bobulescu
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX 79430-6540, USA; (C.M.); (K.T.); (C.R.); (S.K.); (S.K.); (K.P.)
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430-6540, USA
| | - Laurentiu M. Pop
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX 79430-6540, USA; (L.M.P.); (R.H.)
| | - Chinnadurai Mani
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX 79430-6540, USA; (C.M.); (K.T.); (C.R.); (S.K.); (S.K.); (K.P.)
| | - Kala Turner
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX 79430-6540, USA; (C.M.); (K.T.); (C.R.); (S.K.); (S.K.); (K.P.)
| | - Christian Rivera
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX 79430-6540, USA; (C.M.); (K.T.); (C.R.); (S.K.); (S.K.); (K.P.)
| | - Sabiha Khatoon
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX 79430-6540, USA; (C.M.); (K.T.); (C.R.); (S.K.); (S.K.); (K.P.)
| | - Subash Kairamkonda
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX 79430-6540, USA; (C.M.); (K.T.); (C.R.); (S.K.); (S.K.); (K.P.)
| | - Raquibul Hannan
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX 79430-6540, USA; (L.M.P.); (R.H.)
| | - Komaraiah Palle
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX 79430-6540, USA; (C.M.); (K.T.); (C.R.); (S.K.); (S.K.); (K.P.)
- Department of Surgery, Texas Tech University Health Sciences Center, Lubbock, TX 79430-6540, USA
| |
Collapse
|
27
|
Thompson MK, Sobol RW, Prakash A. Exploiting DNA Endonucleases to Advance Mechanisms of DNA Repair. BIOLOGY 2021; 10:530. [PMID: 34198612 PMCID: PMC8232306 DOI: 10.3390/biology10060530] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 06/09/2021] [Accepted: 06/11/2021] [Indexed: 12/17/2022]
Abstract
The earliest methods of genome editing, such as zinc-finger nucleases (ZFN) and transcription activator-like effector nucleases (TALENs), utilize customizable DNA-binding motifs to target the genome at specific loci. While these approaches provided sequence-specific gene-editing capacity, the laborious process of designing and synthesizing recombinant nucleases to recognize a specific target sequence, combined with limited target choices and poor editing efficiency, ultimately minimized the broad utility of these systems. The discovery of clustered regularly interspaced short palindromic repeat sequences (CRISPR) in Escherichia coli dates to 1987, yet it was another 20 years before CRISPR and the CRISPR-associated (Cas) proteins were identified as part of the microbial adaptive immune system, by targeting phage DNA, to fight bacteriophage reinfection. By 2013, CRISPR/Cas9 systems had been engineered to allow gene editing in mammalian cells. The ease of design, low cytotoxicity, and increased efficiency have made CRISPR/Cas9 and its related systems the designer nucleases of choice for many. In this review, we discuss the various CRISPR systems and their broad utility in genome manipulation. We will explore how CRISPR-controlled modifications have advanced our understanding of the mechanisms of genome stability, using the modulation of DNA repair genes as examples.
Collapse
Affiliation(s)
- Marlo K. Thompson
- Mitchell Cancer Institute, University of South Alabama Health, Mobile, AL 36604, USA; (M.K.T.); (R.W.S.)
- Department of Biochemistry and Molecular Biology, University of South Alabama, Mobile, AL 36688, USA
| | - Robert W. Sobol
- Mitchell Cancer Institute, University of South Alabama Health, Mobile, AL 36604, USA; (M.K.T.); (R.W.S.)
- Department of Pharmacology, University of South Alabama, Mobile, AL 36688, USA
| | - Aishwarya Prakash
- Mitchell Cancer Institute, University of South Alabama Health, Mobile, AL 36604, USA; (M.K.T.); (R.W.S.)
- Department of Biochemistry and Molecular Biology, University of South Alabama, Mobile, AL 36688, USA
| |
Collapse
|
28
|
Rechkunova NI, Krasikova YS, Lavrik OI. Interactome of Base and Nucleotide Excision DNA Repair Systems. Mol Biol 2021. [DOI: 10.1134/s0026893321020126] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|