1
|
Khalid AQ, Zaidan TN, Bhuvanendran S, Magalingam KB, Mohamedahmed SM, Ramdas P, Radhakrishnan AK. Insights into the Anticancer Mechanisms Modulated by Gamma and Delta Tocotrienols in Colorectal Cancers. Nutr Rev 2024:nuae108. [PMID: 39181121 DOI: 10.1093/nutrit/nuae108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/27/2024] Open
Abstract
Colorectal cancer (CRC) is a growing concern all over the world. There has been a concerted effort to identify natural bioactive compounds that can be used to prevent or overcome this condition. Tocotrienols (T3s) are a naturally occurring form of vitamin E known for various therapeutic effects, such as anticancer, antioxidant, neuroprotective, and anti-inflammatory activities. The literature evidence suggests that two T3 analogues, ie, gamma (γ)- and delta (δ)-T3, can modulate cancers via several cancer-related signaling pathways. The aim of this review was to compile and analyze the existing literature on the diverse anticancer mechanisms of γT3 and δT3 exhibited in CRC cells, to showcase the anticancer potential of T3s. Medline was searched for research articles on anticancer effects of γT3 and δT3 in CRC published in the past 2 decades. A total of 38 articles (26 cell-based, 9 animal studies, 2 randomized clinical trials, and 1 scoping review) that report anticancer effects of γT3 and δT3 in CRC were identified. The findings reported in those articles indicate that γT3 and δT3 inhibit the proliferation of CRC cells, induce cell cycle arrest and apoptosis, suppress metastasis, and produce synergistic anticancer effects when combined with well-established anticancer agents. There is preliminary evidence that shows that T3s affect telomerase functions and support anticancer immune responses. γT3 and δT3 have the potential for development as anticancer agents.
Collapse
Affiliation(s)
- Ali Qusay Khalid
- Food as Medicine Research Strength, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, 47500 Bandar Sunway, Malaysia
| | - Tabarek Najeeb Zaidan
- Department of Food Science and Nutrition, Faculty of Applied Sciences, UCSI University, UCSI Heights, Cheras, 56000 Kuala Lumpur, Malaysia
| | - Saatheeyavaane Bhuvanendran
- Food as Medicine Research Strength, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, 47500 Bandar Sunway, Malaysia
| | - Kasthuri B Magalingam
- Food as Medicine Research Strength, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, 47500 Bandar Sunway, Malaysia
| | - Shaza M Mohamedahmed
- Food as Medicine Research Strength, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, 47500 Bandar Sunway, Malaysia
| | - Premdass Ramdas
- Food as Medicine Research Strength, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, 47500 Bandar Sunway, Malaysia
| | - Ammu K Radhakrishnan
- Food as Medicine Research Strength, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, 47500 Bandar Sunway, Malaysia
| |
Collapse
|
2
|
Leu YL, Cheng SF, Wang TH, Feng CH, Chen YJ, Hsieh YC, Lan YH, Chen CC. Increasing DNA damage sensitivity through corylin-mediated inhibition of homologous recombination. Biomed Pharmacother 2024; 176:116864. [PMID: 38865847 DOI: 10.1016/j.biopha.2024.116864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 05/23/2024] [Accepted: 06/03/2024] [Indexed: 06/14/2024] Open
Abstract
BACKGROUND DNA repair allows the survival of cancer cells. Therefore, the development of DNA repair inhibitors is a critical need for sensitizing cancers to chemoradiation. Sae2CtIP has specific functions in initiating DNA end resection, as well as coordinating cell cycle checkpoints, and it also greatly interacts with the DDR at different levels. RESULTS In this study, we demonstrated that corylin, a potential sensitizer, causes deficiencies in DNA repair and DNA damage checkpoints in yeast cells. More specifically, corylin increases DNA damage sensitivity through the Sae2-dependent pathway and impairs the activation of Mec1-Ddc2, Rad53-p and γ-H2A. In breast cancer cells, corylin increases apoptosis and reduces proliferation following Dox treatment by inhibiting CtIP. Xenograft assays showed that treatment with corylin combined with Dox significantly reduced tumor growth in vivo. CONCLUSIONS Our findings herein delineate the mechanisms of action of corylin in regulating DNA repair and indicate that corylin has potential long-term clinical utility as a DDR inhibitor.
Collapse
Affiliation(s)
- Yann-Lii Leu
- Graduate Institute of Natural products, College of Medicine, No.259, Wenhua 1st Rd., Guishan Dist., Taoyuan City 33302, Taiwan, ROC; Biobank, Chang Gung Memorial Hospital, No. 5, Fuxing St., Guishan Dist., Taoyuan City 33305, Taiwan, ROC
| | - Shu-Fang Cheng
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, No.259, Wenhua 1st Rd., Guishan Dist., Taoyuan City, Taiwan, ROC; Graduate Institute of Natural products, College of Medicine, No.259, Wenhua 1st Rd., Guishan Dist., Taoyuan City 33302, Taiwan, ROC
| | - Tong-Hong Wang
- Biobank, Chang Gung Memorial Hospital, No. 5, Fuxing St., Guishan Dist., Taoyuan City 33305, Taiwan, ROC
| | - Chun-Hao Feng
- Graduate Institute of Natural products, College of Medicine, No.259, Wenhua 1st Rd., Guishan Dist., Taoyuan City 33302, Taiwan, ROC
| | - Yu-Ju Chen
- Graduate Institute of Natural products, College of Medicine, No.259, Wenhua 1st Rd., Guishan Dist., Taoyuan City 33302, Taiwan, ROC
| | - Yi-Cheng Hsieh
- Office of the Texas State Chemist, Texas A&M AgriLife Research, Texas A&M University System, College Station, TX 77843, USA
| | - Yu-Hsuan Lan
- Department of Pharmacy, College of Pharmacy, China Medical University, No.100, Section 1, Jingmao Rd., Beitun Dist., Taichung City 406040, Taiwan, ROC.
| | - Chin-Chuan Chen
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, No.259, Wenhua 1st Rd., Guishan Dist., Taoyuan City, Taiwan, ROC; Graduate Institute of Natural products, College of Medicine, No.259, Wenhua 1st Rd., Guishan Dist., Taoyuan City 33302, Taiwan, ROC; Healthy Aging Research Center, Chang Gung University, No.259, Wenhua 1st Rd., Guishan Dist., Taoyuan City 33302, Taiwan, ROC; Molecular Medicine Research Center, Chang Gung University, No.259, Wenhua 1st Rd., Guishan Dist., Taoyuan City 33302, Taiwan, ROC; Biobank, Chang Gung Memorial Hospital, No. 5, Fuxing St., Guishan Dist., Taoyuan City 33305, Taiwan, ROC.
| |
Collapse
|
3
|
Saadh MJ, Rasulova I, Almoyad MAA, Kiasari BA, Ali RT, Rasheed T, Faisal A, Hussain F, Jawad MJ, Hani T, Sârbu I, Lakshmaiya N, Ciongradi CI. Recent progress and the emerging role of lncRNAs in cancer drug resistance; focusing on signaling pathways. Pathol Res Pract 2024; 253:154999. [PMID: 38118218 DOI: 10.1016/j.prp.2023.154999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 11/23/2023] [Accepted: 11/27/2023] [Indexed: 12/22/2023]
Abstract
It is becoming more and more apparent that many of the genetic alterations associated with cancer are located in areas that do not encode proteins. lncRNAs are a class of RNAs that do not code for proteins but play a crucial role in maintaining cell function and regulating various cellular processes. By doing this, they have recently introduced what may be a brand-new and essential layer of biological control. These have more than 200 nucleotides and are linked to several diseases; as a result, they have become potential tools for therapeutic intervention. Emerging technologies suggest the presence of mutations on genomic loci that give rise to lncRNAs rather than proteins in a disease as complex as cancer. These lncRNAs play essential parts in gene regulation, which impacts several cellular homeostasis processes, including proliferation, survival, migration, and genomic stability. The leading cause of death in the world today is cancer. Delays in diagnosis and a lack of standard and efficient treatments are the leading causes of the high death rate. Clinically, surgery is frequently used successfully to remove cancers that have not spread, but it is less successful in treating metastatic cancer, which has a drastically lower chance of survival. Chemotherapeutic drugs are a typical therapy to treat the cancer that has spread to other organs. Drug resistance to chemotherapy, however, presents a significant challenge to achieving positive outcomes and is frequently the cause of treatment failure. A substantial barrier to progress in medical oncology is cancer drug resistance. Resistance can develop clinically either before or after cancer treatment. According to this study, lncRNAs influence drug resistance through several different methods. LncRNAs often impact drug resistance by controlling the expression of a few intermediary regulatory variables rather than by directly affecting drug resistance. Additionally, lncRNAs have a variety of roles in cancer medication resistance. Most lncRNAs induce drug resistance when overexpressed; however, other lncRNAs have inhibitory effects. This study provides an overview of the current understanding of lncRNAs, relevance to cancer, and potential therapeutic applications.
Collapse
Affiliation(s)
- Mohamed J Saadh
- Faculty of Pharmacy, Middle East University, Amman 11831, Jordan
| | - Irodakhon Rasulova
- School of Humanities, Natural & Social Sciences, New Uzbekistan University, 54 Mustaqillik Ave., Tashkent 100007, Uzbekistan; Department of Public Health, Samarkand State Medical University, Amir Temur Street 18, Samarkand, Uzbekistan
| | - Muhammad Ali Abdullah Almoyad
- Department of Basic Medical Sciences, College of Applied Medical Sciences, King Khalid University, P.O. Box 4536, 47 Abha Mushait, 61412, Saudi Arabia
| | - Bahman Abedi Kiasari
- Microbiology & Immunology Group, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Ronak Taher Ali
- College of Medical Technology, Al-Kitab University, Kirkuk, Iraq
| | - Tariq Rasheed
- College of Science and Humanities, Al-Kharj, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Ahmed Faisal
- Department of Pharmacy, Al-Noor University College, Nineveh, Iraq
| | - Farah Hussain
- Medical Technical College, Al-Farahidi University, Iraq
| | | | - Thamer Hani
- Dentistry Department, Al-Turath University College, Baghdad, Iraq
| | - Ioan Sârbu
- 2nd Department of Surgery-Pediatric Surgery and Orthopedics, "Grigore T. Popa" University of Medicine and Pharmacy, 700115 Iași, Romania.
| | - Natrayan Lakshmaiya
- Department of Mechanical Engineering, Saveetha School of Engineering, SIMATS, Chennai, Tamil Nadu, India
| | - Carmen Iulia Ciongradi
- 2nd Department of Surgery-Pediatric Surgery and Orthopedics, "Grigore T. Popa" University of Medicine and Pharmacy, 700115 Iași, Romania.
| |
Collapse
|
4
|
Nunes EA, Silva HCD, Duarte NDAA, de Lima LE, Maraslis FT, Araújo MLD, Pedron T, Lange C, Freire BM, Matias AC, Batista BL, Barcelos GRM. Impact of DNA repair polymorphisms on DNA instability biomarkers induced by lead (Pb) in workers exposed to the metal. CHEMOSPHERE 2023:138897. [PMID: 37182709 DOI: 10.1016/j.chemosphere.2023.138897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 05/05/2023] [Accepted: 05/07/2023] [Indexed: 05/16/2023]
Abstract
Although the mechanisms of Pb-induced genotoxicity are well established, a wide individual's variation response is seen in biomarkers related to Pb toxicity, despite similar levels of metal exposure. This may be related to intrinsic variations, such as genetic polymorphisms; moreover, very little is known about the impact of genetic variations related to DNA repair system on DNA instability induced by Pb. In this context, the present study aimed to assess the impact of SNPs in enzymes related to DNA repair system on biomarkers related to acute toxicity and DNA damage induced by Pb exposure, in individuals occupationally exposed to the metal. A cross-sectional study was run with 154 adults (males, >18 years) from an automotive batteries' factory, in Brazil. Blood lead levels (BLL) were determined by ICP-MS; biomarkers related to acute toxicity and DNA instability were monitored by the buccal micronucleus cytome (BMNCyt) assay and genotyping of polymorphisms of MLH1 (rs1799977), OGG1 (rs1052133), PARP1 (rs1136410), XPA (rs1800975), XPC (rs2228000) and XRCC1 (rs25487) were performed by TaqMan assays. BLL ranged from 2.0 to 51 μg dL-1 (mean 20 ± 12 μg dL-1) and significant associations between BLL and BMNCyt biomarkers related to cellular proliferation and cytokinetic, cell death and DNA damage were observed. Furthermore, SNPs from the OGG1, XPA and XPC genes were able to modulate interactions in nuclear bud formation (NBUDs) and micronucleus (MNi) events. Taken together, our data provide further evidence that polymorphisms related to DNA repair pathways may modulate Pb-induced DNA damage; studies that investigate the association between injuries to genetic material and susceptibilities in the workplace can provide additional information on the etiology of diseases and the determination of environmentally responsive genes.
Collapse
Affiliation(s)
- Emilene Arusievicz Nunes
- Department of Biosciences, Institute of Health and Society, Federal University of São Paulo, Rua XV de Novembro 195, CEP 11.060-001, Santos, Brazil.
| | - Heliton Camargo da Silva
- Department of Biosciences, Institute of Health and Society, Federal University of São Paulo, Rua XV de Novembro 195, CEP 11.060-001, Santos, Brazil.
| | - Nathália de Assis Aguilar Duarte
- Department of Biosciences, Institute of Health and Society, Federal University of São Paulo, Rua XV de Novembro 195, CEP 11.060-001, Santos, Brazil.
| | - Lindiane Eloisa de Lima
- Department of Biosciences, Institute of Health and Society, Federal University of São Paulo, Rua XV de Novembro 195, CEP 11.060-001, Santos, Brazil.
| | - Flora Troina Maraslis
- Department of Biosciences, Institute of Health and Society, Federal University of São Paulo, Rua XV de Novembro 195, CEP 11.060-001, Santos, Brazil.
| | - Marília Ladeira de Araújo
- Department of Biosciences, Institute of Health and Society, Federal University of São Paulo, Rua XV de Novembro 195, CEP 11.060-001, Santos, Brazil.
| | - Tatiana Pedron
- Center of Natural and Human Sciences, Federal University of ABC, Avenida Dos Estados, 5001, CEP 09210-580, Santo André, Brazil.
| | - Camila Lange
- Center of Natural and Human Sciences, Federal University of ABC, Avenida Dos Estados, 5001, CEP 09210-580, Santo André, Brazil.
| | - Bruna Moreira Freire
- Center of Natural and Human Sciences, Federal University of ABC, Avenida Dos Estados, 5001, CEP 09210-580, Santo André, Brazil.
| | - Andreza Cândido Matias
- Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of São Paulo, Avenida Professor Lineu Prestes, 1524, CEP 05508-000, São Paulo, Brazil.
| | - Bruno Lemos Batista
- Center of Natural and Human Sciences, Federal University of ABC, Avenida Dos Estados, 5001, CEP 09210-580, Santo André, Brazil.
| | - Gustavo Rafael Mazzaron Barcelos
- Department of Biosciences, Institute of Health and Society, Federal University of São Paulo, Rua XV de Novembro 195, CEP 11.060-001, Santos, Brazil.
| |
Collapse
|
5
|
Wu C, Huang X, Li M, Wang Z, Zhang Y, Tian B. Crosstalk between circRNAs and the PI3K/AKT and/or MEK/ERK signaling pathways in digestive tract malignancy progression. Future Oncol 2023; 18:4525-4538. [PMID: 36891896 DOI: 10.2217/fon-2022-0429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/10/2023] Open
Abstract
Evidence indicates that circular RNAs (circRNAs) may play an important role in regulating gene expression by binding to miRNAs through miRNA response elements. circRNAs are formed by back-splicing and have a covalently closed structure. The biogenesis of circRNAs also appears to be regulated by certain cell-specific and/or gene-specific mechanisms, and thus some circRNAs are tissue specific and tumor-expression specific. Furthermore, the high stability and tissue specificity of circRNAs may be of value for early diagnosis, survival prediction and precision medicine. This review summarizes current knowledge regarding the classification and functions of circRNAs and the role of circRNAs in regulating the PI3K/AKT and/or MEK/ERK signaling pathways in digestive tract malignancy tumors.
Collapse
Affiliation(s)
- Chao Wu
- Department of General Surgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China.,Department of Pancreatic Surgery, West China Hospital, Sichuan University, No. 37 Guoxue Alley, Chengdu, Sichuan Province, China
| | - Xing Huang
- Department of Pancreatic Surgery, West China Hospital, Sichuan University, No. 37 Guoxue Alley, Chengdu, Sichuan Province, China
| | - Mao Li
- Department of Pancreatic Surgery, West China Hospital, Sichuan University, No. 37 Guoxue Alley, Chengdu, Sichuan Province, China
| | - Zihe Wang
- Department of Pancreatic Surgery, West China Hospital, Sichuan University, No. 37 Guoxue Alley, Chengdu, Sichuan Province, China
| | - Yi Zhang
- Department of Pancreatic Surgery, West China Hospital, Sichuan University, No. 37 Guoxue Alley, Chengdu, Sichuan Province, China
| | - Bole Tian
- Department of Pancreatic Surgery, West China Hospital, Sichuan University, No. 37 Guoxue Alley, Chengdu, Sichuan Province, China
| |
Collapse
|
6
|
Song H, Shen R, Mahasin H, Guo Y, Wang D. DNA replication: Mechanisms and therapeutic interventions for diseases. MedComm (Beijing) 2023; 4:e210. [PMID: 36776764 PMCID: PMC9899494 DOI: 10.1002/mco2.210] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 01/08/2023] [Accepted: 01/09/2023] [Indexed: 02/09/2023] Open
Abstract
Accurate and integral cellular DNA replication is modulated by multiple replication-associated proteins, which is fundamental to preserve genome stability. Furthermore, replication proteins cooperate with multiple DNA damage factors to deal with replication stress through mechanisms beyond their role in replication. Cancer cells with chronic replication stress exhibit aberrant DNA replication and DNA damage response, providing an exploitable therapeutic target in tumors. Numerous evidence has indicated that posttranslational modifications (PTMs) of replication proteins present distinct functions in DNA replication and respond to replication stress. In addition, abundant replication proteins are involved in tumorigenesis and development, which act as diagnostic and prognostic biomarkers in some tumors, implying these proteins act as therapeutic targets in clinical. Replication-target cancer therapy emerges as the times require. In this context, we outline the current investigation of the DNA replication mechanism, and simultaneously enumerate the aberrant expression of replication proteins as hallmark for various diseases, revealing their therapeutic potential for target therapy. Meanwhile, we also discuss current observations that the novel PTM of replication proteins in response to replication stress, which seems to be a promising strategy to eliminate diseases.
Collapse
Affiliation(s)
- Hao‐Yun Song
- School of Basic Medical SciencesLanzhou UniversityLanzhouGansuChina
| | - Rong Shen
- School of Basic Medical SciencesLanzhou UniversityLanzhouGansuChina
| | - Hamid Mahasin
- School of Basic Medical SciencesLanzhou UniversityLanzhouGansuChina
| | - Ya‐Nan Guo
- School of Basic Medical SciencesLanzhou UniversityLanzhouGansuChina
| | - De‐Gui Wang
- School of Basic Medical SciencesLanzhou UniversityLanzhouGansuChina
| |
Collapse
|
7
|
Supramolecular Hydrogel-Wrapped Gingival Mesenchymal Stem Cells in Cutaneous Radiation Injury. Cells 2022; 11:cells11193089. [PMID: 36231051 PMCID: PMC9564043 DOI: 10.3390/cells11193089] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/22/2022] [Accepted: 09/27/2022] [Indexed: 12/12/2022] Open
Abstract
Radiation-induced skin wound/dermatitis is one of the common side effects of radiotherapy or interventional radiobiology. Gingiva-derived mesenchymal stem cells (GMSCs) were indicated to have therapeutic potentials in skin diseases. However, stem cells are prone to spread and difficult to stay in the skin for a long time, limiting their curative effects and application. This study investigated the therapeutic efficacy of Nap-GDFDFpDY (pY-Gel) self-assembled peptide hydrogel-encapsulated GMSCs to treat 137Cs γ-radiation-induced skin wounds in mice. The effects were evaluated by skin damage score, hind limb extension measurement and histological and immunohistochemical analysis. In vivo studies showed that pY-Gel self-assembled peptide hydrogel-encapsulated GMSCs could effectively improve wound healing in irradiated skin tissues. In addition, it was found that GMSCs conditioned medium (CM) could promote the proliferation, migration and DNA damage repair ability of skin cells after irradiation in human keratinocyte cell line HaCaT and normal human dermal fibroblasts (HFF). Mechanistically, GMSCs-CM can promote the expression of epidermal growth factor receptor (EGFR), signal transducers and activators of transcription 3 (STAT3) and matrix metalloproteinases (MMPs), suggesting that activation of the EGFR/STAT3 signaling pathway may be involved in the repair of skin cells after exposure to radiations. In conclusion, pY-Gel self-assembled peptide hydrogel-encapsulated GMSCs have a beneficial therapeutic effect on radiation-induced cutaneous injury and may serve as a basis of novel cells therapeutic approach.
Collapse
|
8
|
Almouh M, Razmara E, Bitaraf A, Ghazimoradi MH, Hassan ZM, Babashah S. Circular RNAs play roles in regulatory networks of cell signaling pathways in human cancers. Life Sci 2022; 309:120975. [PMID: 36126723 DOI: 10.1016/j.lfs.2022.120975] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 09/10/2022] [Accepted: 09/14/2022] [Indexed: 10/31/2022]
Abstract
AIMS Circular RNAs (circRNAs) are endogenous covalently closed non-coding RNAs produced by reverse splicing of linear RNA. These molecules are highly expressed in mammalian cells and show cell/tissue-specific expression patterns. They are also significantly dysregulated in various cancers and function as oncogenes or tumor suppressors. Emerging evidence reveals that circRNAs contribute to cancer progression via modulating different cell signaling pathways. Nevertheless, the functional significance of circRNAs in cell signaling pathways regulation is still largely elusive. Considering this, shedding light on the multi-pathway effects of circRNAs may improve our understanding of targeted cancer therapy. Here, we discuss how circRNAs regulate the major cell signaling pathways in human cancers. MATERIALS AND METHODS We adopted a systematic search in PubMed using the following MeSH terms: circRNAs, non-coding RNAs, lncRNAs, exosomal circRNAs, cancer, and cell signaling. KEY FINDINGS We discussed different roles of circRNAs during tumorigenesis in which circRNAs affect tumor development through activating or inactivating certain cell signaling pathways via molecular interactions using various signaling pathways. We also discussed how crosstalk between circRNAs and lncRNAs modulate tumorigenesis and provides a resource for the identification of cancer therapeutic targets. SIGNIFICANCE We here elucidated how circRNAs can modulate different cell signaling pathways and play roles in cancer. This can broaden our horizons toward introducing promising prognostic, diagnostic, and therapeutic targets.
Collapse
Affiliation(s)
- Mansour Almouh
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Ehsan Razmara
- Australian Regenerative Medicine Institute, Monash University, Clayton, VIC 3800, Australia
| | - Amirreza Bitaraf
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Mohammad H Ghazimoradi
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Zuhair Mohammad Hassan
- Department of Immunology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Sadegh Babashah
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
9
|
Chowdhury MAN, Wang SW, Suen CS, Hwang MJ, Hsueh YA, Shieh SY. JAK2-CHK2 signaling safeguards the integrity of the mitotic spindle assembly checkpoint and genome stability. Cell Death Dis 2022; 13:619. [PMID: 35851582 PMCID: PMC9293949 DOI: 10.1038/s41419-022-05077-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 07/05/2022] [Accepted: 07/06/2022] [Indexed: 01/21/2023]
Abstract
Checkpoint kinase 2 (CHK2) plays an important role in safeguarding the mitotic progression, specifically the spindle assembly, though the mechanism of regulation remains poorly understood. Here, we identified a novel mitotic phosphorylation site on CHK2 Tyr156, and its responsible kinase JAK2. Expression of a phospho-deficient mutant CHK2 Y156F or treatment with JAK2 inhibitor IV compromised mitotic spindle assembly, leading to genome instability. In contrast, a phospho-mimicking mutant CHK2 Y156E restored mitotic normalcy in JAK2-inhibited cells. Mechanistically, we show that this phosphorylation is required for CHK2 interaction with and phosphorylation of the spindle assembly checkpoint (SAC) kinase Mps1, and failure of which results in impaired Mps1 kinetochore localization and defective SAC. Concordantly, analysis of clinical cancer datasets revealed that deletion of JAK2 is associated with increased genome alteration; and alteration in CHEK2 and JAK2 is linked to preferential deletion or amplification of cancer-related genes. Thus, our findings not only reveal a novel JAK2-CHK2 signaling axis that maintains genome integrity through SAC but also highlight the potential impact on genomic stability with clinical JAK2 inhibition.
Collapse
Affiliation(s)
- Md Al Nayem Chowdhury
- grid.260539.b0000 0001 2059 7017Taiwan International Graduate Program in Molecular Medicine, National Yang Ming Chiao Tung University and Academia Sinica, Taipei, Taiwan ,grid.28665.3f0000 0001 2287 1366Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Shih-Wei Wang
- grid.28665.3f0000 0001 2287 1366Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Ching-Shu Suen
- grid.28665.3f0000 0001 2287 1366Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Ming-Jing Hwang
- grid.28665.3f0000 0001 2287 1366Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Yi-An Hsueh
- grid.28665.3f0000 0001 2287 1366Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Sheau-Yann Shieh
- grid.260539.b0000 0001 2059 7017Taiwan International Graduate Program in Molecular Medicine, National Yang Ming Chiao Tung University and Academia Sinica, Taipei, Taiwan ,grid.28665.3f0000 0001 2287 1366Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
10
|
Vaghari-Tabari M, Hassanpour P, Sadeghsoltani F, Malakoti F, Alemi F, Qujeq D, Asemi Z, Yousefi B. CRISPR/Cas9 gene editing: a new approach for overcoming drug resistance in cancer. Cell Mol Biol Lett 2022; 27:49. [PMID: 35715750 PMCID: PMC9204876 DOI: 10.1186/s11658-022-00348-2] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 05/24/2022] [Indexed: 12/18/2022] Open
Abstract
The CRISPR/Cas9 system is an RNA-based adaptive immune system in bacteria and archaea. Various studies have shown that it is possible to target a wide range of human genes and treat some human diseases, including cancers, by the CRISPR/Cas9 system. In fact, CRISPR/Cas9 gene editing is one of the most efficient genome manipulation techniques. Studies have shown that CRISPR/Cas9 technology, in addition to having the potential to be used as a new therapeutic approach in the treatment of cancers, can also be used to enhance the effectiveness of existing treatments. Undoubtedly, the issue of drug resistance is one of the main obstacles in the treatment of cancers. Cancer cells resist anticancer drugs by a variety of mechanisms, such as enhancing anticancer drugs efflux, enhancing DNA repair, enhancing stemness, and attenuating apoptosis. Mutations in some proteins of different cellular signaling pathways are associated with these events and drug resistance. Recent studies have shown that the CRISPR/Cas9 technique can be used to target important genes involved in these mechanisms, thereby increasing the effectiveness of anticancer drugs. In this review article, studies related to the applications of this technique in overcoming drug resistance in cancer cells will be reviewed. In addition, we will give a brief overview of the limitations of the CRISP/Cas9 gene-editing technique.
Collapse
Affiliation(s)
- Mostafa Vaghari-Tabari
- Department of Clinical Biochemistry and Laboratory Medicine, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Parisa Hassanpour
- Department of Clinical Biochemistry and Laboratory Medicine, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Fatemeh Sadeghsoltani
- Department of Clinical Biochemistry and Laboratory Medicine, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Faezeh Malakoti
- Department of Clinical Biochemistry and Laboratory Medicine, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Forough Alemi
- Department of Clinical Biochemistry and Laboratory Medicine, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Durdi Qujeq
- Cellular and Molecular Biology Research Center (CMBRC), Health Research Institute, Babol University of Medical Sciences, Babol, Iran.,Department of Clinical Biochemistry, Babol University of Medical Sciences, Babol, Iran
| | - Zatollah Asemi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran.
| | - Bahman Yousefi
- Department of Clinical Biochemistry and Laboratory Medicine, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran. .,Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
11
|
Maleki Dana P, Sadoughi F, Mirzaei H, Asemi Z, Yousefi B. DNA damage response and repair in the development and treatment of brain tumors. Eur J Pharmacol 2022; 924:174957. [DOI: 10.1016/j.ejphar.2022.174957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 04/03/2022] [Accepted: 04/11/2022] [Indexed: 11/03/2022]
|
12
|
Ma X, Lu J, Yang P, Huang B, Li R, Ye R. Synthesis, Characterization and Antitumor Mechanism Investigation of Heterometallic Ru(Ⅱ)-Re(Ⅰ) Complexes. Front Chem 2022; 10:890925. [PMID: 35711955 PMCID: PMC9196629 DOI: 10.3389/fchem.2022.890925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 05/09/2022] [Indexed: 11/17/2022] Open
Abstract
The development of heteronuclear metal complexes as potent anticancer agents has received increasing attention in recent years. In this study, two new heteronuclear Ru(Ⅱ)-Re(Ⅰ) metal complexes, [Ru(bpy)2LRe(CO)3(DIP)](PF6)3 and [Ru(phen)2LRe(CO)3(DIP)](PF6)3 [RuRe-1 and RuRe-2, L = 2-(4-pyridinyl)imidazolio[4,5-f][1,10]phenanthroline, bpy = 2,2′-bipyridine, DIP = 4,7-diphenyl-1,10-phenanthroline, phen = 1,10-phenanthroline], were synthesized and characterized. Cytotoxicity assay shows that RuRe-1 and RuRe-2 exhibit higher anticancer activity than cisplatin, and exist certain selectivity toward human cancer cells over normal cells. The anticancer mechanistic studies reveal that RuRe-1 and RuRe-2 can induce apoptosis through the regulation of cell cycle, depolarization of mitochondrial membrane potential (MMP), elevation of intracellular reactive oxygen species (ROS), and caspase cascade. Moreover, RuRe-1 and RuRe-2 can effectively inhibit cell migration and colony formation. Taken together, heteronuclear Ru(Ⅱ)-Re(Ⅰ) metal complexes possess the prospect of developing new anticancer agents with high efficacy.
Collapse
Affiliation(s)
- Xiurong Ma
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - Junjian Lu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - Peixin Yang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - Bo Huang
- Faculty of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming, China
- *Correspondence: Bo Huang, ; Ruirong Ye,
| | - Rongtao Li
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - Ruirong Ye
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
- *Correspondence: Bo Huang, ; Ruirong Ye,
| |
Collapse
|
13
|
Zika Virus Induces Mitotic Catastrophe in Human Neural Progenitors by Triggering Unscheduled Mitotic Entry in the Presence of DNA Damage While Functionally Depleting Nuclear PNKP. J Virol 2022; 96:e0033322. [PMID: 35412344 PMCID: PMC9093132 DOI: 10.1128/jvi.00333-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Vertical transmission of Zika virus (ZIKV) leads with high frequency to congenital ZIKV syndrome (CZS), whose worst outcome is microcephaly. However, the mechanisms of congenital ZIKV neurodevelopmental pathologies, including direct cytotoxicity to neural progenitor cells (NPC), placental insufficiency, and immune responses, remain incompletely understood. At the cellular level, microcephaly typically results from death or insufficient proliferation of NPC or cortical neurons. NPC replicate fast, requiring efficient DNA damage responses to ensure genome stability. Like congenital ZIKV infection, mutations in the polynucleotide 5′-kinase 3′-phosphatase (PNKP) gene, which encodes a critical DNA damage repair enzyme, result in recessive syndromes often characterized by congenital microcephaly with seizures (MCSZ). We thus tested whether there were any links between ZIKV and PNKP. Here, we show that two PNKP phosphatase inhibitors or PNKP knockout inhibited ZIKV replication. PNKP relocalized from the nucleus to the cytoplasm in infected cells, colocalizing with the marker of ZIKV replication factories (RF) NS1 and resulting in functional nuclear PNKP depletion. Although infected NPC accumulated DNA damage, they failed to activate the DNA damage checkpoint kinases Chk1 and Chk2. ZIKV also induced activation of cytoplasmic CycA/CDK1 complexes, which trigger unscheduled mitotic entry. Inhibition of CDK1 activity inhibited ZIKV replication and the formation of RF, supporting a role of cytoplasmic CycA/CDK1 in RF morphogenesis. In brief, ZIKV infection induces mitotic catastrophe resulting from unscheduled mitotic entry in the presence of DNA damage. PNKP and CycA/CDK1 are thus host factors participating in ZIKV replication in NPC, and pathogenesis to neural progenitor cells. IMPORTANCE The 2015–2017 Zika virus (ZIKV) outbreak in Brazil and subsequent international epidemic revealed the strong association between ZIKV infection and congenital malformations, mostly neurodevelopmental defects up to microcephaly. The scale and global expansion of the epidemic, the new ZIKV outbreaks (Kerala state, India, 2021), and the potential burden of future ones pose a serious ongoing risk. However, the cellular and molecular mechanisms resulting in microcephaly remain incompletely understood. Here, we show that ZIKV infection of neuronal progenitor cells results in cytoplasmic sequestration of an essential DNA repair protein itself associated with microcephaly, with the consequent accumulation of DNA damage, together with an unscheduled activation of cytoplasmic CDK1/Cyclin A complexes in the presence of DNA damage. These alterations result in mitotic catastrophe of neuronal progenitors, which would lead to a depletion of cortical neurons during development.
Collapse
|
14
|
Vaghari-Tabari M, Targhazeh N, Moein S, Qujeq D, Alemi F, Majidina M, Younesi S, Asemi Z, Yousefi B. From inflammatory bowel disease to colorectal cancer: what's the role of miRNAs? Cancer Cell Int 2022; 22:146. [PMID: 35410210 PMCID: PMC8996392 DOI: 10.1186/s12935-022-02557-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 03/21/2022] [Indexed: 12/27/2022] Open
Abstract
Inflammatory Bowel Disease (IBD) is a chronic inflammatory disease with relapse and remission periods. Ulcerative colitis and Crohn's disease are two major forms of the disease. IBD imposes a lot of sufferings on the patient and has many consequences; however, the most important is the increased risk of colorectal cancer, especially in patients with Ulcerative colitis. This risk is increased with increasing the duration of disease, thus preventing the progression of IBD to cancer is very important. Therefore, it is necessary to know the details of events contributed to the progression of IBD to cancer. In recent years, the importance of miRNAs as small molecules with 20-22 nucleotides has been recognized in pathophysiology of many diseases, in which IBD and colorectal cancer have not been excluded. As a result, the effectiveness of these small molecules as therapeutic target is hopefully confirmed. This paper has reviewed the related studies and findings about the role of miRNAs in the course of events that promote the progression of IBD to colorectal carcinoma, as well as a review about the effectiveness of some of these miRNAs as therapeutic targets.
Collapse
Affiliation(s)
- Mostafa Vaghari-Tabari
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Clinical Biochemistry and Laboratory Medicine, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Niloufar Targhazeh
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Soheila Moein
- Medicinal Plants Processing Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.,Department of Biochemistry, Faculty of Medicine, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Durdi Qujeq
- Cellular and Molecular Biology Research Center (CMBRC), Health Research Institute, Babol University of Medical Sciences, Babol, Iran.,Department of Clinical Biochemistry, Babol University of Medical Sciences, Babol, Iran
| | - Forough Alemi
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Maryam Majidina
- Solid Tumor Research Center, Urmia University of Medical Sciences, Urmia, Iran
| | - Simin Younesi
- Schoole of Health and Biomedical Sciences, RMIT University, Melborne, VIC, Australia
| | - Zatollah Asemi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran.
| | - Bahman Yousefi
- Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
15
|
Mohammadi E, Alemi F, Maleki M, Malakoti F, Farsad-Akhtar N, Yousefi B. Quercetin and Methotrexate in Combination have Anticancer Activity in Osteosarcoma Cells and Repress Oncogenic MicroRNA-223. Drug Res (Stuttg) 2022; 72:226-233. [PMID: 35385884 DOI: 10.1055/a-1709-0658] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
INTRODUCTION Osteosarcoma (OS) is one of the most common bone neoplasms in adolescents. Notable short- and long-term toxic effects of OS chemotherapy regimens have been reported. Hence, new chemotherapeutic agents with the ability to potentiate OS chemotherapy drugs and protect non-tumorous tissues are required. METHODS Saos-2 cells were treated with Methotrexate (MTX) and Quercetin (Que) (a polyphenolic flavonoid with anti-tumor effects) alone and in combination. MTT assay was performed to investigate the cytotoxicity of the drugs. Moreover, apoptosis-involved genes, including miR-223, p53, BCL-2, CBX7, and CYLD expression were analyzed via qRT-PCR. Annexin V-FITC/PI kit was employed to assess the apoptosis rate. RESULTS The MTT results showed that Que increases MTX cytotoxicity on OS cells. The measured IC50s are 142.3 µM for QUE and 13.7 ng/ml for MTX. A decline in MTX IC50 value was observed from 13.7 ng/ml to 8.45 ng/ml in the presence of Que. Moreover, the mRNA expression outcomes indicated that the combination therapy significantly up-regulates the tumor suppressor genes, such as p53, CBX7, and CYLD, and declines anti-apoptotic genes BCL-2 and miR-223, which can lead to proliferation inhibition and apoptosis inducement. Furthermore, the apoptosis rate increased significantly from 6.03% in the control group to 38.35% in Saos-2 cells that were treated with the combination of MTX and Que. CONCLUSION Que, with the potential to boost the anticancer activity of MTX on Saos-2 cancer cells through proliferation inhibition and apoptosis induction, is a good candidate for combination therapy.
Collapse
Affiliation(s)
- Erfan Mohammadi
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Forough Alemi
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Masomeh Maleki
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Faezeh Malakoti
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nader Farsad-Akhtar
- Department of Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Bahman Yousefi
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
16
|
Ahmadzadeh H, Ahmadi M, Golchin A, Malakoti F, Maleki M, Alemi F, Bazavar M, Yousefi B. The Effect of TQ and Cis in OS. Drug Res (Stuttg) 2022; 72:171-176. [PMID: 35255515 DOI: 10.1055/a-1700-4258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
INTRODUCTION Osteosarcoma (OS) is a primary bone sarcoma with a high recurrence rate and poorer prognosis. The application of natural agents in combinational therapies can increase the efficacy of treatment and decrease the side effects. Herein, we aimed to evaluate the effects of Thymoquinone (TQ) combined with Cisplatin on apoptosis and its underlying mechanisms in the Saos-2 cells. METHODS The effects of TQ and Cisplatin on Saos-2 cell viability were measured using an MTT assay. Western blotting was applied for the measurement of γH2AX protein expression. The expression levels of 8-Hydroxy-2'-deoxyguanosine (8-oxo-dG) were evaluated by enzyme-linked immunosorbent assay (ELISA). DCFH-DA fluorescence dye was used to detect reactive oxygen species (ROS) formation. For evaluation of apoptosis, flow cytometry was employed. RESULTS TQ dramatically promotes the cytotoxic effects of Cisplatin. TQ considerably enhanced the expression levels of 8-oxo-dG and γ-H2AX in Saos-2 cells. After TQ treatment, ROS levels were increased; furthermore, TQ treatment resulted in the potentiation of Cisplatin-induced apoptosis in Saos-2 cells compared to either TQ or Cisplatin treated cells. CONCLUSION In general, TQ plus Cisplatin resulted in potentiated cellular cytotoxicity by increasing ROS level and inducing oxidative DNA damage, leading to the potent induction of apoptosis in tumor cells.
Collapse
Affiliation(s)
- Homa Ahmadzadeh
- Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mehran Ahmadi
- Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Asal Golchin
- Department of Clinical Biochemistry, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Faezeh Malakoti
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Masomeh Maleki
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Forough Alemi
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammadreza Bazavar
- Department of Orthopedic Surgery, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Bahman Yousefi
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
17
|
Nickoloff JA, Sharma N, Taylor L, Allen SJ, Hromas R. Nucleases and Co-Factors in DNA Replication Stress Responses. DNA 2022; 2:68-85. [PMID: 36203968 PMCID: PMC9534323 DOI: 10.3390/dna2010006] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
DNA replication stress is a constant threat that cells must manage to proliferate and maintain genome integrity. DNA replication stress responses, a subset of the broader DNA damage response (DDR), operate when the DNA replication machinery (replisome) is blocked or replication forks collapse during S phase. There are many sources of replication stress, such as DNA lesions caused by endogenous and exogenous agents including commonly used cancer therapeutics, and difficult-to-replicate DNA sequences comprising fragile sites, G-quadraplex DNA, hairpins at trinucleotide repeats, and telomeres. Replication stress is also a consequence of conflicts between opposing transcription and replication, and oncogenic stress which dysregulates replication origin firing and fork progression. Cells initially respond to replication stress by protecting blocked replisomes, but if the offending problem (e.g., DNA damage) is not bypassed or resolved in a timely manner, forks may be cleaved by nucleases, inducing a DNA double-strand break (DSB) and providing a means to accurately restart stalled forks via homologous recombination. However, DSBs pose their own risks to genome stability if left unrepaired or misrepaired. Here we focus on replication stress response systems, comprising DDR signaling, fork protection, and fork processing by nucleases that promote fork repair and restart. Replication stress nucleases include MUS81, EEPD1, Metnase, CtIP, MRE11, EXO1, DNA2-BLM, SLX1-SLX4, XPF-ERCC1-SLX4, Artemis, XPG, and FEN1. Replication stress factors are important in cancer etiology as suppressors of genome instability associated with oncogenic mutations, and as potential cancer therapy targets to enhance the efficacy of chemo- and radiotherapeutics.
Collapse
Affiliation(s)
- Jac A. Nickoloff
- Department of Environmental and Radiological Health Sciences, Colorado State University, Ft. Collins, CO 80523, USA
| | - Neelam Sharma
- Department of Environmental and Radiological Health Sciences, Colorado State University, Ft. Collins, CO 80523, USA
| | - Lynn Taylor
- Department of Environmental and Radiological Health Sciences, Colorado State University, Ft. Collins, CO 80523, USA
| | - Sage J. Allen
- Department of Environmental and Radiological Health Sciences, Colorado State University, Ft. Collins, CO 80523, USA
| | - Robert Hromas
- Division of Hematology and Medical Oncology, Department of Medicine and the Mays Cancer Center, University of Texas Health Science Center, San Antonio, TX 78229, USA
| |
Collapse
|
18
|
Bin-Jumah MN, Nadeem MS, Gilani SJ, Al-Abbasi FA, Ullah I, Alzarea SI, Ghoneim MM, Alshehri S, Uddin A, Murtaza BN, Kazmi I. Genes and Longevity of Lifespan. Int J Mol Sci 2022; 23:1499. [PMID: 35163422 PMCID: PMC8836117 DOI: 10.3390/ijms23031499] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 01/04/2022] [Accepted: 01/26/2022] [Indexed: 12/12/2022] Open
Abstract
Aging is a complex process indicated by low energy levels, declined physiological activity, stress induced loss of homeostasis leading to the risk of diseases and mortality. Recent developments in medical sciences and an increased availability of nutritional requirements has significantly increased the average human lifespan worldwide. Several environmental and physiological factors contribute to the aging process. However, about 40% human life expectancy is inherited among generations, many lifespan associated genes, genetic mechanisms and pathways have been demonstrated during last decades. In the present review, we have evaluated many human genes and their non-human orthologs established for their role in the regulation of lifespan. The study has included more than fifty genes reported in the literature for their contributions to the longevity of life. Intact genomic DNA is essential for the life activities at the level of cell, tissue, and organ. Nucleic acids are vulnerable to oxidative stress, chemotherapies, and exposure to radiations. Efficient DNA repair mechanisms are essential for the maintenance of genomic integrity, damaged DNA is not replicated and transferred to next generations rather the presence of deleterious DNA initiates signaling cascades leading to the cell cycle arrest or apoptosis. DNA modifications, DNA methylation, histone methylation, histone acetylation and DNA damage can eventually lead towards apoptosis. The importance of calorie restriction therapy in the extension of lifespan has also been discussed. The role of pathways involved in the regulation of lifespan such as DAF-16/FOXO (forkhead box protein O1), TOR and JNK pathways has also been particularized. The study provides an updated account of genetic factors associated with the extended lifespan and their interactive contributory role with cellular pathways.
Collapse
Affiliation(s)
- May Nasser Bin-Jumah
- Biology Department, College of Science, Princess Nourah Bint Abdulrahman University, Riyadh 11671, Saudi Arabia;
- Environment and Biomaterial Unit, Health Sciences Research Center, Princess Nourah Bint Abdulrahman University, Riyadh 11671, Saudi Arabia
| | - Muhammad Shahid Nadeem
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| | - Sadaf Jamal Gilani
- Department of Basic Health Sciences, Princess Nourah Bint Abdulrahman University, Riyadh 11671, Saudi Arabia;
| | - Fahad A. Al-Abbasi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| | - Inam Ullah
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore 54000, Pakistan;
| | - Sami I. Alzarea
- Department of Pharmacology, College of Pharmacy, Jouf University, Sakaka 72341, Saudi Arabia;
| | - Mohammed M. Ghoneim
- Department of Pharmacy Practice, College of Pharmacy, AlMaarefa University, Ad Diriyah 13713, Saudi Arabia;
| | - Sultan Alshehri
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Aziz Uddin
- Department of Biotechnology and Genetic Engineering, Hazara University, Mansehra 21300, Pakistan;
| | - Bibi Nazia Murtaza
- Department of Zoology, Abbottabad University of Science and Technology (AUST), Abbottabad 22310, Pakistan;
| | - Imran Kazmi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| |
Collapse
|
19
|
Evaluation of Synthetic 2,4-Disubstituted-benzo[ g]quinoxaline Derivatives as Potential Anticancer Agents. Pharmaceuticals (Basel) 2021; 14:ph14090853. [PMID: 34577556 PMCID: PMC8466781 DOI: 10.3390/ph14090853] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 08/13/2021] [Accepted: 08/23/2021] [Indexed: 11/17/2022] Open
Abstract
A new series of 2,4-disubstituted benzo[g]quinoxaline molecules have been synthesized, using naphthalene-2,3-diamine and 1,4-dibromonaphthalene-2,3-diamine as the key starting materials. The structures of the new compounds were confirmed by spectral data along with elemental microanalyses. The cytotoxic activity of all synthesized benzo[g]quinoxaline derivatives was assessed in vitro against the breast MCF-7 cancer cell line. The tested molecules revealed good cytotoxicity toward the breast MCF-7 cancer cell line, especially compound 3. The results of topoisomerase IIβ inhibition assay revealed that compound 3 exhibits potent inhibitory activity in submicromolar concentration. Additionally, compound 3 was found to cause pre-G1 apoptosis, and slightly increase the cell population at G1 and S phases of the cell cycle profile in MCF-7 cells. Finally, compound 3 induces apoptosis via Bax activation and downregulation of Bcl2, as revealed by ELISA assay.
Collapse
|
20
|
Sadoughi F, Asemi Z, Hallajzadeh J, Mansournia MA, Yousefi B. Beta-glucans is a potential inhibitor of ovarian cancer: based on molecular and biological aspects. Curr Pharm Biotechnol 2021; 23:1142-1152. [PMID: 34375183 DOI: 10.2174/1389201022666210810090728] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 06/22/2021] [Accepted: 06/24/2021] [Indexed: 11/22/2022]
Abstract
Ovarian cancer is a lethal type of cancer which is initiated in the ovaries and affects 1 out of every 75 women. Due to the high number of deaths (almost 152,000) related to this cancer, it seems that novel effiecient therapeutic methods are required in this field. Beta-glucans are a type of glucose linear polymers which have proven to have a lot of advantageous activities. Recently, investigations have declared that these polysaccharides have the potential to be used as anti-cancer drugs. These agents are able to affect several mechanisms such as inflammation and apoptosis and that is how cancers are prone to be affected by them. In this review, we attempt to investigate the role of beta-glucans on ovarian cancer. We hope that this paper might give novel insights in the field of ovarian cancer treatment.
Collapse
Affiliation(s)
- Fatemeh Sadoughi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, I.R., Iran
| | - Zatollah Asemi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, I.R., Iran
| | - Jamal Hallajzadeh
- Department of Biochemistry and Nutrition, Research Center for Evidence-Based Health Management, Maragheh University of Medical Sciences, Maragheh, Iran
| | - Mohammad Ali Mansournia
- Department of Epidemiology and Biostatistics, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Bahman Yousefi
- Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
21
|
Molinaro C, Martoriati A, Cailliau K. Proteins from the DNA Damage Response: Regulation, Dysfunction, and Anticancer Strategies. Cancers (Basel) 2021; 13:3819. [PMID: 34359720 PMCID: PMC8345162 DOI: 10.3390/cancers13153819] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 07/22/2021] [Accepted: 07/26/2021] [Indexed: 12/21/2022] Open
Abstract
Cells respond to genotoxic stress through a series of complex protein pathways called DNA damage response (DDR). These monitoring mechanisms ensure the maintenance and the transfer of a correct genome to daughter cells through a selection of DNA repair, cell cycle regulation, and programmed cell death processes. Canonical or non-canonical DDRs are highly organized and controlled to play crucial roles in genome stability and diversity. When altered or mutated, the proteins in these complex networks lead to many diseases that share common features, and to tumor formation. In recent years, technological advances have made it possible to benefit from the principles and mechanisms of DDR to target and eliminate cancer cells. These new types of treatments are adapted to the different types of tumor sensitivity and could benefit from a combination of therapies to ensure maximal efficiency.
Collapse
Affiliation(s)
| | | | - Katia Cailliau
- Univ. Lille, CNRS, UMR 8576-UGSF-Unité de Glycobiologie Structurale et Fonctionnelle, F-59000 Lille, France; (C.M.); (A.M.)
| |
Collapse
|
22
|
Papatsirou M, Artemaki PI, Karousi P, Scorilas A, Kontos CK. Circular RNAs: Emerging Regulators of the Major Signaling Pathways Involved in Cancer Progression. Cancers (Basel) 2021; 13:cancers13112744. [PMID: 34205978 PMCID: PMC8198587 DOI: 10.3390/cancers13112744] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 05/28/2021] [Accepted: 05/29/2021] [Indexed: 12/11/2022] Open
Abstract
Signal transduction is an essential process that regulates and coordinates fundamental cellular processes, such as development, immunity, energy metabolism, and apoptosis. Through signaling, cells are capable of perceiving their environment and adjusting to changes, and most signaling cascades ultimately lead to alterations in gene expression. Circular RNAs (circRNAs) constitute an emerging type of endogenous transcripts with regulatory roles and unique properties. They are stable and expressed in a tissue-, cell-, and developmental stage-specific manner, while they are involved in the pathogenesis of several diseases, including cancer. Aberrantly expressed circRNAs can mediate cancer progression through regulation of the activity of major signaling cascades, such as the VEGF, WNT/β-catenin, MAPK, PI3K/AKT, and Notch signaling pathways, as well as by interfering with signaling crosstalk. Deregulated signaling can then function to induce angiogenesis, promote invasion, migration, and metastasis, and, generally, modulate the hallmarks of cancer. In this review article, we summarize the most recently described and intriguing cases of circRNA-mediated signaling regulation that are involved in cancer progression, and discuss the biomarker potential of circRNAs, as well as future therapeutic applications.
Collapse
|
23
|
Sadoughi F, Maleki Dana P, Asemi Z, Yousefi B. Targeting microRNAs by curcumin: implication for cancer therapy. Crit Rev Food Sci Nutr 2021; 62:7718-7729. [PMID: 33905266 DOI: 10.1080/10408398.2021.1916876] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
In spite of all the investigations in the past 20 years that established a great body of knowledge in cancer therapy, utilizing some elderly methods such as plant compound administration might still be useful. Curcumin is a bioactive polyphenol, which has many anticancer properties but its capability in modulating miRNA expression has opened new doors in the field of cancer-targeted therapy. MiRNAs are a class of small noncoding RNAs that are able to regulate gene expression and signaling. In addition, some other effects of these RNAs such as modulating cell differentiation and regulation of cell cycle have made miRNAs great candidates for personalized cancer treatment. In this review, we try to find some answers to the questions on how curcumin exerts its impacts on cancer hallmarks through miRNAs and whether chemotherapy can be replaced by this beneficial plant compound.
Collapse
Affiliation(s)
- Fatemeh Sadoughi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Islamic Republic of Iran
| | - Parisa Maleki Dana
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Islamic Republic of Iran
| | - Zatollah Asemi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Islamic Republic of Iran
| | - Bahman Yousefi
- Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Biochemistry, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
24
|
Sadoughi F, Maleki Dana P, Asemi Z, Yousefi B. DNA damage response and repair in osteosarcoma: Defects, regulation and therapeutic implications. DNA Repair (Amst) 2021; 102:103105. [PMID: 33836418 DOI: 10.1016/j.dnarep.2021.103105] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 03/20/2021] [Indexed: 01/03/2023]
Abstract
Osteosarcoma (OS) is the most common primary bone malignancy in children and adolescents which has the survival rate of 20% in its advanced stages. Osteosarcomas are mostly resistance to our common treatments. DNA damage response (DDR) is a specialized multistep process containing abundant proteins which are necessary for the survival of any cell and organism. DDR machinery detects a diversity of DNA lesions and inhibits the cell cycle progression if these lesions are not repairable. DDR is involved in aging, age-related diseases, and cancer. In recent years, DDR inhibitors have gained the attention of researches due to their potentials in offering novel therapeutic targets and improving the response of many cancers to either chemo- or radio-therapy. In this regard, we tried to gather a great body of evidence about the role of DDR ingredients in osteosarcoma's initiation/progression, prognosis, and treatment.
Collapse
Affiliation(s)
- Fatemeh Sadoughi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| | - Parisa Maleki Dana
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| | - Zatollah Asemi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| | - Bahman Yousefi
- Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Biochemistry, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|