1
|
Ervin JM, Schütz LF, Spicer LJ. Current status of the role of endothelins in regulating ovarian follicular function: A review. Anim Reprod Sci 2017; 186:1-10. [PMID: 28967452 DOI: 10.1016/j.anireprosci.2017.09.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 09/15/2017] [Accepted: 09/21/2017] [Indexed: 12/18/2022]
Abstract
Endothelins (EDN) are a group of vasoactive 21 amino acid peptides reported to play roles in steroidogenesis, folliculogenesis, and ovulation. EDN1, EDN2 and EDN3 have all been shown to affect granulosa cell (GC) function in a variety of mammalians species. Herewithin, the role of EDN in regulating steroidogenesis and ovarian follicular development is reviewed, focusing on the localization and function of EDN and their receptors in ovarian follicular function emphasizing species differences. For example, in single ovulating species such as humans and cattle, in the presence of trophic hormones such as FSH and IGF1, EDN1 and EDN2 significantly inhibited GC estradiol production in 2 of 4 studies, while no effect was observed for GC progesterone production in 2 of 4 studies. In contrast, EDN1 exhibited inhibitory effects on progesterone production by GC in 3 of 3 studies in pigs and 3 of 4 studies in rats. Also, EDN1 inhibited GC estradiol production in 4 of 5 studies in rats. Altogether, these results indicate that EDN are produced by ovarian follicles and are involved in the regulation of steroidogenesis of GC of several mammalian species including humans, cattle, pigs and rats, but that these effects may vary with species and culture condition.
Collapse
Affiliation(s)
- J M Ervin
- Department of Animal Science, Oklahoma State University, Stillwater, OK 74078, United States
| | - L F Schütz
- Department of Animal Science, Oklahoma State University, Stillwater, OK 74078, United States
| | - L J Spicer
- Department of Animal Science, Oklahoma State University, Stillwater, OK 74078, United States.
| |
Collapse
|
2
|
Dynamics of Progesterone, TNF- α , and a Metabolite of PGF2 α in Blood Plasma of Beef Cows following Embryo Transfer. Vet Med Int 2014; 2014:650272. [PMID: 25349773 PMCID: PMC4202664 DOI: 10.1155/2014/650272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Revised: 09/10/2014] [Accepted: 09/15/2014] [Indexed: 11/17/2022] Open
Abstract
Lactating beef cows previously synchronized for estrus (d 0) were assigned to four treatments to assess their effectiveness in increasing blood progesterone (P4) and its effects on tumor necrosis factor-α (TNF-α) and prostaglandin F2α (PGF2α) after the transfer of embryos. At the time of transfer (d 7), cows received no treatment (control; n = 16), a controlled internal drug releasing device (CIDR; n = 16), human chorionic gonadotropin (hCG; n = 15), or gonadotropin releasing hormone (GnRH; n = 15). Blood samples were taken on d 7, 14, and 21 for analysis of P4 and tumor necrosis factor-α (TNF-α). Blood was collected (every 15 min for 2 h) in half the animals in each treatment group on d 14 and the remaining half on d 21 for analysis of prostaglandin F2α metabolite (PGFM). Retention rates were 56.2, 62.5, 46.7, and 13.3% for cows in the control, CIDR, hCG, and GnRH groups, respectively. Progesterone was greater (P ≤ 0.05) in cows receiving hCG compared to others on d 14. Progesterone in all treatment groups increased from d 7 to d 14 and declined (P ≤ 0.05) from d 14 to d 21. Contrary to pregnant cows, P4 and TNF-α declined from d 7 to d 21 in nonpregnant cows (P ≤ 0.05). Although PGFM increased by d 21, there was no difference between pregnant and nonpregnant cows.
Collapse
|
3
|
Wright MF, Bowdridge E, McDermott EL, Richardson S, Scheidler J, Syed Q, Bush T, Inskeep EK, Flores JA. Mechanisms of intracellular calcium homeostasis in developing and mature bovine corpora lutea. Biol Reprod 2014; 90:55. [PMID: 24501170 DOI: 10.1095/biolreprod.113.113662] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Although calcium (Ca(2+)) is accepted as an intracellular mediator of prostaglandin F2 alpha (PGF2alpha) actions on luteal cells, studies defining mechanisms of Ca(2+) homeostasis in bovine corpora lutea (CL) are lacking. The increase in intracellular Ca(2+) concentration ([Ca(2+)]i) induced by PGF2alpha in steroidogenic cells from mature CL is greater than in those isolated from developing CL. Our hypothesis is that differences in signal transduction associated with developing and mature CL contribute to the increased efficacy of PGF2alpha to induce a Ca(2+) signal capable of inducing regression in mature CL. To test this hypothesis, major genes participating in Ca(2+) homeostasis in the bovine CL were identified, and expression of mRNA, protein, or activity, in the case of phospholipase Cbeta (PLCbeta), in developing and mature bovine CL was compared. In addition, we examined the contribution of external and internal Ca(2+) to the PGF2alpha stimulated rise in [Ca(2+)]i in LLCs isolated from developing and mature bovine CL. Three differences were identified in mechanisms of calcium homeostasis between developing and mature CL, which could account for the lesser increase in [Ca(2+)]i in response to PGF2alpha in developing than in mature CL. First, there were lower concentrations of inositol 1,4,5-trisphosphate (IP3) after similar PGF2alpha challenge, indicating reduced phospholipase C beta (PLCbeta) activity, in developing than mature CL. Second, there was an increased expression of sorcin (SRI) in developing than in mature CL. This cytoplasmic Ca(2+) binding protein modulates the endoplasmic reticulum (ER) Ca(2+) release channel, ryanodine receptor (RyR), to be in the closed configuration. Third, there was greater expression of ATP2A2 or SERCA, which causes calcium reuptake into the ER, in developing than in mature CL. Developmental differences in expression detected in whole CL were confirmed by Western blots using protein samples from steroidogenic cells isolated from developing and mature CL. Localization of these genes in steroidogenic luteal cells was confirmed by immunohistochemistry. Therefore, it is concluded that the cellular mechanisms that allow PGF2alpha to induce a calcium signal of greater magnitude in mature than in developing CL involve 1) greater PLCbeta activity with enhanced generation of IP3, 2) an enhanced Ca(2+) release from the ER via unrestrained RYR2 due to a decrease in SRI expression, and 3) a reduction in calcium reuptake to the ER due to lower expression of ATP2A2. Accordingly, the increase in [Ca(2+)]i induced by PGF2alpha in mature large steroidogenic cells had less dependency from extracellular calcium than in those isolated from immature CL.
Collapse
Affiliation(s)
- Marietta F Wright
- Division of Animal and Nutritional Sciences, Davis College of Agriculture, Natural Resources and Design, West Virginia University, Morgantown, West Virginia
| | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Shirasuna K, Sasahara K, Matsui M, Shimizu T, Miyamoto A. Prostaglandin F2alpha differentially affects mRNA expression relating to angiogenesis, vasoactivation and prostaglandins in the early and mid corpus luteum in the cow. J Reprod Dev 2010; 56:428-36. [PMID: 20484870 DOI: 10.1262/jrd.10-004o] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Administration of prostaglandin (PG) F(2alpha) in cattle during the mid-luteal phase (Days 8-12 of the estrous cycle) drastically reduces the plasma progesterone concentrations and the volume of the corpus luteum (CL). However, PGF(2alpha) does not induce luteolysis during the early luteal phase (up to Day 5 of the estrous cycle). To characterize the possible distinct difference in acute response to a luteolytic dose of PGF(2alpha) administration, we determined various mRNA expressions in the early and mid CL relating to angiogenesis, vasoactivation and PG-related factors at 30 min after PGF(2alpha) injection in cyclic cows. The experiments were conducted on Day 4 (early CL) and Days 10-12 (mid CL). Cows were either injected with 500 microg PGF(2alpha) analogue or saline as the control (early CL control, n=5; early CL PGF(2alpha) treated, n=5; mid CL control, n=5; mid CL PGF(2alpha) treated, n=7). Thirty min after injection of PGF(2alpha) or saline, the cows were ovariectomized transvaginally, and the CL tissues were collected from regions designated as the periphery and center of the CL. Administration of PGF(2alpha) up-regulated the mRNA expressions of angiogenic-related factors such as vascular endothelial growth factors, vasohibin, fibroblast growth factor 2 and insulin-like growth factor-II in the early CL, whereas PGF(2alpha) down-regulated these mRNA expressions in the mid CL. In the vasoactive factors, PGF(2alpha) stimulated the mRNA expressions of endothelin-1, angiotensin converting enzyme, endothelial nitric oxide synthase (NOS) and inducible NOS in the periphery area of the mid CL, but not in the early CL. However, PGF(2alpha) drastically down-regulated PGF(2alpha) receptor mRNA expression in both regions of the early and mid CL. The results indicated a clear difference in the acute action of PGF(2alpha) depending not only on the luteal phase (immature vs. mature) but also the region (periphery vs. center) within the CL at 30 min after PGF(2alpha) injection in the cow.
Collapse
Affiliation(s)
- Koumei Shirasuna
- Graduate School of Animal and Food Hygiene, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Japan
| | | | | | | | | |
Collapse
|
5
|
Klipper E, Levit A, Mastich Y, Berisha B, Schams D, Meidan R. Induction of endothelin-2 expression by luteinizing hormone and hypoxia: possible role in bovine corpus luteum formation. Endocrinology 2010; 151:1914-22. [PMID: 20176726 DOI: 10.1210/en.2009-0767] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The pattern and regulation of endothlin-2 (EDN2) expression and its putative roles in bovine ovaries were investigated. EDN2 mRNA was determined in corpus luteum (CL) and during folliculoluteal transition induced by GnRH in vivo. EDN2 was elevated only in the early CL and was not present in older CL. In the young CL, EDN2 mRNA was identified mainly in luteal cells but not endothelial cells that expressed the EDN1 gene. Similarly, in preovulatory follicles, EDN2 was expressed in the granulosa cells (GCs) and not in the vascular theca interna. LH and hypoxia are two major stimulants of CL formation. Therefore, GCs were cultured with bovine LH, under hypoxic conditions. GCs incubated with bovine LH resulted in increased EDN2 mRNA 42 h later. CoCl2, a hypoxia-mimicking agent, elevated EDN2 in GCs in a dose-dependent manner. Incubation of the human GC line (Simian virus 40 large T antigen) under low oxygen tension (1%) augmented EDN2 6 and 24 h later. In these two cell types, along with EDN2, hypoxia augmented VEGF. EDN2 induced in GCs changes that characterize the developing CL: cell proliferation as well as up-regulation of vascular endothelial growth factor and cyclooxygenase-2 (mRNA and protein levels). Human chorionic gonadotropin also up-regulated these two genes. Small interfering RNA targeting EDN-converting enzyme-1 effectively reduced its mRNA levels. This treatment, expected to lower the mature EDN2 peptide production, inhibited VEGF mRNA levels and GC numbers. Together these data suggest that elevated EDN2 in the early bovine CL, triggered by LH surge and hypoxia, may facilitate CL formation by promoting angiogenesis, cell proliferation, and differentiation.
Collapse
Affiliation(s)
- Eyal Klipper
- Department of Animal Sciences, The Robert H. Smith Faculty of Agriculture, Food, and Environment, The Hebrew University of Jerusalem, Rehovot 76100, Israel
| | | | | | | | | | | |
Collapse
|
6
|
Zorrilla LM, Sriperumbudur R, Gadsby JE. Endothelin-1, endothelin converting enzyme-1 and endothelin receptors in the porcine corpus luteum. Domest Anim Endocrinol 2010; 38:75-85. [PMID: 19783117 DOI: 10.1016/j.domaniend.2009.08.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2009] [Revised: 08/25/2009] [Accepted: 08/26/2009] [Indexed: 12/31/2022]
Abstract
Porcine corpora lutea (CL) fail to show a luteolytic response to prostaglandin-F-2alpha (PGF-2alpha) (ie, luteolytic sensitivity [LS]) until about day 12-13 of the estrous cycle. Although little is known of the control of LS in any species, endothelin-1 (EDN1) is believed to play a role in LS control in ruminants. Therefore, we measured mRNA and protein expression and examined the cellular localization of EDN1 precursor (pre-pro EDN1, or ppEDN1), EDN-converting enzyme-1 (ECE1), and EDN receptors (A, EDNRA and B, EDNRB) in porcine CLs collected on days 4, 7, 10, 13, and 15 of the estrous cycle to look for differences between CLs displaying (days 13-15) versus those lacking (days 4-10) LS. Abundance of ppEDN1 mRNA was greatest (and significant vs all other days) on day 7 of the cycle, whereas EDN1 protein expression did not vary during the cycle and was localized exclusively to endothelial cells (EC). Abundance of ECE1 mRNA was also greatest on day 7 (vs all other days), but ECE1 protein was significantly elevated on day 10 (vs day 4) and was immunolocalized to ECs and large luteal cells (LLC). Abundance of EDNRA mRNA was also maximal on day 7 (vs all other days) of the cycle, whereas EDNRA protein expression was not significantly changed during the cycle and was observed in LLCs, ECs, and small luteal cells (SLC). On day 13, EDNRB mRNA was significantly decreased (versus day 7). Expression of EDNRB protein was decreased on day 10 (versus all other days), and on days 13-15 (vs day 4), and was primarily localized to ECs. In conclusion, the observed elevation in ECE1 protein concentrations on day 10 and the presence of EDNRA on LLC suggests a possible role for EDN1 (resulting from the actions of ECE1) acting via EDNRA in the control of LS in the pig.
Collapse
Affiliation(s)
- L M Zorrilla
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27606, USA
| | | | | |
Collapse
|
7
|
Keator CS, Custer EE, Hoagland TA, Schreiber DT, Mah K, Lawson AM, Slayden OD, McCracken JA. Evidence for a potential role of neuropeptide Y in ovine corpus luteum function. Domest Anim Endocrinol 2010; 38:103-14. [PMID: 19782503 DOI: 10.1016/j.domaniend.2009.08.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2009] [Revised: 08/06/2009] [Accepted: 08/07/2009] [Indexed: 11/25/2022]
Abstract
Neuropeptide Y (NPY) is a neurohormone that is typically associated with food intake, but it has also been reported to affect the production of progesterone from luteal tissue in vitro. However, NPY has not been previously immunolocalized in the ovine ovary or in the corpus luteum (CL) of any species, and the effects of this neurohormone on luteal function in vivo are not known. Thus, we performed fluorescent immunohistochemistry (IHC) to localize NPY in the ovine ovary and used avidin-biotin immunocytochemistry (ICC) to further define the intracellular localization within follicles and the CL. We then infused NPY directly into the arterial supply of the autotransplanted ovaries of sheep to determine the in vivo effect of exogenous NPY on ovarian blood flow and on the luteal secretion rate of progesterone and oxytocin. Immunohistochemistry revealed that the NPY antigen was localized to cells within the follicles and CL, in the nerve fibers of the ovarian stroma, and in the vessels of the ovarian hilus. In the follicle, the NPY antigen was localized to nerves and vessels within the theca interna layer, and strong staining was observed in the granulosal cells of antral follicles. In the CL, NPY was localized in large luteal cells and in the vascular pericytes and/or endothelial cells of blood vessels, found dispersed throughout the gland and within the luteal capsule. In vivo incremental infusions of NPY at 1, 10, 100, and 1,000 ng/min, each for a 30-min period, into the arterial supply of the transplanted ovary of sheep bearing a CL 11 d of age increased (P< or =0.05) ovarian blood flow. The intra-arterial infusions of NPY also increased (P< or =0.05) in a dose-dependent manner the secretion rate of oxytocin, which was positively correlated (P< or =0.05) with the observed increase in ovarian blood flow. The infusions of NPY had a minimal effect on the secretion rate of progesterone, and similar intra-arterial infusions of NPY into sheep with ovarian transplants bearing a CL over 30 d of age had no significant effect on ovarian blood flow or on the secretion rate of progesterone. These results suggest that NPY acts on the luteal vascular system and the large luteal cells to rapidly stimulate blood flow and the secretion of oxytocin, respectively, which collectively implies a putative role for NPY during the process of luteolysis when increasing amounts of oxytocin are secreted from the ovine CL in response to uterine pulses of prostaglandin F2alpha.
Collapse
Affiliation(s)
- C S Keator
- Department of Animal Science, University of Connecticut, Storrs, CT 06269, USA.
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Is endothelin-1 luteolytic or antiluteolytic in ewes? Prostaglandins Other Lipid Mediat 2009; 90:63-8. [DOI: 10.1016/j.prostaglandins.2009.08.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2009] [Revised: 08/17/2009] [Accepted: 08/24/2009] [Indexed: 11/19/2022]
|
9
|
Low peripheral progesterone and late embryonic/early fetal loss in suckled beef and lactating dairy cows. Theriogenology 2008; 71:480-90. [PMID: 18809207 DOI: 10.1016/j.theriogenology.2008.07.031] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2008] [Revised: 07/14/2008] [Accepted: 07/26/2008] [Indexed: 11/23/2022]
Abstract
Pregnancy failure during placentation in lactating dairy cows was associated with low concentrations of serum progesterone. Beef cows have greater serum progesterone and less pregnancy failure. Experiment 1 determined that reduction of serum progesterone affected late embryonic/early fetal loss in suckled beef cows. Cows (n=40) received progesterone from two new or used controlled internal drug releasing devices, replaced every 5d, beginning on Day 28 of gestation (mating=Day 0); CL were enucleated on Day 29. Retention of pregnancy was 77% in treated cows and 97% in 78 control cows (P<0.05). Experiment 2 determined how pregnant, lactating dairy cows with high or low progesterone concentrations during Days 28-34 differed in luteal function or in serum progesterone during replacement therapy. Luteal tissue from such cows was assayed for progesterone and expression of mRNA for genes of endothelin and prostaglandin (PG) systems. Secretion of progesterone and prostaglandins by dispersed luteal cells was determined during incubation with LH, endothelin-1, or arachidonic acid. Neither luteal progesterone nor mRNAs for endothelin or prostaglandin systems differed. Endothelin-1 inhibited secretion of progesterone more (P<0.05) in luteal cells from cows with low versus high serum progesterone, when incubated with arachidonic acid. Secretion of prostaglandin F(2)alpha was increased and that of 6-keto-PGF(1)alpha decreased by endothelin-1 in vitro. Serum progesterone during replacement was lower (P<0.05) for cows with low than high serum progesterone at lutectomy. Thus, clearance, more than luteal production, determined peripheral progesterone in pregnant, lactating dairy cows.
Collapse
|
10
|
Keator CS, Schreiber DT, Hoagland TA, McCracken JA, Milvae RA. Intrauterine infusion of BQ-610, an endothelin type A receptor antagonist, delays luteolysis in dairy heifers. Domest Anim Endocrinol 2008; 34:411-8. [PMID: 18258406 DOI: 10.1016/j.domaniend.2007.11.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2007] [Revised: 11/27/2007] [Accepted: 11/28/2007] [Indexed: 11/17/2022]
Abstract
Three separate in vivo experiments were conducted to evaluate the putative role of endothelin-1 (ET-1) during luteal regression in heifers. In Experiment 1, a single intraluteal injection of 500 microg BQ-610 [(N,N-hexamethylene) carbamoyl-Leu-D-Trp (CHO)-D-Trp], a highly specific endothelin A (ETA) receptor antagonist, did not diminish the decline in plasma progesterone following a single exogenous injection of 25 mg prostaglandin F2 alpha (PGF2alpha) administered at midcycle of the estrous cycle. In Experiment 2, six intrauterine infusions of 500 microg BQ-610 given every 12 h on days 16-18 delayed spontaneous luteolysis, as evidenced by an extended elevation (P=0.054) of plasma progesterone concentration. In Experiment 3, heifers were administered six intrauterine infusions of BQ-610 or saline on days 16-19, and peripheral blood samples were collected from day 11 to 16 (before infusion), hourly on days 16-19 (during infusion), and on days 20-25 (after infusion). BQ-610 treated heifers had markedly higher (P<0.0001) levels of plasma progesterone compared with saline controls, and this effect was most notable during the infusion period (treatment by period interaction; P<or=0.05). Heifers infused with BQ-610 also had higher progesterone levels on day 21 (treatment by time interaction; P<or=0.05). Mean plasma concentrations of 13,14-dihydro-15-keto-PGF2alpha (PGFM), the primary metabolite of PGF2alpha, were measured in the samples collected hourly and were not different (P>or=0.05) between treatments. These results indicate that the in vivo antagonism of the ETA receptor can delay functional luteolysis, and supports the theory that ET-1 regulates luteal function in ruminants.
Collapse
Affiliation(s)
- Christopher S Keator
- Department of Animal Science, University of Connecticut, 3636 Horsebarn Hill Road Extension, Storrs, CT 06269-4040, United States.
| | | | | | | | | |
Collapse
|
11
|
Doerr MD, Goravanahally MP, Rhinehart JD, Inskeep EK, Flores JA. Effects of Endothelin Receptor Type-A and Type-B Antagonists on Prostaglandin F2alpha-Induced Luteolysis of the Sheep Corpus Luteum1. Biol Reprod 2008; 78:688-96. [DOI: 10.1095/biolreprod.107.064105] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
|
12
|
Meidan R, Levy N. The ovarian endothelin network: an evolving story. Trends Endocrinol Metab 2007; 18:379-85. [PMID: 17997104 DOI: 10.1016/j.tem.2007.09.002] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2007] [Revised: 09/09/2007] [Accepted: 09/11/2007] [Indexed: 11/19/2022]
Abstract
The endothelin (ET) system consists of three ET isopeptides, several converting enzyme isoforms and two G-protein-coupled receptors, ETA and ETB, which are linked to multiple signaling pathways. Less than 20 years after the initial detection of ET-1 in granulosa cells, the ovarian ET network continues to expand with the discovery of new members and functions. ETs influence a broad range of essential reproductive processes, such as ovulation, steroidogenesis and luteolysis. Therefore, a more comprehensive understanding of the ovarian ET network might provide new strategies for controlling reproduction. This review presents up-to-date findings on the ET network in the ovary.
Collapse
Affiliation(s)
- Rina Meidan
- Department of Animal Sciences, Faculty of Agricultural, Food and Environmental Quality Sciences, The Hebrew University of Jerusalem, Rehovot 76100, Israel.
| | | |
Collapse
|
13
|
Shirasuna K, Shimizu T, Hayashi KG, Nagai K, Matsui M, Miyamoto A. Positive association, in local release, of luteal oxytocin with endothelin 1 and prostaglandin F2alpha during spontaneous luteolysis in the cow: a possible intermediatory role for luteolytic cascade within the corpus luteum. Biol Reprod 2007; 76:965-70. [PMID: 17287495 DOI: 10.1095/biolreprod.106.057554] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Luteolysis is caused by a pulsatile release of prostaglandin F(2alpha) (PGF(2alpha)) from the uterus in ruminants, and a positive feedback between endometrial PGF(2alpha) and luteal oxytocin (OXT) has a physiologic role in the promotion of luteolysis. The bovine corpus luteum (CL) produces vasoactive substances, such as endothelin 1 (EDN1) and angiotensin II (Ang II), that mediate and progress luteolysis. We hypothesized that luteal OXT has an additive function to ensure the CL regression with EDN1 and Ang II, and that it has an active role in the luteolytic cascade in the cow. Thus, the aim of the present study was to observe real-time changes in the local secretion of luteal OXT and to determine its relationship with other local mediators of luteolysis. Microdialysis system (MDS) capillary membranes were implanted surgically into each CL of six cyclic Holstein cows (18 lines total among the six cows) on Day 15 (estrus == Day 0) of the estrous cycle. Simultaneously, catheters were implanted to collect ovarian venous plasma ipsilateral to the CL. Although the basal secretion of OXT by luteal tissue was maintained during the experimental period, the intraluteal PGF(2alpha) secretion gradually increased up to 300% from 24 h after the onset of luteolysis (0 h; time in which progesterone started to decrease). In each MDS line (microenvironment) within the CL, the local releasing profiles of OXT were positively associated with PGF(2alpha) and EDN1 within the CL in all 18 MDS lines implanted in the six CLs (OXT vs. PGF(2alpha), 50.0%; OXT vs. EDN1, 72.2%; P < 0.05). On the other hand, the intraluteal OXT was weakly related to Ang II (OXT vs. Ang II, 27.7%). In the ovarian vein, the peak concentration of PGF(2alpha) increased significantly when the peak of PGF(2alpha) coincided with the peak of OXT after the onset of spontaneous luteolysis (P < 0.05). In conclusion, intraluteal OXT may locally modulate secretion of vasoactive substances, particularly EDN1 and PGF(2alpha) within the CL, and thus might be one of the luteal mediators of spontaneous luteolysis in the cow.
Collapse
Affiliation(s)
- Koumei Shirasuna
- Graduate School of Animal and Food Hygiene, and Department of Clinical Veterinary Science, Obihiro University of Agriculture and Veterinary Medicine, Obihiro 080-8555, Japan
| | | | | | | | | | | |
Collapse
|
14
|
Costine BA, Inskeep EK, Blemings KP, Flores JA, Wilson ME. Mechanisms of reduced luteal sensitivity to prostaglandin F2alpha during maternal recognition of pregnancy in ewes. Domest Anim Endocrinol 2007; 32:106-21. [PMID: 16524686 DOI: 10.1016/j.domaniend.2006.01.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2005] [Revised: 01/24/2006] [Accepted: 01/30/2006] [Indexed: 11/28/2022]
Abstract
During maternal recognition of pregnancy, the conceptus stimulates endometrial secretion of PGF2alpha and PGE2. However, PGF2alpha is less effective in causing luteal regression in pregnant than in non-pregnant ewes. Experiments were conducted to elucidate mechanisms for reduced luteal sensitivity to PGF2alpha during maternal recognition of pregnancy. Corpora lutea (CL) were collected from pregnant and non-pregnant ewes 0, 4, or 12h following treatment with PGF2alpha on day 12 after estrus. Luteal PTGHS2 mRNA did not differ due to PGF2alpha or pregnancy status. Luteal PTGES mRNA was reduced in both pregnant and non-pregnant ewes after PGF2alpha treatment; while, luteal PTGFS mRNA was reduced 4h after PGF2alpha in pregnant, but not non-pregnant ewes. The result was a greater ratio of PTGES to PTGFS mRNA in pregnant ewes. Luteal mRNA for HPGD did not differ between pregnant and non-pregnant ewes on day 12. Luteal END1 mRNA was reduced in pregnant as compared to non-pregnant ewes prior to PGF2alpha challenge. Luteal END1 mRNA was increased after PGF2alpha in pregnant and non-pregnant ewes; however, ECE1 mRNA was reduced 4h after PGF2alpha in pregnant, but not non-pregnant ewes. The in vitro conversion of PGF2alpha to PGFM was greater in CL of pregnant than non-pregnant ewes at day 14. Luteal conversion of PGF2alpha to PGFM appears to be regulated post-transcriptionally. During maternal recognition of pregnancy, mechanisms of reduced luteal sensitivity to PGF2alpha may include a shift in prostaglandin production to the luteotropin PGE2, a reduction of ECE1 mRNA, and increased catabolism of PGF2alpha.
Collapse
Affiliation(s)
- Beth A Costine
- Division of Animal and Veterinary Sciences, West Virginia University, Morgantown, WV, USA
| | | | | | | | | |
Collapse
|
15
|
Sen A, Wright M, Inskeep EK, Flores JA. Participation of specific PKC isozymes in the inhibitory effect of ET-1 on progesterone accumulation in cells isolated from early- and mid-phase corpora lutea. Domest Anim Endocrinol 2006; 31:284-99. [PMID: 16388928 DOI: 10.1016/j.domaniend.2005.11.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2005] [Revised: 11/18/2005] [Accepted: 11/22/2005] [Indexed: 11/17/2022]
Abstract
Expression of PKC alpha, beta I, beta II, epsilon and micro has been demonstrated in the whole bovine CL with PKC epsilon being differentially expressed as a function of development. In experiment 1 we have investigated the amount of mRNA encoding PKC epsilon at different stages of luteal development (days 1, 4, 10 and 17). In experiment 2, the cellular source of luteal PKC isozymes was determined. Enriched steroidogenic (SC) and endothelial (EC) cells from day-10 CL were used to examine this question by Western blot analysis and immuno-histochemistry. In experiment 3, Western blot analysis was used to examine the ability of ET-1 to activate luteal PKC isozymes in day-10 CL. In experiment 4, the role of luteal PKC isozymes in the ET-1 mediated inhibition of P(4) accumulation in steroidogenic cell cultures from day-4 and day-10 CL was examined. Abundance of PKC epsilon mRNA gradually increased from day-1 to -10 with no further increase on day-17. In experiment 2, PKC epsilon was exclusively detected in SC (LLC and SLC). In contrast, PKC alpha, beta I and beta II were detected in both SC and EC, with EC expressing higher amounts of PKC isozymes. In day-10 CL, ET-1 induced cellular redistribution of PKC alpha, beta I, epsilon but not beta II. Inhibitors specific for conventional PKC isozymes as well as PKC epsilon were able to negate the inhibitory effects of ET-1 on P4 accumulation in the day 10 CL. In the day-4 CL, the inhibitory effect of ET-1 might be mediated via conventional PKC. Thus, an exclusive presence of PKC epsilon in luteal steroidogenic cells, its higher expression along with the ability of ET-1 to stimulate its activation in day-10 CL strongly suggests that this PKC isoform may play an important regulatory role in decreasing P(4) during luteal regression. Inhibition of P(4) by ET-1 in the early CL may be mediated via conventional PKC isozymes.
Collapse
Affiliation(s)
- Aritro Sen
- Department of Biology, Eberly College of Arts and Sciences, West Virginia University, Morgantown, WV 26506-6057, USA
| | | | | | | |
Collapse
|
16
|
Shirasuna K, Watanabe S, Oki N, Wijayagunawardane MPB, Matsui M, Ohtani M, Miyamoto A. A cooperative action of endothelin-1 with prostaglandin F(2alpha) on luteal function in the cow. Domest Anim Endocrinol 2006; 31:186-96. [PMID: 16303279 DOI: 10.1016/j.domaniend.2005.10.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2005] [Revised: 10/11/2005] [Accepted: 10/14/2005] [Indexed: 11/27/2022]
Abstract
Prostaglandin F(2alpha) (PGF(2alpha)) is the primary luteolysin in the cow, and luteal endothelin-1 (ET-1) interacts with PGF(2alpha) during the process of luteolysis. In contrast, a developing corpus luteum (CL) is refractory to exogenous administration of PGF(2alpha). Thus, the present study was aimed to investigate the functional relationship between ET-1 and PGF(2alpha) in the mid-CL (PGF(2alpha)-sensitive) and early-CL (PGF(2alpha)-refractory). In the mid-CL model, cows (n = 6/treatment) were assigned to receive one of five types of treatments on day 10 of the estrous cycle: (1) an injection of saline; control, (2) a 500 microg of PGF(2alpha) analogue (sufficient dose to induce luteolytis); full-PG, (3) an intraluteal injection of 0.25 mg ET-1; ET-1, (4) a 125 micro g of PGF(2alpha) (insufficient dose to induce luteolytis); 1/4PG or (5) an intraluteal injection of 0.25 mg ET-1 after administration of a insufficient dose of PGF(2alpha) analogue; 1/4PG/ET. In the early-CL model, cows were assigned to receive one of two types of treatments on day 5 of the estrous cycle: (1) a sufficient dose of PGF(2alpha) analogue; PG (n = 5) or (2) an intraluteal injection ET-1 after a sufficient dose of PGF(2alpha); PG/ET (n = 7). In the mid-CL model, 1/4PG/ET resulted in a rapid reduction of progesterone (P) concentrations similar to that in full-PG from the next day. However, the levels of P in 1/4PG/ET (1.5-2.5 ng/ml) kept significantly higher than that in full-PG (< 0.5 ng/ml). ET-1 or 1/4PG did not decrease plasma P concentrations (4-6 ng/ml). The plasma ET-1 levels increased with the full-PG administration. In the early-CL model, both treatments had no effect on plasma P increase and ET-1 levels. The overall results indicate that the intraluteal ET-1 injection after administration of insufficient dose of PGF(2alpha) induces the depression of P secretion in vivo during the mid luteal phase in the cow, supporting the concept that ET-1 is one of a local mediator of functional luteolysis in the cow. The result further indicates that the early-CL is not only PG-refractory but also ET-1-refractory.
Collapse
Affiliation(s)
- K Shirasuna
- Graduate School of Animal and Food Hygiene, Obihiro University of Agriculture and Veterinary Medicine, Obihiro 080-8555, Japan
| | | | | | | | | | | | | |
Collapse
|
17
|
Casey OM, Morris DG, Powell R, Sreenan JM, Fitzpatrick R. Analysis of gene expression in non-regressed and regressed bovine corpus luteum tissue using a customized ovarian cDNA array. Theriogenology 2005; 64:1963-76. [PMID: 15953631 DOI: 10.1016/j.theriogenology.2005.04.015] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2005] [Revised: 04/25/2005] [Accepted: 04/25/2005] [Indexed: 12/20/2022]
Abstract
The lifespan of the bovine corpus luteum (CL) is an important factor in the control of normal ovarian cyclicity and the establishment and maintenance of pregnancy. There is increasing evidence that CL lifespan is regulated by alternative expression of genes that promote or inhibit luteolysis. To gain further insights into these events a 434 character ovarian cDNA array comprising genes attributed to key aspects of CL function including more than 100 anonymous expressed sequence tags (ESTs) was constructed and screened with alpha(33)P dATP labeled RNA isolated from non-regressed (n=6) and regressed (n=6) CL tissue. Significance analysis of microarrays (SAM) identified 15 genes that changed expression 1.7-fold or more with a false discovery rate of <5%. The differentially expressed genes encoded enzymes involved in steroid biosynthesis and oxygen radical metabolism and proteins involved in extracellular matrix remodeling, apoptosis and cell structure. Results for five of the differentially expressed genes including matrix gla protein and collagen alpha1(I) (extracellular matrix), glutathione-S-transferase alpha I (oxygen metabolism), clusterin (apoptosis) and scavenger receptor BI (steroid biosynthesis) were confirmed by Northern blot analysis and found to be significantly different (P<0.01) between non-regressed and regressed CL tissue. Collectively this study identified genes with recognized roles in CL regression, genes with potential roles in this process and genes whose function have yet to be defined in this event.
Collapse
Affiliation(s)
- Orla M Casey
- Animal Reproduction Department, Teagasc, Agriculture and Food Development Authority, Athenry, Galway, Ireland
| | | | | | | | | |
Collapse
|
18
|
Choudhary E, Sen A, Inskeep EK, Flores JA. Developmental Sensitivity of the Bovine Corpus Luteum to Prostaglandin F2α (PGF2α) and Endothelin-1 (ET-1): Is ET-1 a Mediator of the Luteolytic Actions of PGF2α or a Tonic Inhibitor of Progesterone Secretion?1. Biol Reprod 2005; 72:633-42. [PMID: 15537863 DOI: 10.1095/biolreprod.104.034736] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
We examined the responsiveness of large luteal cells (LLC), small luteal cells (SLC), and endothelial cells of the Day 4 and Day 10 bovine corpus luteum (CL) to prostaglandin (PG) F2alpha and endothelin (ET)-1. Using a single-cell approach, we tested the ability of each agonist to increase the cytoplasmic concentration of calcium ions ([Ca2+]i) as function of luteal development. All tested concentrations of agonists significantly (P = 0.05) increased [Ca2+]i in all cell populations isolated from Day 4 and Day 10 CL. Day 10 steroidogenic cells were more responsive than Day 4 cells to PGF2alpha and ET-1. Response amplitudes and number of responding cells were affected significantly by agonist concentration, luteal development, and cell type. Response amplitudes were greater in LLC than in SLC; responses of maximal amplitude were elicited with lower agonist concentrations in Day 10 cells than in Day 4 cells. Furthermore, on Day 10, as the concentration of PGF2alpha increased, larger percentages of SLC responded. Endothelial cells responded maximally, regardless of agonist concentration and luteal development. In experiment 2, we tested the developmental responsiveness of total dispersed and steroidogenic-enriched cells to the inhibitory actions of PGF2alpha and ET-1 on basal and LH-stimulated progesterone accumulation. The potency of PGF2alpha steroidogenic-enriched cells on Day 4 was lower than on Day 10; in contrast, the potency of ET-1 was not different. Therefore, ET-1 was a tonic inhibitor of progesterone accumulation rather than a mediator of PGF2alpha action. The lower efficacy of PGF2alpha in the early CL more likely is related to signal transduction differences associated with its receptor at these two developmental stages than to the inability of PGF2alpha to up-regulate ET-1.
Collapse
Affiliation(s)
- Ekta Choudhary
- Department of Biology, Eberly College of Arts and Sciences, West Virginia University, Morgantown, West Virginia 26506-6057, USA
| | | | | | | |
Collapse
|