1
|
Kaiya H. Update on Feeding Regulation by Ghrelin in Birds: Focused on Brain Network. Zoolog Sci 2024; 41:39-49. [PMID: 38587516 DOI: 10.2108/zs230071] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 12/21/2023] [Indexed: 04/09/2024]
Abstract
Ghrelin is known to be a feeding stimulatory hormone in mammals, but in birds, in contrast to mammals, the feeding behavior is regulated in inhibitory manners. This is because the neuropeptides associated with the regulation in the brain are different from those in mammals, i.e., it has been shown that, in chickens, a corticotropin-releasing hormone family peptide, urocortin, which is a feeding-inhibitory peptide, is mainly involved in the inhibitory mechanism. However, feeding is also regulated by various neurotransmitters in the brain, and recently, their interaction with the mechanisms underlying feeding inhibition by ghrelin in birds has been intensively studied and clarified. This review summarizes these findings.
Collapse
Affiliation(s)
- Hiroyuki Kaiya
- Grandsoul Research Institute for Immunology, Inc., Utano, Uda, Nara 633-2221, Japan,
- Faculty of Science, University of Toyama, Toyama, Toyama 930-8555, Japan
| |
Collapse
|
2
|
Taofeek N, Chimbetete N, Ceron-Romero N, Vizcarra F, Verghese M, Vizcarra J. Systemic infusion of exogenous ghrelin in male broiler chickens (Gallus gallus domesticus). The effect of pulse frequency, doses, and ghrelin forms on feed intake, average daily gain, corticosterone, and growth hormone concentrations. Poult Sci 2022; 101:101945. [PMID: 35688030 PMCID: PMC9190007 DOI: 10.1016/j.psj.2022.101945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 04/23/2022] [Accepted: 04/27/2022] [Indexed: 11/09/2022] Open
Abstract
There is limited information on the effect of exogenous ghrelin infusion on feed intake (FI) in chickens. Therefore, male broilers were used in 3 factorial experiments to determine the relationships between doses (0, 1, or 4 nM; Dose), frequency (once every two h; 2 h), once every 4th h (4 h) or continuous infusion, and ghrelin forms including acylated-ghrelin (AG) and desacylated-ghrelin (DAG) on FI, ADG, and concentrations of corticosterone and Growth Hormone (GH). Treatments were delivered via a jugular cannula, using programmable pumps for 11 consecutive days. FI and ADG were recorded, and plasma was collected. Data were analyzed using a factorial design. In Experiment 1 the effect of AG pulse frequency and doses were evaluated. There was a linear decrease in FI (P = 0.002) and a linear increase in corticosterone (P = 0.033) and GH (P = 0.011) concentrations when AG was infused. However, ADG decreased with doses (P = 0.011) only when AG was given at 2 h. In Experiment 2 the effect of ghrelin forms and doses given at 2 h was evaluated. There was a linear decrease in FI when AG was infused and a linear increase in FI when DAG was infused (P < 0.05). Birds infused with DAG gained more weight than those infused with AG. There was a linear increase in corticosterone and GH concentrations only when AG was infused (P < 0.01). In Experiment 3 the effect of continuous infusion of 2 doses (0 and 1 nM) of AG and DAG were evaluated. There was a linear decrease in FI and ADG when AG (P < 0.001) was infused and a linear increase in FI and ADG when DAG was infused (P < 0.05). There was an increase in corticosterone concentrations only when AG was infused (P = 0.022). However, GH concentrations were not affected by treatments. We concluded that AG and DAG pulse frequency and doses had a differential effect on FI, ADG, corticosterone, and GH concentrations in broiler chickens.
Collapse
|
3
|
Ceron-Romero N, Taofeek N, Thomas A, Vroonland E, Sanmartin K, Verghese M, Heinen E, Vizcarra JA. Capromorelin, a ghrelin receptor agonist, increases feed intake and body weight gain in broiler chickens (Gallus gallus domesticus). Poult Sci 2021; 100:101204. [PMID: 34182219 PMCID: PMC8250453 DOI: 10.1016/j.psj.2021.101204] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 03/24/2021] [Accepted: 04/05/2021] [Indexed: 11/27/2022] Open
Abstract
Ghrelin is a hormone that induces orexigenic effects in mammals. However, in avian species, there is scant and conflictive results on the effect of ghrelin on feed intake (FI). Therefore, we evaluated the effect of a ghrelin receptor agonist (capromorelin) on FI, ADG, water intake (WI), animal behavior and concentrations of ghrelin, glucose, growth hormone (GH) and insulin in broiler chickens. One-day-old male broilers were reared as recommended by the industry. At 4 wk of age (experimental day 0; D0), birds were blocked by weight and randomly assigned to 3 treatments in 2 identical trials. Control birds received a vehicle control solution containing 0 mg/kgBW/d of capromorelin. Birds in treatments 2 and 3 received capromorelin at target doses of 6 or 12 mg/kgBW/d of capromorelin (n = 27). FI and WI were measured 3 times a day at 0700 h (Period 1; P1), 1200 h (P2) and 1700 h (P3), while BW was recorded daily. Blood samples were collected on D-1 and D5. Bird behavior (pecking, sitting and standing) was evaluated for 9 h on D2. Data were analyzed using a randomized complete block design with repeated measures over time. Orthogonal polynomial contrasts were used to determine linear and quadratic effects of increasing levels of capromorelin. Polynomial contrasts showed that capromorelin doses linearly increased FI (P = 0.002) and ADG (P = 0.019). There were no treatment, day or treatment x d interactions on glucose, ghrelin and GH concentrations. However, there was a treatment x d interaction (P = 0.041) on insulin concentrations. Concentrations of insulin were higher on D5 for the 0 and 12 mg/kgBW/d treatments as compared with D-1. Polynomial contrasts showed that capromorelin doses linearly increased number of pecks/h (P = 0.018). Per hour FI and WI was higher during P1 (i.e., 0700-1200) as compared to P2 and P3 (P < 0.001). Our observations suggest that capromorelin linearly increases feed intake; thus, the same effect of that reported in mammalian species.
Collapse
Affiliation(s)
- N Ceron-Romero
- Food and Animal Sciences, Alabama A&M University, Normal, AL 35762, USA
| | - N Taofeek
- Food and Animal Sciences, Alabama A&M University, Normal, AL 35762, USA
| | - A Thomas
- Food and Animal Sciences, Alabama A&M University, Normal, AL 35762, USA
| | - E Vroonland
- Food and Animal Sciences, Alabama A&M University, Normal, AL 35762, USA
| | - K Sanmartin
- Food and Animal Sciences, Alabama A&M University, Normal, AL 35762, USA
| | - M Verghese
- Food and Animal Sciences, Alabama A&M University, Normal, AL 35762, USA
| | - E Heinen
- Elanco Animal Health, Greenfield, IN 46140, USA
| | - J A Vizcarra
- Food and Animal Sciences, Alabama A&M University, Normal, AL 35762, USA.
| |
Collapse
|
4
|
Te Pas MFW, Borg R, Buddiger NJH, Wood BJ, Rebel JMJ, van Krimpen MM, Calus MPL, Park JE, Schokker D. Regulating appetite in broilers for improving body and muscle development - A review. J Anim Physiol Anim Nutr (Berl) 2020; 104:1819-1834. [PMID: 32592266 PMCID: PMC7754290 DOI: 10.1111/jpn.13407] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 05/27/2020] [Accepted: 05/28/2020] [Indexed: 12/12/2022]
Abstract
Appetite is the desire for feed and water and the voluntary intake of feed and is an important regulator of livestock productivity and animal health. Economic traits such as growth rate and muscle development (meat deposition) in broilers are directly correlated to appetite. Factors that may influence appetite include environmental factors, such as stress and temperature variation, and animal‐specific factors, such as learning period, eating capacity and preferences. Feed preferences have been reported to be determined in early life, and this period is important in broilers due to their fast growth and relatively short growth trajectories. This may be of importance when contemplating the use of more circular and sustainable feeds and the optimization of appetite for these feeds. The objective of this review was to review the biological mechanisms underlying appetite using data from human, animal and bird models and to consider the option for modulating appetite particularly as it relates to broiler chickens.
Collapse
Affiliation(s)
- Marinus F W Te Pas
- Wageningen University and Research, Wageningen Livestock Research, Wageningen, The Netherlands
| | | | | | - Benjamin J Wood
- Hendrix Genetics North America Office, Kitchener, ON, Canada
| | - Johanna M J Rebel
- Wageningen University and Research, Wageningen Livestock Research, Wageningen, The Netherlands
| | - Marinus M van Krimpen
- Wageningen University and Research, Wageningen Livestock Research, Wageningen, The Netherlands
| | - Mario P L Calus
- Wageningen University and Research, Wageningen Livestock Research, Wageningen, The Netherlands
| | - Jong-Eun Park
- Animal Genomics & Bioinformatics Division, National Institute of Animal Science, Rural Development Administration, Jeonju, Korea
| | - Dirkjan Schokker
- Wageningen University and Research, Wageningen Livestock Research, Wageningen, The Netherlands
| |
Collapse
|
5
|
Zhang X, Liu Y, Qi J, Tian Z, Tang N, Chen D, Li Z. Progress in understanding the roles of Urocortin3 (UCN3) in the control of appetite from studies using animal models. Peptides 2019; 121:170124. [PMID: 31415798 DOI: 10.1016/j.peptides.2019.170124] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 07/19/2019] [Accepted: 08/05/2019] [Indexed: 11/19/2022]
Abstract
Urocortin3 (UCN3), the newest member of corticotrophin releasing hormone (CRH) family polypeptides, is an anorexic factor discovered in 2001, which has a strong inhibitory effect on animal appetite regulation. UCN3 is widely distributed in various tissues of animals and has many biological functions. Based on the research progress of UCN3 on mammals and non-mammals, this paper summarized the discovery, tissue distribution, appetite regulation and mechanism of UCN3 in animals, in order to provide a reference for feeding regulation and growth in mammals and fish in further research and production.
Collapse
Affiliation(s)
- Xin Zhang
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, 211# Huimin Road, Chengdu, Sichuan, China; The Key Laboratory of Mariculture, Ministry of Education, Fisheries College, Ocean University of China, 5# Yushan Road, Qingdao, Shandong, China
| | - Yanling Liu
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, 211# Huimin Road, Chengdu, Sichuan, China
| | - Jinwen Qi
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, 211# Huimin Road, Chengdu, Sichuan, China
| | - Zhengzhi Tian
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, 211# Huimin Road, Chengdu, Sichuan, China
| | - Ni Tang
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, 211# Huimin Road, Chengdu, Sichuan, China
| | - Defang Chen
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, 211# Huimin Road, Chengdu, Sichuan, China
| | - Zhiqiong Li
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, 211# Huimin Road, Chengdu, Sichuan, China.
| |
Collapse
|
6
|
Squillacioti C, Pelagalli A, Liguori G, Mirabella N. Urocortins in the mammalian endocrine system. Acta Vet Scand 2019; 61:46. [PMID: 31585551 PMCID: PMC6778379 DOI: 10.1186/s13028-019-0480-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2019] [Accepted: 09/21/2019] [Indexed: 12/13/2022] Open
Abstract
Urocortins (Ucns), peptides belonging to the corticotropin-releasing hormone (CRH) family, are classified into Ucn1, Ucn2, and Ucn3. They are involved in regulating several body functions by binding to two G protein-coupled receptors: receptor type 1 (CRHR1) and type 2 (CRHR2). In this review, we provide a historical overview of research on Ucns and their receptors in the mammalian endocrine system. Although the literature on the topic is limited, we focused our attention particularly on the main role of Ucns and their receptors in regulating the hypothalamic–pituitary–adrenal and thyroid axes, reproductive organs, pancreas, gastrointestinal tract, and other tissues characterized by “diffuse” endocrine cells in mammals. The prominent function of these peptides in health conditions led us to also hypothesize an action of Ucn agonists/antagonists in stress and in various diseases with its critical consequences on behavior and physiology. The potential role of the urocortinergic system is an intriguing topic that deserves further in-depth investigations to develop novel strategies for preventing stress-related conditions and treating endocrine diseases.
Collapse
|
7
|
Tang N, Zhang X, Wang S, Qi J, Tian Z, Wang B, Chen H, Wu Y, Wang M, Xu S, Chen D, Li Z. UCN3 suppresses food intake in coordination with CCK and the CCK2R in Siberian sturgeon (Acipenser baerii). Comp Biochem Physiol A Mol Integr Physiol 2019; 234:106-113. [PMID: 31051262 DOI: 10.1016/j.cbpa.2019.04.022] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 04/20/2019] [Accepted: 04/25/2019] [Indexed: 12/17/2022]
Abstract
Urocortin-3 (UCN3) as a brain-gut peptide inhibits food intake of animal, but the underlying mechanism is not clear. To explore the appetite mechanism about the action of UCN3 in fish, intraperitoneal injection of UCN3 with CCK8, Lorglumide (CCK1R antagonist) or LY225910 (CCK2R antagonist) were conducted. Siberian sturgeon administrated with UCN3 and CCK8 showed a drastic reduction in food intake. The anorectic effect of UCN3 was significantly blocked by LY225910, but not affected by Lorglumide. Furthermore, LY225910 could effectively reverse appetite factor mRNA expressions, including cck, pyy, cart, npy, ucn3, apelin and nucb2 in the whole brain, stomach and intestinum valvula, but Lorglumide could only partially reverse these effects, suggesting the anorectic effect of UCN3 may be primarily mediated CCK2R in Siberian sturgeon. This study indicates for the first time in fish that UCN3 may inhibit food intake in coordination with CCK and CCK2R.
Collapse
Affiliation(s)
- Ni Tang
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, 211# Huimin Road, Chengdu, Sichuan, China
| | - Xin Zhang
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, 211# Huimin Road, Chengdu, Sichuan, China; The Key Laboratory of Mariculture, Ministry of Education, Fisheries College, Ocean University of China, 5# Yushan Road, Qingdao, Shandong, China
| | - Shuyao Wang
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, 211# Huimin Road, Chengdu, Sichuan, China
| | - Jinwen Qi
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, 211# Huimin Road, Chengdu, Sichuan, China
| | - Zhengzhi Tian
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, 211# Huimin Road, Chengdu, Sichuan, China
| | - Bin Wang
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, 211# Huimin Road, Chengdu, Sichuan, China
| | - Hu Chen
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, 211# Huimin Road, Chengdu, Sichuan, China
| | - Yuanbing Wu
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, 211# Huimin Road, Chengdu, Sichuan, China
| | - Mei Wang
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, 211# Huimin Road, Chengdu, Sichuan, China
| | - Shaoqi Xu
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, 211# Huimin Road, Chengdu, Sichuan, China
| | - Defang Chen
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, 211# Huimin Road, Chengdu, Sichuan, China
| | - Zhiqiong Li
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, 211# Huimin Road, Chengdu, Sichuan, China.
| |
Collapse
|
8
|
Abtahi S, Howell E, Salvucci JT, Bastacky JMR, Dunn DP, Currie PJ. Exendin-4 antagonizes the metabolic action of acylated ghrelinergic signaling in the hypothalamic paraventricular nucleus. Gen Comp Endocrinol 2019; 270:75-81. [PMID: 30336120 PMCID: PMC6886705 DOI: 10.1016/j.ygcen.2018.10.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 09/19/2018] [Accepted: 10/14/2018] [Indexed: 12/11/2022]
Abstract
In the current study we investigated the interaction of hypothalamic paraventricular nucleus (PVN) glucagon-like peptide-1 (GLP-1) and ghrelin signaling in the control of metabolic function. We first demonstrated that acylated ghrelin injected directly into the PVN reliably altered the respiratory exchange ratio (RER) of adult male Sprague Dawley rats. All testing was carried out during the initial 2 h of the nocturnal cycle using an indirect open circuit calorimeter. Results indicated that acylated ghrelin induced a robust increase in RER representing a shift toward enhanced carbohydrate oxidation and reduced lipid utilization. In contrast, treatment with comparable dosing of des-acyl ghrelin failed to significantly impact metabolic activity. In separate groups of rats we subsequently investigated the ability of exendin-4 (Ex-4), a GLP-1 analogue, to alter acylated ghrelin's metabolic effects. Rodents were treated with either systemic or direct PVN Ex-4 followed by acyl ghrelin microinjection. While our results showed that both systemic and PVN administration of Ex-4 significantly reduced RER, importantly, Ex-4 pretreatment itself reliably inhibited the impact of ghrelin on RER. Overall, these findings provide increasingly compelling evidence that GLP-1 and ghrelin signaling interact in the neural control of metabolic function within the PVN.
Collapse
Affiliation(s)
- Shayan Abtahi
- Department of Psychology, Reed College, 3203 SE Woodstock Blvd., Portland, OR 97202, United States
| | - Erin Howell
- Department of Psychology, Reed College, 3203 SE Woodstock Blvd., Portland, OR 97202, United States
| | - Jack T Salvucci
- Department of Psychology, Reed College, 3203 SE Woodstock Blvd., Portland, OR 97202, United States
| | - Joshua M R Bastacky
- Department of Psychology, Reed College, 3203 SE Woodstock Blvd., Portland, OR 97202, United States
| | - David P Dunn
- Department of Psychology, Reed College, 3203 SE Woodstock Blvd., Portland, OR 97202, United States
| | - Paul J Currie
- Department of Psychology, Reed College, 3203 SE Woodstock Blvd., Portland, OR 97202, United States.
| |
Collapse
|
9
|
Grommen SVH, Scott MK, Darras VM, De Groef B. Spatial and temporal expression profiles of urocortin 3 mRNA in the brain of the chicken (Gallus gallus). J Comp Neurol 2017; 525:2583-2591. [PMID: 28395119 DOI: 10.1002/cne.24223] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Revised: 03/20/2017] [Accepted: 04/03/2017] [Indexed: 01/15/2023]
Abstract
Urocortin 3 (UCN3) is a neuropeptide believed to regulate stress-coping responses by binding to type 2 corticotropin-releasing hormone receptors. Here, we report the cloning and brain distribution of UCN3 mRNA in a sauropsid-the chicken, Gallus gallus. Mature chicken UCN3 is predicted to be a 40-amino acid peptide showing high sequence similarity to human (93%), mouse (93%), and Xenopus (88%) UCN3. During the last third of embryonic development, UCN3 mRNA levels changed differentially in the various brain parts. In all brain parts, UCN3 mRNA levels tended to increase toward hatching, except for caudal brainstem, where a gradual decrease was observed during the last week of embryonic development. In cerebellum, a rapid increase in gene expression occurred between embryonic days 17 and 19. Using in situ hybridization, UCN3 mRNA was found to be expressed predominantly in the hypothalamus, pons, and medulla of posthatch chick brains, but not in some areas that are among the main expression sites in rodents, such as the brain areas where in mammals the median preoptic nucleus and the medial amygdala are located. This suggests that the roles of UCN3 in chicken, and perhaps sauropsids in general, are not all identical to those in rodents.
Collapse
Affiliation(s)
- Sylvia V H Grommen
- Department of Physiology, Anatomy and Microbiology, La Trobe University, Bundoora, Victoria, 3086, Australia
| | - Melissa K Scott
- Department of Physiology, Anatomy and Microbiology, La Trobe University, Bundoora, Victoria, 3086, Australia
| | - Veerle M Darras
- Laboratory of Comparative Endocrinology, Department of Biology, KU Leuven, B-3000, Leuven, Belgium
| | - Bert De Groef
- Department of Physiology, Anatomy and Microbiology, La Trobe University, Bundoora, Victoria, 3086, Australia
| |
Collapse
|
10
|
Yeh C, Ting CH, Doong ML, Chi CW, Lee SD, Chen CY. Intracerebroventricular urocortin 3 counteracts central acyl ghrelin-induced hyperphagic and gastroprokinetic effects via CRF receptor 2 in rats. DRUG DESIGN DEVELOPMENT AND THERAPY 2016; 10:3281-3290. [PMID: 27757017 PMCID: PMC5055120 DOI: 10.2147/dddt.s113195] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Purpose Urocortin 3 is a key neuromodulator in the regulation of stress, anxiety, food intake, gut motility, and energy homeostasis, while ghrelin elicits feeding behavior and enhances gastric emptying, adiposity, and positive energy balance. However, the interplays between urocortin 3 and ghrelin on food intake and gastric emptying remain uninvestigated. Methods We examined the differential effects of central O-n-octanoylated ghrelin, des-Gln14-ghrelin, and urocortin 3 on food intake, as well as on charcoal nonnutrient semiliquid gastric emptying in conscious rats that were chronically implanted with intracerebroventricular (ICV) catheters. The functional importance of corticotropin-releasing factor (CRF) receptor 2 in urocortin 3-induced responses was examined by ICV injection of the selective CRF receptor 2 antagonist, astressin2-B. Results ICV infusion of urocortin 3 opposed central acyl ghrelin-elicited hyperphagia via CRF receptor 2 in satiated rats. ICV injection of O-n-octanoylated ghrelin and des-Gln14-ghrelin were equally potent in accelerating gastric emptying in fasted rats, whereas ICV administration of urocortin 3 delayed gastric emptying. In addition, ICV infusion of urocortin 3 counteracted central acyl ghrelin-induced gastroprokinetic effects via CRF receptor 2 pathway. Conclusion ICV-infused urocortin 3 counteracts central acyl ghrelin-induced hyperphagic and gastroprokinetic effects via CRF receptor 2 in rats. Our results clearly showed that enhancing ghrelin and blocking CRF receptor 2 signaling in the brain accelerated gastric emptying, which provided important clues for a new therapeutic avenue in ameliorating anorexia and gastric ileus found in various chronic wasting disorders.
Collapse
Affiliation(s)
- Chun Yeh
- Division of Gastroenterology, Department of Internal Medicine, Cheng-Hsin General Hospital
| | | | | | - Chin-Wen Chi
- Institute of Pharmacology, National Yang-Ming University School of Medicine; Department of Medical Research, Taipei Veterans General Hospital
| | - Shou-Dong Lee
- Division of Gastroenterology, Department of Internal Medicine, Cheng-Hsin General Hospital
| | - Chih-Yen Chen
- Division of Gastroenterology and Hepatology, Department of Medicine, Taipei Veterans General Hospital; Faculty of Medicine, National Yang-Ming University School of Medicine, Taipei; Taiwan Association for the Study of Small Intestinal Diseases, Guishan, Taiwan
| |
Collapse
|
11
|
Ogino M, Khan MSI, Cline MA, Tachibana T. Acute injections of corticosterone, norepinephrine and epinephrine retards food passage in the crop of chicks. Gen Comp Endocrinol 2016; 225:155-161. [PMID: 26519762 DOI: 10.1016/j.ygcen.2015.10.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Revised: 09/16/2015] [Accepted: 10/22/2015] [Indexed: 11/22/2022]
Abstract
The purpose of the present study was to clarify whether acute injection of stress-related hormones, corticosterone (CORT), norepinephrine (NE) and epinephrine (E) affect food passage in the crop of chicks (Gallus gallus). Subcutaneous (SQ) injection of CORT significantly retarded the food passage in the crop of chicks. Intraperitoneal (IP) injection of NE and E also significantly decreased the crop emptying rate. Additional experiments by using agonists of adrenergic receptors found that IP injection of phenylephrine and clonidine but not isoproterenol retarded the food passage in the crop of chicks. These results demonstrated that the effect of NE and E would be mediated by alpha-1-, alpha-2- rather than beta-adrenergic receptor. Finally, we found that injection of CORT, NE and E had no effect on the number of defecations while intracerebroventricular injection of corticotropin-releasing hormone and urocortin-3 significantly increased it. These results suggest that CORT, NE and E might affect the food passage in the upper digestive tract in chicks.
Collapse
Affiliation(s)
- Madoka Ogino
- Department of Agrobiological Science, Faculty of Agriculture, Ehime University, Matsuyama 790-8566, Japan
| | - Md Sakirul Islam Khan
- Department of Anatomy and Embryology, Ehime University Graduate School of Medicine, Toon 791-0212, Ehime, Japan
| | - Mark A Cline
- Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, 24061 Blacksburg, VA, United States
| | - Tetsuya Tachibana
- Department of Agrobiological Science, Faculty of Agriculture, Ehime University, Matsuyama 790-8566, Japan.
| |
Collapse
|
12
|
Khan MSI, Shigeoka C, Takahara Y, Matsuda S, Tachibana T. Ontogeny of the corticotrophin-releasing hormone system in slow- and fast-growing chicks (Gallus gallus). Physiol Behav 2015; 151:38-45. [DOI: 10.1016/j.physbeh.2015.06.033] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Revised: 06/23/2015] [Accepted: 06/24/2015] [Indexed: 11/30/2022]
|
13
|
Wittekind DA, Kluge M. Ghrelin in psychiatric disorders - A review. Psychoneuroendocrinology 2015; 52:176-94. [PMID: 25459900 DOI: 10.1016/j.psyneuen.2014.11.013] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Revised: 11/13/2014] [Accepted: 11/13/2014] [Indexed: 12/21/2022]
Abstract
Ghrelin is a 28-amino-acid peptide hormone, first described in 1999 and broadly expressed in the organism. As the only known orexigenic hormone secreted in the periphery, it increases hunger and appetite, promoting food intake. Ghrelin has also been shown to be involved in various physiological processes being regulated in the central nervous system such as sleep, mood, memory and reward. Accordingly, it has been implicated in a series of psychiatric disorders, making it subject of increasing investigation, with knowledge rapidly accumulating. This review aims at providing a concise yet comprehensive overview of the role of ghrelin in psychiatric disorders. Ghrelin was consistently shown to exert neuroprotective and memory-enhancing effects and alleviated psychopathology in animal models of dementia. Few human studies show a disruption of the ghrelin system in dementia. It was also shown to play a crucial role in the pathophysiology of addictive disorders, promoting drug reward, enhancing drug seeking behavior and increasing craving in both animals and humans. Ghrelin's exact role in depression and anxiety is still being debated, as it was shown to both promote and alleviate depressive and anxiety-behavior in animal studies, with an overweight of evidence suggesting antidepressant effects. Not surprisingly, the ghrelin system is also implicated in eating disorders, however its exact role remains to be elucidated. Its widespread involvement has made the ghrelin system a promising target for future therapies, with encouraging findings in recent literature.
Collapse
Affiliation(s)
| | - Michael Kluge
- Department of Psychiatry and Psychotherapy, University of Leipzig, Leipzig, Germany
| |
Collapse
|