1
|
Reiche AM, Martín-Hernández MC, Spengler Neff A, Bapst B, Fleuti C, Dohme-Meier F, Hess HD, Egger L, Portmann R. The A1/A2 β-casein genotype of cows, but not their horn status, influences peptide generation during simulated digestion of milk. J Dairy Sci 2024; 107:6425-6436. [PMID: 38490553 DOI: 10.3168/jds.2024-24403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 02/12/2024] [Indexed: 03/17/2024]
Abstract
The effect of the horn status of cows on their milk composition and quality is a controversial research topic. In this study, 128 milk samples from 64 horned and 64 disbudded Brown Swiss and Original Braunvieh cows were collected from alpine farms where both horned and disbudded cows were grazing on mountain pastures. The samples were analyzed for their detailed composition and protein digestion in a simulated in vitro digestion (INFOGEST). To exclude probable influences on digestion, the β-CN genotype with its variants A1 and A2 was also included in the study. The effects of horn status and β-CN genotype were investigated in linear mixed models, which included additional influencing random factors such as Original Braunvieh blood proportion, stage of lactation, and farm. Horn status did not have any effect on milk composition or digestion. In contrast, milk from A1A1 cows showed a different protein digestion than milk of A1A2 and A2A2 cows in the gastric phase, including smaller amounts of β-casomorphin(BCM)21-associated peptides and larger amounts of BCM11-associated peptides. Abundances of BCM7 did not differ between β-CN genotypes. At the end of the intestinal phase, the digested milk of A1A1 and A2A2 β-CN genotypes did not differ.
Collapse
Affiliation(s)
- A-M Reiche
- Ruminant Nutrition and Emissions, Agroscope, 1725 Posieux, Switzerland.
| | - M C Martín-Hernández
- Method Development and Analytics/Biochemistry of Milk and Microorganisms, Agroscope, 3097 Liebefeld, Switzerland
| | - A Spengler Neff
- Department of Livestock Sciences, Research Institute of Organic Agriculture (FiBL), Ackerstrasse 113, CH-5070 Frick, Switzerland
| | - B Bapst
- Qualitas AG, 6300 Zug, Switzerland
| | - C Fleuti
- Method Development and Analytics/Biochemistry of Milk and Microorganisms, Agroscope, 3097 Liebefeld, Switzerland
| | - F Dohme-Meier
- Ruminant Nutrition and Emissions, Agroscope, 1725 Posieux, Switzerland
| | - H D Hess
- Ruminant Nutrition and Emissions, Agroscope, 1725 Posieux, Switzerland
| | - L Egger
- Method Development and Analytics/Biochemistry of Milk and Microorganisms, Agroscope, 3097 Liebefeld, Switzerland
| | - R Portmann
- Method Development and Analytics/Biochemistry of Milk and Microorganisms, Agroscope, 3097 Liebefeld, Switzerland
| |
Collapse
|
2
|
Rehm K, Hankele AK, Ulbrich SE, Bigler L. Quantification of glucocorticoid and progestogen metabolites in bovine plasma, skimmed milk and saliva by UHPLC-HR-MS with polarity switching. Anal Chim Acta 2024; 1287:342118. [PMID: 38182350 DOI: 10.1016/j.aca.2023.342118] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 11/15/2023] [Accepted: 12/04/2023] [Indexed: 01/07/2024]
Abstract
Steroid metabolites are increasingly in focus when searching for novel biomarkers in physiological mechanisms and their disorders. While major steroids such as progesterone and cortisol are well-researched and routinely determined to assess the health, particularly the reproductive status of mammals, the function of potentially biologically active progestogen and glucocorticoid metabolites is widely unexplored. One of the main reasons for this is the lack of comprehensive, sensitive, and specific analytical methods. This is particularly the case when analyzing matrices like milk or saliva obtained by non-invasive sampling with steroid concentrations often below those present in plasma. Therefore, a new UHPLC-HR-MS method based on an Ultimate UHPLC system equipped with an Acquity HSS T3 reversed-phase column and a Q Exactive™ mass spectrometer was developed, enabling the simultaneous chromatographic separation, detection and quantification of eleven isobaric glucocorticoids (11-dehydrocorticosterone (A), corticosterone (B), cortisol (F), cortisone (E), the tetrahydrocortisols (THF): 3α,5α-THF, 3α,5β-THF, 3β,5α-THF, 3β,5β-THF, and the tetrahydrocortisones (THE): 3α,5α-THE, 3α,5β-THE, 3β,5α-THE) and twelve progestogens (progesterone (P4), pregnenolone (P5), the dihydroprogesterones (DHP): 20α-DHP, 20β-DHP, 3α-DHP, 3β-DHP, 5α-DHP, 5β-DHP, and the tetrahydroprogesterones (THP): 3α,5α-THP, 3α,5β-THP, 3β,5α-THP, 3β,5β-THP) in bovine plasma, skimmed milk, and saliva. A simple liquid-liquid extraction (LLE) with MTBE (methyl tert-butyl ether) was used for sample preparation of 500 μL plasma, skimmed milk, and saliva. Heated electrospray ionization (HESI) with polarity switching was applied to analyze steroids in high-resolution full scan mode (HR-FS). The method validation covered the investigation of sensitivity, selectivity, curve fitting, carry-over, accuracy, precision, recovery, matrix effects and applicability. A high sensitivity in the range of pg mL-1 was achieved for all steroids suitable for the analysis of authentic samples.
Collapse
Affiliation(s)
- Karoline Rehm
- University of Zurich, Department of Chemistry, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Anna-Katharina Hankele
- ETH Zurich, Animal Physiology, Institute of Agricultural Sciences, Universitaetstrasse 2, 8092, Zurich, Switzerland
| | - Susanne E Ulbrich
- ETH Zurich, Animal Physiology, Institute of Agricultural Sciences, Universitaetstrasse 2, 8092, Zurich, Switzerland
| | - Laurent Bigler
- University of Zurich, Department of Chemistry, Winterthurerstrasse 190, 8057, Zurich, Switzerland.
| |
Collapse
|
3
|
Reiche AM, Amelchanka SL, Bapst B, Terranova M, Kreuzer M, Kuhla B, Dohme-Meier F. Influence of dietary fiber content and horn status on thermoregulatory responses of Brown Swiss dairy cows under thermoneutral and short-term heat stress conditions. J Dairy Sci 2023; 106:8033-8046. [PMID: 37641257 DOI: 10.3168/jds.2022-23071] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 05/15/2023] [Indexed: 08/31/2023]
Abstract
In the present experiment, 10 horned and 10 disbudded mid-lactating Brown Swiss cows were included in a crossover feeding trial with a hay or hay and concentrate diet. The effects of dietary neutral detergent fiber (NDF) content and horn status on thermoregulatory responses under thermoneutral and short-term heat stress conditions were studied, as both are considered to ease the cow's thermoregulation under an environmental heat load. Cows received either ad libitum hay and alfalfa pellets (85:15, C-, NDF content: 41.0%) or restricted amounts of hay and concentrate (70:30, C+, NDF content: 34.5%). The level of restriction applied with the C+ diet was determined from pre-experimental ad libitum intakes, ensuring that both diets provided the same intake of net energy for lactation (NEL). For data collection, cows were housed in respiration chambers for 5 d. The climatic conditions were 10°C and 60% relative humidity (RH), considered thermoneutral (TN) conditions (temperature-humidity index (THI): 52) for d 1 and 2, and 25°C and 70% RH, considered heat stress (HS) conditions (THI: 74), for d 4 and 5. On d 3, the temperature and RH were increased gradually. Compared with TN, HS conditions increased the water intake, skin temperature, respiration and heart rates, and endogenous heat production. They did not affect body temperature, feed intake, or milk production. Lowering dietary fiber content via concentrate supplementation lowered methane and increased carbon dioxide production. It did not mitigate physiological responses to HS. Although the responses of horned and disbudded cows were generally similar, the slower respiration rates of horned cows under HS conditions indicate a possible, albeit minor, role of the horn in thermoregulation. In conclusion, future investigations on nutritional strategies must be conducted to mitigate mild heat stress.
Collapse
Affiliation(s)
- A-M Reiche
- Ruminant Nutrition and Emissions, Agroscope Posieux, 1725 Posieux, Switzerland.
| | - S L Amelchanka
- ETH Zurich, AgroVet-Strickhof, Eschikon 27, 8315 Lindau, Switzerland
| | - B Bapst
- Qualitas AG, 6300 Zug, Switzerland
| | - M Terranova
- ETH Zurich, AgroVet-Strickhof, Eschikon 27, 8315 Lindau, Switzerland
| | - M Kreuzer
- ETH Zurich, Institute of Agricultural Sciences, Eschikon 27, 8315 Lindau, Switzerland
| | - B Kuhla
- Research Institute for Farm Animal Biology (FBN), Institute of Nutritional Physiology, Wilhelm-Stahl-Allee 2, 18196 Dummerstorf, Germany
| | - F Dohme-Meier
- Ruminant Nutrition and Emissions, Agroscope Posieux, 1725 Posieux, Switzerland
| |
Collapse
|
4
|
Giaretta E, Mongillo P, Da Dalt L, Gianesella M, Bortoletti M, Degano L, Vicario D, Gabai G. Temperature and humidity index (THI) affects salivary cortisol (HC) and dehydroepiandrosterone (DHEA) concentrations in growing bulls following stress generated by performance test procedures. Front Vet Sci 2023; 10:1237634. [PMID: 37559888 PMCID: PMC10407106 DOI: 10.3389/fvets.2023.1237634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 07/10/2023] [Indexed: 08/11/2023] Open
Abstract
The hypothalamus-pituitary-adrenal axis response to a challenge was proposed for genetic selection of robust and resilient animals. As ACTH (adrenocorticotropic hormone) test and hormone measurements in blood may result impractical, it may be useful to measure salivary hormones in response to natural stressors, after an accurate biological validation, to control factors that could contribute to the response. We evaluated whether animal handling during performance test affects salivary HC and DHEA secretion and could be used for selection. We tested the effects of habituation to repeated handling and THI as putative bias. Bull calves (N = 273) undergoing performance test were sampled at 8-9 and 11-13 months (N = 101), 8-9 months (N = 131), or 11-13 months (N = 41). On each test day (D0), calves were isolated, conducted to a squeeze chute and immobilized for 6 min. Saliva samples were collected in the morning after feed administration (T0), and after 6 min immobilization in the squeeze chute (T1) for HC and DHEA measurement. Environmental temperature and relative humidity were recorded every hour from 1:00 h to 24:00 h during the 6 days before the performance test and on D0. Salivary HC and DHEA concentrations were higher in T1 (p < 0.01), although a clear individual positive response to handling could be observed in less than 10% of subjects. The mixed model revealed: (i) HC and HC/DHEA were higher in Young bulls (p < 0.05). (ii) The time of T0 sample collection significantly affected DHEA (p < 0.01) and HC/DHEA (p < 0.05). (iii) THI affected both steroids (p < 0.001) but not HC/DHEA. Spearman correlations suggested that THI weakly affected salivary HC at T0 only (ρ = 0.150, p < 0.01), while moderate statistically significant correlations were found between DHEA and THI at T0 (ρ = 0.316, p < 0.001), and T1 (ρ = 0.353, p < 0.001). Salivary HC and DHEA in response to handling procedures might identify subpopulations of subjects with sensitive HPA axis. Habituation to repeated handling played a role, as the hormone response was lower in older animals. Chronic exposure to high THI had a minor effect on salivary HC visible at T0. A more intense THI effect was observed on salivary DHEA concentrations at both T0 and T1, which should be worth of further investigations.
Collapse
Affiliation(s)
- Elisa Giaretta
- Department of Comparative Biomedicine and Food Science, University of Padua, Legnaro, Italy
| | - Paolo Mongillo
- Department of Comparative Biomedicine and Food Science, University of Padua, Legnaro, Italy
| | - Laura Da Dalt
- Department of Comparative Biomedicine and Food Science, University of Padua, Legnaro, Italy
| | - Matteo Gianesella
- Department of Animal Medicine, Production and Health, University of Padua, Legnaro, Italy
| | - Martina Bortoletti
- Department of Comparative Biomedicine and Food Science, University of Padua, Legnaro, Italy
| | - Lorenzo Degano
- Associazione Nazionale Allevatori Bovini di Razza Pezzata Rossa Italiana (A.N.A.P.R.I.), Udine, Italy
| | - Daniele Vicario
- Associazione Nazionale Allevatori Bovini di Razza Pezzata Rossa Italiana (A.N.A.P.R.I.), Udine, Italy
| | - Gianfranco Gabai
- Department of Comparative Biomedicine and Food Science, University of Padua, Legnaro, Italy
| |
Collapse
|
5
|
Adcock SJJ. Early Life Painful Procedures: Long-Term Consequences and Implications for Farm Animal Welfare. FRONTIERS IN ANIMAL SCIENCE 2021. [DOI: 10.3389/fanim.2021.759522] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Farm animals routinely undergo painful husbandry procedures early in life, including disbudding and castration in calves and goat kids, tail docking and castration in piglets and lambs, and beak trimming in chicks. In rodents, inflammatory events soon after birth, when physiological systems are developing and sensitive to perturbation, can profoundly alter phenotypic outcomes later in life. This review summarizes the current state of research on long-term phenotypic consequences of neonatal painful procedures in rodents and farm animals, and discusses the implications for farm animal welfare. Rodents exposed to early life inflammation show a hypo-/hyper-responsive profile to pain-, fear-, and anxiety-inducing stimuli, manifesting as an initial attenuation in responses that transitions into hyperresponsivity with increasing age or cumulative stress. Neonatal inflammation also predisposes rodents to cognitive, social, and reproductive deficits, and there is some evidence that adverse effects may be passed to offspring. The outcomes of neonatal inflammation are modulated by injury etiology, age at the time of injury and time of testing, sex, pain management, and rearing environment. Equivalent research examining long-term phenotypic consequences of early life painful procedures in farm animals is greatly lacking, despite obvious implications for welfare and performance. Improved understanding of how these procedures shape phenotypes will inform efforts to mitigate negative outcomes through reduction, replacement, and refinement of current practices.
Collapse
|
6
|
Reiche AM, Oberson JL, Silacci P, Messadène-Chelali J, Hess H, Dohme-Meier F, Dufey PA, Terlouw E. Pre-slaughter stress and horn status influence physiology and meat quality of young bulls. Meat Sci 2019; 158:107892. [DOI: 10.1016/j.meatsci.2019.107892] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 04/23/2019] [Accepted: 07/22/2019] [Indexed: 10/26/2022]
|