1
|
Maienza CSD, Lamoureux G, Lee K. Cross-species comparison of AlphaFold-derived G protein-coupled receptor structures reveals novel melatonin-related receptor in Neurospora crassa. PLoS One 2025; 20:e0318362. [PMID: 39874366 PMCID: PMC11774363 DOI: 10.1371/journal.pone.0318362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 01/14/2025] [Indexed: 01/30/2025] Open
Abstract
Melatonin, a molecule with diverse biological functions, is ubiquitously present in living organisms. There is significant interest in understanding melatonin signal transduction pathways in humans, particularly due to its critical role in regulating the sleep-wake cycle. However, a knowledge gap remains in fully elucidating the mechanisms by which melatonin influences circadian regulation. To bridge this gap, there is a growing need for a model system to study the role of melatonin in circadian clocks, with Neurospora crassa being a promising candidate. As a first step in this investigation, we focused on identifying melatonin receptors in N. crassa. Given the lack of sequence similarity between potential receptors in this fungus and known human melatonin receptors, we utilized structural similarity analysis through AlphaFold2. This approach led to the identification of a strong candidate gene, gpr-3, which shares structural similarities with human melatonin receptors. Experimental validation confirmed that the removal of GPR-3 from cells results in the absence of melatonin signaling. This proof-of-concept study underscores the potential of N. crassa as a model organism for circadian research and demonstrates the broader applicability of using AlphaFold2, especially when sequence similarity does not lead to candidate genes, for identifying novel receptors across different species.
Collapse
Affiliation(s)
- Cathryn S. D. Maienza
- Center for Computation and Integrative Biology, Rutgers, The State of New Jersey, Camden, NJ, United States of America
| | - Guillaume Lamoureux
- Center for Computation and Integrative Biology, Rutgers, The State of New Jersey, Camden, NJ, United States of America
- Department of Chemistry, Rutgers, The State University of New Jersey, Camden, NJ, United States of America
| | - Kwangwon Lee
- Center for Computation and Integrative Biology, Rutgers, The State of New Jersey, Camden, NJ, United States of America
- Department of Biology, Rutgers, The State University of New Jersey, Camden, NJ, United States of America
| |
Collapse
|
2
|
Zhang C, Yu M, Zhang L, Zhou X, Han J, Fu B, Xue H, Zhang C. Exploring the Analgesic Effect of Acupuncture on Knee Osteoarthritis Based on MLT/cAMP/PKA/CREB Signaling Pathway. J Inflamm Res 2025; 18:237-249. [PMID: 39802514 PMCID: PMC11724624 DOI: 10.2147/jir.s498202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Accepted: 12/29/2024] [Indexed: 01/16/2025] Open
Abstract
Background Acupuncture is an effective treatment for knee osteoarthritis (KOA), reducing pain and improving function. While melatonin (MLT) has notable pain relief benefits, the analgesic mechanism of acupuncture in KOA and its relationship with melatonin are still unknown. This study aims to explore this mechanism. Methods In this work, the KOA rabbit model was constructed using the traditional Hulth method, and the therapeutic effect was assessed by the Lequesne MG score and Pain assessment by hot plate test. The pathological alterations of cartilage tissue were observed using hematoxylin and eosin (H&E) staining, Safranin O-fast green and MASSON staining to observe the pathological changes in cartilage tissue, and the efficacy was evaluated according to the principles of Mankin score and Osteoarthritis Research Society International (OARSI) score. Meanwhile, MLT in serum, cyclic adenosine monophosphate (cAMP) in cartilage, and matrix metalloproteinase-3 (MMP-3) in joint fluid were detected by enzyme-linked immunosorbent assay. In addition, the expression of aromatic L-amino acid N-acetyltransferase (AANAT), melatonin receptor 1 (MT1) and 2 (MT2) mRNAs in cartilage was determined by real-time quantitative reverse transcription-polymerase chain reaction, and the levels of proteins related to PKA/CREB signaling pathway were detected by Western blotting. Results Based on the results of Lequesne MG score and Pain assessment by hot plate test experimental data, the treatment group presented significant improvements in knee pain and overall function relative to OA (Osteoarthritis) group. Besides, according to results of histologic staining, Mankin and OARSI scores, articular cartilage degeneration of treatment group remarkably improved. In addition, acupuncture significantly reduced the expression of the inflammatory factor MMP-3 in knee joint fluid and significantly increased the levels of MLT, AANAT, MT1, MT2, cAMP, PKA and CREB. Conclusion By regulating sympathetic excitability, acupuncture may activate the MLT/cAMP/PKA/CREB signaling pathway, decrease inflammatory factor expression and slow down degradation of articular cartilage, resulting in the relief of knee pain.
Collapse
Affiliation(s)
- Chao Zhang
- Orthopedics Department, The First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300380, People’s Republic of China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300380, People’s Republic of China
| | - Man Yu
- Department of Nephrology and Rheumatology, Second Hospital Affiliated to Tianjin University of Traditional Chinese Medicine, Tianjin, 300250, People’s Republic of China
| | - Longyao Zhang
- Orthopedics Department, The First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300380, People’s Republic of China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300380, People’s Republic of China
| | - Xin Zhou
- Orthopedics Department, The First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300380, People’s Republic of China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300380, People’s Republic of China
| | - Jinchang Han
- Orthopedics Department, The First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300380, People’s Republic of China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300380, People’s Republic of China
| | - Bifeng Fu
- Orthopedics Department, The First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300380, People’s Republic of China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300380, People’s Republic of China
| | - Hongfei Xue
- Orthopedics Department, The First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300380, People’s Republic of China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300380, People’s Republic of China
| | - Chao Zhang
- Orthopedics Department, The First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300380, People’s Republic of China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300380, People’s Republic of China
| |
Collapse
|
3
|
Jin LY, Yu JE, Xu HY, Chen B, Yang Q, Liu Y, Guo MX, Zhou CL, Cheng Y, Pang HY, Wu HY, Sheng JZ, Huang HF. Overexpression of Pde4d in rat granulosa cells inhibits maturation and atresia of antral follicles to induce polycystic ovary. Biochim Biophys Acta Mol Basis Dis 2024; 1870:166869. [PMID: 37673361 DOI: 10.1016/j.bbadis.2023.166869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 08/08/2023] [Accepted: 08/29/2023] [Indexed: 09/08/2023]
Abstract
BACKGROUND Follicle dysplasia can cause polycystic ovary syndrome, which can lead to anovulatory infertility. This study explored gene(s) that may contribute to polycystic ovary syndrome. METHODS Three animal models of polycystic ovary syndrome were created by treating 3-week-old rats respectively with estradiol valerate, testosterone propionate, or constant illumination for 8 weeks. Granulosa cells from the three disease groups and from healthy controls were transcriptionally profiled to identify differentially expressed genes. The phosphodiesterase-4d (Pde4d) was screened as the most promising candidate pathogenic gene. The Pde4d was overexpressed in rats via intrabursal infection with recombinant lentivirus to see the effect of Pde4d on ovarian morphology. The potential roles of the candidate gene and interactors of the encoded protein were explored using polymerase chain reaction, western blotting, transfection and co-immunoprecipitation. RESULTS All three rat models of polycystic ovary syndrome showed polycystic ovary phenotype. Seven promising candidate genes were obtained by transcriptomics and verifications. Pde4d was further investigated because it could trigger downstream signaling pathways. The Pde4d overexpression in rat ovary induced cystic follicles. It inhibited follicle maturation through a mechanism involving inhibition of cAMP-PKA-CREB signaling. The Pde4d also inhibited phosphorylation of c-Jun N-terminal kinase to reduce apoptosis in the ovary, through a mechanism involving interaction of its poly-proline domain with the protein POSH. CONCLUSION Upregulation of Pde4d may contribute to polycystic ovary syndrome by impeding follicle maturation and preventing apoptotic atresia.
Collapse
Affiliation(s)
- Lu-Yang Jin
- Key Laboratory of Reproductive Genetics (Ministry of Education), Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China; Department of Gynecology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jia-En Yu
- Key Laboratory of Reproductive Genetics (Ministry of Education), Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China
| | - Hai-Yan Xu
- Reproductive Medicine Center, Ningbo First Hospital, School of Medicine, Zhejiang University, Ningbo, Zhejiang, China
| | - Bin Chen
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, Hangzhou, Zhejiang 310016, China
| | - Qian Yang
- International Peace Maternal and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Ye Liu
- International Peace Maternal and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Meng-Xi Guo
- International Peace Maternal and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Cheng-Liang Zhou
- International Peace Maternal and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yi Cheng
- Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai 200011, China
| | - Hai-Yan Pang
- Key Laboratory of Reproductive Genetics (Ministry of Education), Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China
| | - Hai-Yan Wu
- Key Laboratory of Reproductive Genetics (Ministry of Education), Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China
| | - Jian-Zhong Sheng
- Department of Pathology and Pathophysiology, School of Basic Medical Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - He-Feng Huang
- Key Laboratory of Reproductive Genetics (Ministry of Education), Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China; Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai 200011, China; Research Units of Embryo Original Diseases, Chinese Academy of Medical Sciences, Shanghai 200030, China.
| |
Collapse
|
4
|
Huang L, Yuan H, Shi S, Song X, Zhang L, Zhou X, Gao L, Pang W, Yang G, Chu G. CLOCK inhibits the proliferation of porcine ovarian granulosa cells by targeting ASB9. J Anim Sci Biotechnol 2023; 14:82. [PMID: 37280645 DOI: 10.1186/s40104-023-00884-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 04/16/2023] [Indexed: 06/08/2023] Open
Abstract
BACKGROUND Clock circadian regulator (CLOCK) is a core factor of the mammalian biological clock system in regulating female fertility and ovarian physiology. However, CLOCK's specific function and molecular mechanism in porcine granulosa cells (GCs) remain unclear. In this study, we focused on CLOCK's effects on GC proliferation. RESULTS CLOCK significantly inhibited cell proliferation in porcine GCs. CLOCK decreased the expression of cell cycle-related genes, including CCNB1, CCNE1, and CDK4 at the mRNA and protein levels. CDKN1A levels were upregulated by CLOCK. ASB9 is a newly-identified target of CLOCK that inhibits GC proliferation; CLOCK binds to the E-box element in the ASB9 promoter. CONCLUSIONS These findings suggest that CLOCK inhibits the proliferation of porcine ovarian GCs by increasing ASB9 level.
Collapse
Affiliation(s)
- Liang Huang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, Yangling, 712100, China
- Laboratory of Animal Fat Deposition & Muscle Development, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Huan Yuan
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, Yangling, 712100, China
- Laboratory of Animal Fat Deposition & Muscle Development, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Shengjie Shi
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, Yangling, 712100, China
- Laboratory of Animal Fat Deposition & Muscle Development, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Xiangrong Song
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, Yangling, 712100, China
- Laboratory of Animal Fat Deposition & Muscle Development, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Lutong Zhang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, Yangling, 712100, China
- Laboratory of Animal Fat Deposition & Muscle Development, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Xiaoge Zhou
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, Yangling, 712100, China
- Laboratory of Animal Fat Deposition & Muscle Development, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Lei Gao
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, Yangling, 712100, China
- Laboratory of Animal Fat Deposition & Muscle Development, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Weijun Pang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, Yangling, 712100, China
- Laboratory of Animal Fat Deposition & Muscle Development, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Gongshe Yang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, Yangling, 712100, China
- Laboratory of Animal Fat Deposition & Muscle Development, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Guiyan Chu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, Yangling, 712100, China.
- Laboratory of Animal Fat Deposition & Muscle Development, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China.
| |
Collapse
|
5
|
Yan M, Yong F, Ji W, Zhang L, Zhao S, Gao Y. Construction and Characterization of Immortalized Fibroblast Cell Line from Bactrian Camel. Life (Basel) 2023; 13:1337. [PMID: 37374120 PMCID: PMC10302944 DOI: 10.3390/life13061337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/23/2023] [Accepted: 06/04/2023] [Indexed: 06/29/2023] Open
Abstract
Immortalized cell lines with many advantages are widely used in various experimental contexts by many different labs. However, the absence of available cell lines poses difficulties for research in some species, such as camels. To establish an immortalized Bactrian camel fibroblast (iBCF) cell line and understand its biological characteristics, primary fibroblast cells from Bactrian camels were isolated and purified using enzymatic digestion in this study, and telomerase reverse transcriptase (hTERT) vectors were introduced into primary BCF (pBCF) for continuous passage to 80 generations after screening with G418. The cell morphology of different generations was examined under a microscope. Cell cycle and viability were evaluated by flow cytometry and CCK-8 assay, respectively. Cellular genes expression was monitored by qPCR, immunofluorescence, and Western blot, respectively. Chromosomes were determined by karyotyping. The results showed that like most other cells, both pBCF and iBCF were sensitive to nutrient concentrations and adapted to culture in the medium with 4.5 g/L glucose and 10% fetal bovine serum (FBS) concentration. hTERT gene was introduced and stably expressed in iBCF cells, which promoted BCF cell immortalization. The fibroblast specific marker vimentin (VIM) is expressed in both pBCF and iBCF, but epithelial marker cytokeratin18 (CK18) expression is weak in BCF cells. Proliferation and viability detection showed that hTERT-induced iBCF exhibits faster growth rates and higher viability than pBCF. Karyotyping showed that iBCF maintained the same number and morphology of chromosomes as the pBCF. This study demonstrated that we have successfully constructed an immortalized Bactrian camel fibroblast cell line, which was named BCF23. The establishment of the BCF23 cell line provides a foundation for expanding camel-related research.
Collapse
Affiliation(s)
- Meilin Yan
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Fang Yong
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Wangye Ji
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Lili Zhang
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Shuqin Zhao
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou 730070, China
| | - Yuan Gao
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou 730070, China
| |
Collapse
|
6
|
Melatonin Receptors: A Key Mediator in Animal Reproduction. Vet Sci 2022; 9:vetsci9070309. [PMID: 35878326 PMCID: PMC9320721 DOI: 10.3390/vetsci9070309] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 06/16/2022] [Accepted: 06/20/2022] [Indexed: 01/26/2023] Open
Abstract
Melatonin, a hormone produced by the mammalian pineal gland, influences various physiological activities, many of which are related to animal reproduction, including neuroendocrine function, rhythm regulation, seasonal behavior, gonadogenesis, gamete development and maturation, sexual maturation, and thermoregulation. Melatonin exerts beneficial actions mainly via binding with G-protein-coupled receptors (GPCR), termed MT1 and MT2. Melatonin receptors are crucial for mediating animal reproduction. This paper reviews the characteristics of melatonin receptors including MT1 and MT2, as well as their roles in mediating signal transduction and biological effects, with a focus on their function in animal reproduction. In addition, we briefly summarize the developments in pharmacological research regarding melatonin receptors as drug targets. It is expected that this review will provide a reference for further exploration and unveiling of melatonin receptor function in reproductive regulation.
Collapse
|
7
|
Expression of cell proliferation regulatory factors bricd5, tnfrsf21, cdk1 correlates with expression of clock gene cry1 in testes of Hu rams during puberty. Mol Biol Rep 2021; 48:7379-7385. [PMID: 34626314 DOI: 10.1007/s11033-021-06747-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 10/04/2021] [Indexed: 10/20/2022]
Abstract
BACKGROUND Cryptochrome 1 (cry1), the core regulator of the circadian clock, is essential for ontogeny and mammalian reproduction. Unlike in other tissues, the cry1 gene have noncircadian functions in spermatogenesis, which implies the unique role of cry1 gene in the development of testis. The role of cry1 during the puberty has not been described yet. This study aimed to explore the relationship between cry1 expression and spermatogenic cell numbers. METHODS AND RESULTS We analyzed testicular tissues from Hu sheep aged 0-180 days by hematoxylin and eosin staining, measured cry1 and cell proliferation regulatory factors (bricd5, tnfrsf21, cdk1) expression by quantitative real-time PCR and characterized the transcription factor in the 5' flanking region of cry1 gene. The data revealed that the number of spermatocytes and early spermatocytes increased rapidly from 90 to 120 dpp (day postpartum). Correspondingly, there was a marked variation in the cry1 and cell proliferation related genes (bricd5, tnfrsf21, cdk1) mRNA expression in the testes from the age of 90 days to 180 days (p < 0.05). We also identified some transcription factors (tcfl5) related to cell proliferation. CONCLUSIONS There is a significant causal relationship between the transcription level of cry1 gene in Hu sheep testes and the number of spermatogenic cells. It is speculated that cry1 gene may regulate the proliferation of spermatogenic cells by regulating the expression of cell proliferation related genes such as bricd5, tnfrsf21 and cdk1.
Collapse
|
8
|
Guo YM, Sun TC, Wang HP, Chen X. Research progress of melatonin (MT) in improving ovarian function: a review of the current status. Aging (Albany NY) 2021; 13:17930-17947. [PMID: 34228638 PMCID: PMC8312436 DOI: 10.18632/aging.203231] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Accepted: 06/14/2021] [Indexed: 12/17/2022]
Abstract
Melatonin (MT) is an endogenous hormone mainly synthesized by pineal cells, which has strong endogenous effects of eliminating free radicals and resisting oxidative damages. Melatonin (MT) can not only regulate the body’s seasonal and circadian rhythms; but also delay ovarian senescence, regulate ovarian biological rhythm, promote follicles formation, and improve oocyte quality and fertilization rate. This review aimd to provide evidence concerning the synthesis and distribution, ovarian function, and role of MT in development of follicles and oocytes. Moreover, the role of MT as antioxidative, participating in biological rhythm regulation, was also reviewed. Furthermore, the effects of MT on various ovarian related diseases were analyzed, particularly for the ovarian aging and polycystic ovary syndrome (PCOS).
Collapse
Affiliation(s)
- Yi Ming Guo
- Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, China.,National Engineering Research Center of Reproductive Health, National Research Institute for Family Planning, Beijing 100081, China
| | - Tie Cheng Sun
- Reproductive Medical Center, Department of Obstetrics and Gynecology, Peking University International Hospital, Beijing 102206, China
| | - Hui Ping Wang
- Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, China.,National Engineering Research Center of Reproductive Health, National Research Institute for Family Planning, Beijing 100081, China
| | - Xi Chen
- Reproductive Medical Center, Department of Obstetrics and Gynecology, Peking University People's Hospital, Beijing 100044, China
| |
Collapse
|