1
|
Miao H, Wei Y, Lee SG, Wu Z, Kaur J, Kim WJ. Glia-specific expression of neuropeptide receptor Lgr4 regulates development and adult physiology in Drosophila. J Neurosci Res 2024; 102:e25271. [PMID: 38284837 DOI: 10.1002/jnr.25271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 10/10/2023] [Accepted: 10/28/2023] [Indexed: 01/30/2024]
Abstract
Similar to the human brain, Drosophila glia may well be divided into several subtypes that each carries out specific functions. Glial GPCRs play key roles in crosstalk between neurons and glia. Drosophila Lgr4 (dLgr4) is a human relaxin receptor homolog involved in angiogenesis, cardiovascular regulation, collagen remodeling, and wound healing. A recent study suggests that ilp7 might be the ligand for Lgr4 and regulates escape behavior of Drosophila larvae. Here we demonstrate that Drosophila Lgr4 expression in glial cells, not neurons, is necessary for early development, adult behavior, and lifespan. Reducing the Lgr4 level in glial cells disrupts Drosophila development, while knocking down other LGR family members in glia has no impact. Adult-specific knockdown of Lgr4 in glia but not neurons reduce locomotion, male reproductive success, and animal longevity. The investigation of how glial expression of Lgr4 contributes to this behavioral alteration will increase our understanding of how insulin signaling via glia selectively modulates neuronal activity and behavior.
Collapse
Affiliation(s)
- Hongyu Miao
- The HIT Center for Life Sciences, Harbin Institute of Technology, Harbin, China
| | - Yanan Wei
- The HIT Center for Life Sciences, Harbin Institute of Technology, Harbin, China
| | - Seung Gee Lee
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Zekun Wu
- The HIT Center for Life Sciences, Harbin Institute of Technology, Harbin, China
| | - Jasdeep Kaur
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Woo Jae Kim
- The HIT Center for Life Sciences, Harbin Institute of Technology, Harbin, China
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
2
|
Abrol R, Serrano E, Santiago LJ. Development of enhanced conformational sampling methods to probe the activation landscape of GPCRs. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2021; 128:325-359. [PMID: 35034722 PMCID: PMC11476118 DOI: 10.1016/bs.apcsb.2021.11.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/29/2023]
Abstract
G protein-coupled receptors (GPCRs) make up the largest superfamily of integral membrane proteins and play critical signal transduction roles in many physiological processes. Developments in molecular biology, biophysical, biochemical, pharmacological, and computational techniques aimed at these important therapeutic targets are beginning to provide unprecedented details on the structural as well as functional basis of their pleiotropic signaling mediated by G proteins, β arrestins, and other transducers. This pleiotropy presents a pharmacological challenge as the same ligand-receptor interaction can cause a therapeutic effect as well as an undesirable on-target side-effect through different downstream pathways. GPCRs don't function as simple binary on-off switches but as finely tuned shape-shifting machines described by conformational ensembles, where unique subsets of conformations may be responsible for specific signaling cascades. X-ray crystallography and more recently cryo-electron microscopy are providing snapshots of some of these functionally-important receptor conformations bound to ligands and/or transducers, which are being utilized by computational methods to describe the dynamic conformational energy landscape of GPCRs. In this chapter, we review the progress in computational conformational sampling methods based on molecular dynamics and discrete sampling approaches that have been successful in complementing biophysical and biochemical studies on these receptors in terms of their activation mechanisms, allosteric effects, actions of biased ligands, and effects of pathological mutations. Some of the sampled simulation time scales are beginning to approach receptor activation time scales. The list of conformational sampling methods and example uses discussed is not exhaustive but includes representative examples that have pushed the limits of classical molecular dynamics and discrete sampling methods to describe the activation energy landscape of GPCRs.
Collapse
Affiliation(s)
- Ravinder Abrol
- Department of Chemistry and Biochemistry, California State University, Northridge, CA, United States.
| | - Erik Serrano
- Department of Chemistry and Biochemistry, California State University, Northridge, CA, United States
| | - Luis Jaimes Santiago
- Department of Chemistry and Biochemistry, California State University, Northridge, CA, United States
| |
Collapse
|
3
|
Paudel P, Seong SH, Park SE, Ryu JH, Jung HA, Choi JS. In Vitro and In Silico Characterization of G-Protein Coupled Receptor (GPCR) Targets of Phlorofucofuroeckol-A and Dieckol. Mar Drugs 2021; 19:326. [PMID: 34199834 PMCID: PMC8228075 DOI: 10.3390/md19060326] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 05/25/2021] [Accepted: 06/02/2021] [Indexed: 12/12/2022] Open
Abstract
Phlorotannins are polyphenolic compounds in marine alga, especially the brown algae. Among numerous phlorotannins, dieckol and phlorofucofuroeckol-A (PFF-A) are the major ones and despite a wider biological activity profile, knowledge of the G protein-coupled receptor (GPCR) targets of these phlorotannins is lacking. This study explores prime GPCR targets of the two phlorotannins. In silico proteocheminformatics modeling predicted twenty major protein targets and in vitro functional assays showed a good agonist effect at the α2C adrenergic receptor (α2CAR) and an antagonist effect at the adenosine 2A receptor (A2AR), δ-opioid receptor (δ-OPR), glucagon-like peptide-1 receptor (GLP-1R), and 5-hydroxytryptamine 1A receptor (5-TH1AR) of both phlorotannins. Besides, dieckol showed an antagonist effect at the vasopressin 1A receptor (V1AR) and PFF-A showed a promising agonist effect at the cannabinoid 1 receptor and an antagonist effect at V1AR. In silico molecular docking simulation enabled us to investigate and identify distinct binding features of these phlorotannins to the target proteins. The docking results suggested that dieckol and PFF-A bind to the crystal structures of the proteins with good affinity involving key interacting amino acid residues comparable to reference ligands. Overall, the present study suggests α2CAR, A2AR, δ-OPR, GLP-1R, 5-TH1AR, CB1R, and V1AR as prime receptor targets of dieckol and PFF-A.
Collapse
Affiliation(s)
- Pradeep Paudel
- Department of Food and Life Science, Pukyong National University, Busan 48513, Korea; (P.P.); (S.H.S.); (S.E.P.)
- National Center for Natural Products Research, Research Institute of Pharmaceutical Sciences, The University of Mississippi, Oxford, MS 38677, USA
| | - Su Hui Seong
- Department of Food and Life Science, Pukyong National University, Busan 48513, Korea; (P.P.); (S.H.S.); (S.E.P.)
- Natural Products Research Division, Honam National Institute of Biological Resource, Mokpo 58762, Korea
| | - Se Eun Park
- Department of Food and Life Science, Pukyong National University, Busan 48513, Korea; (P.P.); (S.H.S.); (S.E.P.)
- Department of Biomedical Science, Asan Medical Institute of Convergence Science and Technology, Seoul 05505, Korea
| | - Jong Hoon Ryu
- Department of Life and Nanopharmaceutical Science, Kyung Hee University, Seoul 02447, Korea;
| | - Hyun Ah Jung
- Department of Food Science and Human Nutrition, Jeonbuk National University, Jeonju 54896, Korea
| | - Jae Sue Choi
- Department of Food and Life Science, Pukyong National University, Busan 48513, Korea; (P.P.); (S.H.S.); (S.E.P.)
| |
Collapse
|
4
|
Peng Q, Alqahtani S, Nasrullah MZA, Shen J. Functional evidence for biased inhibition of G protein signaling by YM-254890 in human coronary artery endothelial cells. Eur J Pharmacol 2020; 891:173706. [PMID: 33152337 DOI: 10.1016/j.ejphar.2020.173706] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 10/17/2020] [Accepted: 10/29/2020] [Indexed: 01/13/2023]
Abstract
Small molecular chemicals targeting individual subtype of G proteins including Gs, Gi/o and Gq has been lacking, except for pertussis toxin being an established selective peptide inhibitor of the Gi/o protein. Recently, a cyclic depsipeptide compound YM-254890 isolated from culture broth of Chromobacterium sp. was reported as a selective inhibitor for the Gq protein by blocking GDP exchange of GTP on the α subunit of Gq complex. However, functional selectivity of YM-254890 towards various G proteins was not fully characterized, primarily due to its restricted availability before 2017. Here, using human coronary artery endothelial cells as a model, we performed a systemic pharmacological evaluation on the functional selectivity of YM-254890 on multiple G protein-mediated receptor signaling. First, we confirmed that YM-254890, at 30 nM, abolished UTP-activated P2Y2 receptor-mediated Ca2+ signaling and ERK1/2 phosphorylation, indicating its potent inhibition on the Gq protein. However, we unexpectedly found that YM-254890 also significantly suppressed cAMP elevation and ERK1/2 phosphorylation induced by multiple Gs-coupled receptors including β2-adrenegic, adenosine A2 and PGI2 receptors. Surprisingly, although YM-254890 had no impact on CXCR4/Gi/o protein-mediated suppression of cAMP production, it abolished ERK1/2 activation. Further, no cellular toxicity was observed for YM-254890, and it neither affected A23187- or thapsigargin-induced Ca2+ signaling, nor forskolin-induced cAMP elevation and growth factor-induced MAPK signaling. We conclude that YM-254890 is not a selective inhibitor for Gq protein; instead, it acts as a broad-spectrum inhibitor for Gq and Gs proteins and exhibits a biased inhibition on Gi/o signaling, without affecting non-GPCR-mediated cellular signaling.
Collapse
Affiliation(s)
- Qianman Peng
- Department of Drug Discovery & Development, Harrison School of Pharmacy, Auburn University, Auburn, AL, 36849, USA
| | - Saud Alqahtani
- Department of Drug Discovery & Development, Harrison School of Pharmacy, Auburn University, Auburn, AL, 36849, USA
| | - Mohammed Zahid A Nasrullah
- Department of Drug Discovery & Development, Harrison School of Pharmacy, Auburn University, Auburn, AL, 36849, USA
| | - Jianzhong Shen
- Department of Drug Discovery & Development, Harrison School of Pharmacy, Auburn University, Auburn, AL, 36849, USA.
| |
Collapse
|
5
|
Chahal V, Nirwan S, Kakkar R. Combined approach of homology modeling, molecular dynamics, and docking: computer-aided drug discovery. PHYSICAL SCIENCES REVIEWS 2019. [DOI: 10.1515/psr-2019-0066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
With the continuous development in software, algorithms, and increase in computer speed, the field of computer-aided drug design has been witnessing reduction in the time and cost of the drug designing process. Structure based drug design (SBDD), which is based on the 3D structure of the enzyme, is helping in proposing novel inhibitors. Although a number of crystal structures are available in various repositories, there are various proteins whose experimental crystallization is difficult. In such cases, homology modeling, along with the combined application of MD and docking, helps in establishing a reliable 3D structure that can be used for SBDD. In this review, we have reported recent works, which have employed these three techniques for generating structures and further proposing novel inhibitors, for cytoplasmic proteins, membrane proteins, and metal containing proteins. Also, we have discussed these techniques in brief in terms of the theory involved and the various software employed. Hence, this review can give a brief idea about using these tools specifically for a particular problem.
Collapse
|
6
|
Reconstruction of apo A2A receptor activation pathways reveal ligand-competent intermediates and state-dependent cholesterol hotspots. Sci Rep 2019; 9:14199. [PMID: 31578448 PMCID: PMC6775061 DOI: 10.1038/s41598-019-50752-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 08/27/2019] [Indexed: 02/07/2023] Open
Abstract
G-protein coupled receptors (GPCRs) play a pivotal role in transmitting signals at the cellular level. Structural insights can be exploited to support GPCR structure-based drug discovery endeavours. Despite advances in GPCR crystallography, active state structures are scarce. Molecular dynamics (MD) simulations have been used to explore the conformational landscape of GPCRs. Efforts have been made to retrieve active state conformations starting from inactive structures, however to date this has not been possible without using an energy bias. Here, we reconstruct the activation pathways of the apo adenosine receptor (A2A), starting from an inactive conformation, by applying adaptive sampling MD combined with a goal-oriented scoring function. The reconstructed pathways reconcile well with experiments and help deepen our understanding of A2A regulatory mechanisms. Exploration of the apo conformational landscape of A2A reveals the existence of ligand-competent states, active intermediates and state-dependent cholesterol hotspots of relevance for drug discovery. To the best of our knowledge this is the first time an activation process has been elucidated for a GPCR starting from an inactive structure only, using a non-biased MD approach, opening avenues for the study of ligand binding to elusive yet pharmacologically relevant GPCR states.
Collapse
|
7
|
The pharmacological and functional characterization of the serotonergic system in Anopheles gambiae and Aedes aegypti: influences on flight and blood-feeding behavior. Sci Rep 2019; 9:4421. [PMID: 30872615 PMCID: PMC6418270 DOI: 10.1038/s41598-019-38806-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Accepted: 01/09/2019] [Indexed: 12/28/2022] Open
Abstract
Aedes aegypti and Anopheles gambiae harbor the causative agents of diseases such as dengue fever and malaria, afflicting human morbidity and mortality worldwide. Given the worldwide emergence of resistance to insecticides, the current mainstay for vector control, identification of alternative modes of action for future insecticides is paramount. The serotonergic (5-HT) system has been documented to impact physiological mechanisms involved in disease transmission, suggesting its potential as a new mode of action target for future insecticide development. Target 5-HT receptors were cloned and expressed in the HEK293 cell line for functional and pharmacological characterization. Manipulation of the 5-HT system through microinjection of compounds suggests its involvement in the modulation of flight performance and blood-feeding behavior. By attenuating these two determinants of vectorial capacity, transmission and burden of disease could effectively be reduced. Considering these positive global health implications, the 5-HT system is a compelling target for the novel insecticide pipeline.
Collapse
|
8
|
A Critical Analysis of Molecular Mechanisms Underlying Membrane Cholesterol Sensitivity of GPCRs. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1115:21-52. [PMID: 30649754 DOI: 10.1007/978-3-030-04278-3_2] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
G protein-coupled receptors (GPCRs) are the largest and a diverse family of proteins involved in signal transduction across biological membranes. GPCRs mediate a wide range of physiological processes and have emerged as major targets for the development of novel drug candidates in all clinical areas. Since GPCRs are integral membrane proteins, regulation of their organization, dynamics, and function by membrane lipids, in particular membrane cholesterol, has emerged as an exciting area of research. Cholesterol sensitivity of GPCRs could be due to direct interaction of cholesterol with the receptor (specific effect). Alternately, GPCR function could be influenced by the effect of cholesterol on membrane physical properties (general effect). In this review, we critically analyze the specific and general mechanisms of the modulation of GPCR function by membrane cholesterol, taking examples from representative GPCRs. While evidence for both the proposed mechanisms exists, there appears to be no clear-cut distinction between these two mechanisms, and a combination of these mechanisms cannot be ruled out in many cases. We conclude that classifying the mechanism underlying cholesterol sensitivity of GPCR function merely into these two mutually exclusive classes could be somewhat arbitrary. A more holistic approach could be suitable for analyzing GPCR-cholesterol interaction.
Collapse
|
9
|
Nandini HS, Naik PR. Antidiabetic, antihyperlipidemic and antioxidant effect of Vincamine, in streptozotocin-induced diabetic rats. Eur J Pharmacol 2018; 843:233-239. [PMID: 30496743 DOI: 10.1016/j.ejphar.2018.11.034] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 11/23/2018] [Accepted: 11/23/2018] [Indexed: 12/20/2022]
Abstract
Diabetes mellitus is the most common endocrine disorder characterized by hyperglycemia resulting from defects in insulin secretion or insulin action. The present study was designed to investigate the antidiabetic effects of vincamine, one of the monoterpenoid indole alkaloid, in streptozotocin-induced diabetic rat model. Diabetes was induced in rats by an intraperitoneal injection of streptozotocin (40 mg/kg bw). Vincamine 20 and 30 mg/kg.bw were administrated orally as a single dose per day to the diabetic rats for 30 days. The vehicle control group received 0.5% dimethyl sulfoxide for the same duration. After 30 days of treatment, fasting blood glucose, glycosylated haemoglobin, total cholesterol, triglyceride, low-density lipoprotein cholesterol and very low-density lipoprotein cholesterol levels were significantly increased, whereas, body weight, plasma insulin, high-density lipoprotein cholesterol, antioxidant enzymes and reduced glutathione were markedly decreased in diabetic rats. Treatment with vincamine significantly restored these parameters to the normal level. The protective effect of vincamine was compared with glibenclamide, a well-known hypoglycemic drug. Our results clearly suggest that vincamine exhibit hypoglycemic, hypolipidemic and antioxidant activity. The anti-diabetic effect of vincamine was comparable to the protective effect of glibenclamide, suggesting its potential as a natural anti-diabetic compound with therapeutic benefits.
Collapse
Affiliation(s)
- H S Nandini
- Endocrinology Research Laboratory, Department of Studies in Zoology, University of Mysore, Manasagangotri, Mysuru 570006, Karnataka, India.
| | - Prakash Ramachandra Naik
- Endocrinology Research Laboratory, Department of Studies in Zoology, University of Mysore, Manasagangotri, Mysuru 570006, Karnataka, India
| |
Collapse
|
10
|
Gupta M, Sharma R, Kumar A. Docking techniques in pharmacology: How much promising? Comput Biol Chem 2018; 76:210-217. [PMID: 30067954 DOI: 10.1016/j.compbiolchem.2018.06.005] [Citation(s) in RCA: 89] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Revised: 02/21/2018] [Accepted: 06/30/2018] [Indexed: 01/01/2023]
|
11
|
|
12
|
Small-Molecule Modulation of Lipid-Dependent Cellular Processes against Cancer: Fats on the Gunpoint. BIOMED RESEARCH INTERNATIONAL 2018; 2018:6437371. [PMID: 30186863 PMCID: PMC6114229 DOI: 10.1155/2018/6437371] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Accepted: 07/22/2018] [Indexed: 12/27/2022]
Abstract
Lipid cell membrane composed of various distinct lipids and proteins act as a platform to assemble various signaling complexes regulating innumerous cellular processes which are strongly downregulated or altered in cancer cells emphasizing the still-underestimated critical function of lipid biomolecules in cancer initiation and progression. In this review, we outline the current understanding of how membrane lipids act as signaling hot spots by generating distinct membrane microdomains called rafts to initiate various cellular processes and their modulation in cancer phenotypes. We elucidate tangible drug targets and pathways all amenable to small-molecule perturbation. Ranging from targeting membrane rafts organization/reorganization to rewiring lipid metabolism and lipid sorting in cancer, the work summarized here represents critical intervention points being attempted for lipid-based anticancer therapy and future directions.
Collapse
|
13
|
Tripathy R, Mishra D, Konkimalla VB, Nayak RK. A computational approach for mining cholesterol and their potential target against GPCR seven helices based on spectral clustering and fuzzy c-means algorithms. JOURNAL OF INTELLIGENT & FUZZY SYSTEMS 2018. [DOI: 10.3233/jifs-169589] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
- Ramamani Tripathy
- Department of Computer Science and Engineering, Institute of Technical Education and Research, Siksha ‘O’ Anusandhan (Deemed to be University), Odisha, India
| | - Debahuti Mishra
- Department of Computer Science and Engineering, Institute of Technical Education and Research, Siksha ‘O’ Anusandhan (Deemed to be University), Odisha, India
| | - V. Badireenath Konkimalla
- Department of Atomic Energy, National Institute of Science Education and Research (NISER), Odisha, India
| | - Rudra Kalyan Nayak
- Department of Computer Science and Engineering, Institute of Technical Education and Research, Siksha ‘O’ Anusandhan (Deemed to be University), Odisha, India
| |
Collapse
|
14
|
Kang JH, Kim HJ, Park MK, Lee CH. Sphingosylphosphorylcholine Induces Thrombospondin-1 Secretion in MCF10A Cells via ERK2. Biomol Ther (Seoul) 2017; 25:625-633. [PMID: 28274095 PMCID: PMC5685432 DOI: 10.4062/biomolther.2016.228] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Revised: 12/11/2016] [Accepted: 01/09/2017] [Indexed: 01/06/2023] Open
Abstract
Sphingosylphosphorylcholine (SPC) is one of the bioactive phospholipids that has many cellular functions such as cell migration, adhesion, proliferation, angiogenesis, and Ca²⁺ signaling. Recent studies have reported that SPC induces invasion of breast cancer cells via matrix metalloproteinase-3 (MMP-3) secretion leading to WNT activation. Thrombospondin-1 (TSP-1) is a matricellular and calcium-binding protein that binds to a wide variety of integrin and non-integrin cell surface receptors. It regulates cell proliferation, migration, and apoptosis in inflammation, angiogenesis and neoplasia. TSP-1 promotes aggressive phenotype via epithelial mesenchymal transition (EMT). The relationship between SPC and TSP-1 is unclear. We found SPC induced EMT leading to mesenchymal morphology, decrease of E-cadherin expression and increases of N-cadherin and vimentin. SPC induced secretion of thrombospondin-1 (TSP-1) during SPC-induced EMT of various breast cancer cells. Gene silencing of TSP-1 suppressed SPC-induced EMT as well as migration and invasion of MCF10A cells. An extracellular signal-regulated kinase inhibitor, PD98059, significantly suppressed the secretion of TSP-1, expressions of N-cadherin and vimentin, and decrease of E-cadherin in MCF10A cells. ERK2 siRNA suppressed TSP-1 secretion and EMT. From online PROGgene V2, relapse free survival is low in patients having high TSP-1 expressed breast cancer. Taken together, we found that SPC induced EMT and TSP-1 secretion via ERK2 signaling pathway. These results suggests that SPC-induced TSP-1 might be a new target for suppression of metastasis of breast cancer cells.
Collapse
Affiliation(s)
- June Hee Kang
- College of Pharmacy, Dongguk University, Seoul 10326, Republic of Korea
| | - Hyun Ji Kim
- College of Pharmacy, Dongguk University, Seoul 10326, Republic of Korea
| | - Mi Kyung Park
- College of Pharmacy, Dongguk University, Seoul 10326, Republic of Korea.,National Cancer Center, Goyang, 10408, Republic of Korea
| | - Chang Hoon Lee
- College of Pharmacy, Dongguk University, Seoul 10326, Republic of Korea
| |
Collapse
|
15
|
Salzman GS, Ackerman SD, Ding C, Koide A, Leon K, Luo R, Stoveken HM, Fernandez CG, Tall GG, Piao X, Monk KR, Koide S, Araç D. Structural Basis for Regulation of GPR56/ADGRG1 by Its Alternatively Spliced Extracellular Domains. Neuron 2017; 91:1292-1304. [PMID: 27657451 DOI: 10.1016/j.neuron.2016.08.022] [Citation(s) in RCA: 86] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2016] [Revised: 06/15/2016] [Accepted: 07/25/2016] [Indexed: 11/18/2022]
Abstract
Adhesion G protein-coupled receptors (aGPCRs) play critical roles in diverse neurobiological processes including brain development, synaptogenesis, and myelination. aGPCRs have large alternatively spliced extracellular regions (ECRs) that likely mediate intercellular signaling; however, the precise roles of ECRs remain unclear. The aGPCR GPR56/ADGRG1 regulates both oligodendrocyte and cortical development. Accordingly, human GPR56 mutations cause myelination defects and brain malformations. Here, we determined the crystal structure of the GPR56 ECR, the first structure of any complete aGPCR ECR, in complex with an inverse-agonist monobody, revealing a GPCR-Autoproteolysis-Inducing domain and a previously unidentified domain that we term Pentraxin/Laminin/neurexin/sex-hormone-binding-globulin-Like (PLL). Strikingly, PLL domain deletion caused increased signaling and characterizes a GPR56 splice variant. Finally, we show that an evolutionarily conserved residue in the PLL domain is critical for oligodendrocyte development in vivo. Thus, our results suggest that the GPR56 ECR has unique and multifaceted regulatory functions, providing novel insights into aGPCR roles in neurobiology.
Collapse
Affiliation(s)
- Gabriel S Salzman
- Biophysical Sciences Program, The University of Chicago, Chicago, IL 60637, USA; Medical Scientist Training Program, The University of Chicago, Chicago, IL 60637, USA; Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL 60637, USA
| | - Sarah D Ackerman
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Chen Ding
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL 60637, USA
| | - Akiko Koide
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL 60637, USA
| | - Katherine Leon
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL 60637, USA
| | - Rong Luo
- Division of Newborn Medicine, Department of Medicine, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Hannah M Stoveken
- Departments of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Celia G Fernandez
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL 60637, USA
| | - Gregory G Tall
- Departments of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Xianhua Piao
- Division of Newborn Medicine, Department of Medicine, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Kelly R Monk
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Shohei Koide
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL 60637, USA.
| | - Demet Araç
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL 60637, USA.
| |
Collapse
|
16
|
Fierro F, Suku E, Alfonso-Prieto M, Giorgetti A, Cichon S, Carloni P. Agonist Binding to Chemosensory Receptors: A Systematic Bioinformatics Analysis. Front Mol Biosci 2017; 4:63. [PMID: 28932739 PMCID: PMC5592726 DOI: 10.3389/fmolb.2017.00063] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 08/22/2017] [Indexed: 12/17/2022] Open
Abstract
Human G-protein coupled receptors (hGPCRs) constitute a large and highly pharmaceutically relevant membrane receptor superfamily. About half of the hGPCRs' family members are chemosensory receptors, involved in bitter taste and olfaction, along with a variety of other physiological processes. Hence these receptors constitute promising targets for pharmaceutical intervention. Molecular modeling has been so far the most important tool to get insights on agonist binding and receptor activation. Here we investigate both aspects by bioinformatics-based predictions across all bitter taste and odorant receptors for which site-directed mutagenesis data are available. First, we observe that state-of-the-art homology modeling combined with previously used docking procedures turned out to reproduce only a limited fraction of ligand/receptor interactions inferred by experiments. This is most probably caused by the low sequence identity with available structural templates, which limits the accuracy of the protein model and in particular of the side-chains' orientations. Methods which transcend the limited sampling of the conformational space of docking may improve the predictions. As an example corroborating this, we review here multi-scale simulations from our lab and show that, for the three complexes studied so far, they significantly enhance the predictive power of the computational approach. Second, our bioinformatics analysis provides support to previous claims that several residues, including those at positions 1.50, 2.50, and 7.52, are involved in receptor activation.
Collapse
Affiliation(s)
- Fabrizio Fierro
- Computational Biomedicine, Institute for Advanced Simulation IAS-5 and Institute of Neuroscience and Medicine INM-9, Forschungszentrum JülichJülich, Germany
| | - Eda Suku
- Department of Biotechnology, University of VeronaVerona, Italy
| | - Mercedes Alfonso-Prieto
- Computational Biomedicine, Institute for Advanced Simulation IAS-5 and Institute of Neuroscience and Medicine INM-9, Forschungszentrum JülichJülich, Germany.,Cécile and Oskar Vogt Institute for Brain Research, Medical Faculty, Heinrich Heine University DüsseldorfDüsseldorf, Germany
| | - Alejandro Giorgetti
- Computational Biomedicine, Institute for Advanced Simulation IAS-5 and Institute of Neuroscience and Medicine INM-9, Forschungszentrum JülichJülich, Germany.,Department of Biotechnology, University of VeronaVerona, Italy
| | - Sven Cichon
- Institute of Neuroscience and Medicine INM-1, Forschungszentrum JülichJülich, Germany.,Institute for Human Genetics, Department of Genomics, Life&Brain Center, University of BonnBonn, Germany.,Division of Medical Genetics, Department of Biomedicine, University of BaselBasel, Switzerland
| | - Paolo Carloni
- Computational Biomedicine, Institute for Advanced Simulation IAS-5 and Institute of Neuroscience and Medicine INM-9, Forschungszentrum JülichJülich, Germany.,Department of Physics, Rheinisch-Westfälische Technische Hochschule AachenAachen, Germany.,VNU Key Laboratory "Multiscale Simulation of Complex Systems", VNU University of Science, Vietnam National UniversityHanoi, Vietnam
| |
Collapse
|
17
|
Differential Membrane Dipolar Orientation Induced by Acute and Chronic Cholesterol Depletion. Sci Rep 2017; 7:4484. [PMID: 28667339 PMCID: PMC5493612 DOI: 10.1038/s41598-017-04769-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Accepted: 05/22/2017] [Indexed: 02/02/2023] Open
Abstract
Cholesterol plays a crucial role in cell membrane organization, dynamics and function. Depletion of cholesterol represents a popular approach to explore cholesterol-sensitivity of membrane proteins. An emerging body of literature shows that the consequence of membrane cholesterol depletion often depends on the actual process (acute or chronic), although the molecular mechanism underlying the difference is not clear. Acute depletion, using cyclodextrin-type carriers, is faster relative to chronic depletion, in which inhibitors of cholesterol biosynthesis are used. With the overall goal of addressing molecular differences underlying these processes, we monitored membrane dipole potential under conditions of acute and chronic cholesterol depletion in CHO-K1 cells, using a voltage-sensitive fluorescent dye in dual wavelength ratiometric mode. Our results show that the observed membrane dipole potential exhibits difference under acute and chronic cholesterol depletion conditions, even when cholesterol content was identical. To the best of our knowledge, these results provide, for the first time, molecular insight highlighting differences in dipolar reorganization in these processes. A comprehensive understanding of processes in which membrane cholesterol gets modulated would provide novel insight in its interaction with membrane proteins and receptors, thereby allowing us to understand the role of cholesterol in cellular physiology associated with health and disease.
Collapse
|
18
|
Pappalardo M, Rayan M, Abu-Lafi S, Leonardi ME, Milardi D, Guccione S, Rayan A. Homology-based Modeling of Rhodopsin-like Family Members in the Inactive State: Structural Analysis and Deduction of Tips for Modeling and Optimization. Mol Inform 2017; 36. [PMID: 28375549 DOI: 10.1002/minf.201700014] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 03/14/2017] [Indexed: 12/12/2022]
Abstract
Modeling G-Protein Coupled Receptors (GPCRs) is an emergent field of research, since utility of high-quality models in receptor structure-based strategies might facilitate the discovery of interesting drug candidates. The findings from a quantitative analysis of eighteen resolved structures of rhodopsin family "A" receptors crystallized with antagonists and 153 pairs of structures are described. A strategy termed endeca-amino acids fragmentation was used to analyze the structures models aiming to detect the relationship between sequence identity and Root Mean Square Deviation (RMSD) at each trans-membrane-domain. Moreover, we have applied the leave-one-out strategy to study the shiftiness likelihood of the helices. The type of correlation between sequence identity and RMSD was studied using the aforementioned set receptors as representatives of membrane proteins and 98 serine proteases with 4753 pairs of structures as representatives of globular proteins. Data analysis using fragmentation strategy revealed that there is some extent of correlation between sequence identity and global RMSD of 11AA width windows. However, spatial conservation is not always close to the endoplasmic side as was reported before. A comparative study with globular proteins shows that GPCRs have higher standard deviation and higher slope in the graph with correlation between sequence identity and RMSD. The extracted information disclosed in this paper could be incorporated in the modeling protocols while using technique for model optimization and refinement.
Collapse
Affiliation(s)
- Matteo Pappalardo
- Department of Drug Sciences.,Department of Chemical Sciences -, University of Catania -, V.le A.Doria 6, I-95125, Catania, Italy
| | - Mahmoud Rayan
- Institute of Applied Research - Galilee Society, Galeel street, Shefa-Amr, 20200, Israel
| | - Saleh Abu-Lafi
- Faculty of Pharmacy, Al-Quds University, Abu-Dies, Palestine
| | | | - Danilo Milardi
- National Research Council, Institute of Biostructures and Bioimages, Via. P. Gaifami 18, 95126, Catania, Italy
| | | | - Anwar Rayan
- Institute of Applied Research - Galilee Society, Galeel street, Shefa-Amr, 20200, Israel.,Drug Discovery Informatics Lab, Qasemi-Research Center, Al-Qasemi Academic College, Baka El-Garbiah, 30100, Israel
| |
Collapse
|
19
|
Ponzoni L, Rossetti G, Maggi L, Giorgetti A, Carloni P, Micheletti C. Unifying view of mechanical and functional hotspots across class A GPCRs. PLoS Comput Biol 2017; 13:e1005381. [PMID: 28158180 PMCID: PMC5315405 DOI: 10.1371/journal.pcbi.1005381] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2016] [Revised: 02/17/2017] [Accepted: 01/25/2017] [Indexed: 01/06/2023] Open
Abstract
G protein-coupled receptors (GPCRs) are the largest superfamily of signaling proteins. Their activation process is accompanied by conformational changes that have not yet been fully uncovered. Here, we carry out a novel comparative analysis of internal structural fluctuations across a variety of receptors from class A GPCRs, which currently has the richest structural coverage. We infer the local mechanical couplings underpinning the receptors’ functional dynamics and finally identify those amino acids whose virtual deletion causes a significant softening of the mechanical network. The relevance of these amino acids is demonstrated by their overlap with those known to be crucial for GPCR function, based on static structural criteria. The differences with the latter set allow us to identify those sites whose functional role is more clearly detected by considering dynamical and mechanical properties. Of these sites with a genuine mechanical/dynamical character, the top ranking is amino acid 7x52, a previously unexplored, and experimentally verifiable key site for GPCR conformational response to ligand binding. The biological functionality of several receptors and enzymes depends on their capability to sustain large-scale structural fluctuations and adopt different conformational states in response to ligand binding. This is the case for G protein-coupled receptors (GPCRs), the largest superfamily of signaling proteins in mammals and a primary pharmaceutical target. To better understand the functional dynamics of GPCRs, we have analysed the inter-residue distance variations across the available structures for several receptors of the rhodopsin-like family (class A). We first reconstructed the network of mechanical, rigid-like couplings between nearby amino acids and then identified those acting as dynamical/mechanical hubs. These were the sites whose virtual removal led to a significant softening of the overall mechanical network. After validating the biological relevance of these sites by comparison against known key functional sites, we singled out those regions which emerge as prominent mechanical hubs and yet have an otherwise still unknown functional role. The most relevant of such novel putative functional sites, which could be probed by mutagenesis experiments, is at interface of two transmembrane helices and we expect it to be crucial for assisting GPCRs conformational response to agonist binding.
Collapse
Affiliation(s)
| | - Giulia Rossetti
- IAS-5/INM-9: Computational Biomedicine – Institute for Advanced Simulation (IAS) / Institute of Neuroscience and Medicine (INM), Forschungszentrum Jülich, Jülich, Germany
- JSC: Division Computational Science – Simulation Laboratory Biology – Jülich Supercomputing Centre (JSC), Forschungszentrum Jülich, Jülich, Germany
- JARA-HPC, Jülich, Germany
- Department of Oncology, Hematology and Stem Cell Transplantation, University Hospital Aachen, RWTH Aachen University, Aachen, Germany
- * E-mail: (LP); (GR)
| | - Luca Maggi
- IAS-5/INM-9: Computational Biomedicine – Institute for Advanced Simulation (IAS) / Institute of Neuroscience and Medicine (INM), Forschungszentrum Jülich, Jülich, Germany
| | - Alejandro Giorgetti
- IAS-5/INM-9: Computational Biomedicine – Institute for Advanced Simulation (IAS) / Institute of Neuroscience and Medicine (INM), Forschungszentrum Jülich, Jülich, Germany
- Department of Biotechnology, University of Verona, Verona, Italy
| | - Paolo Carloni
- IAS-5/INM-9: Computational Biomedicine – Institute for Advanced Simulation (IAS) / Institute of Neuroscience and Medicine (INM), Forschungszentrum Jülich, Jülich, Germany
| | | |
Collapse
|
20
|
Active YAP promotes pancreatic cancer cell motility, invasion and tumorigenesis in a mitotic phosphorylation-dependent manner through LPAR3. Oncotarget 2016; 6:36019-31. [PMID: 26440309 PMCID: PMC4742158 DOI: 10.18632/oncotarget.5935] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Accepted: 09/14/2015] [Indexed: 01/08/2023] Open
Abstract
The transcriptional co-activator Yes-associated protein, YAP, is a main effector in the Hippo tumor suppressor pathway. We recently defined a mechanism for positive regulation of YAP through CDK1-mediated mitotic phosphorylation. Here, we show that active YAP promotes pancreatic cancer cell migration, invasion and anchorage-independent growth in a mitotic phosphorylation-dependent manner. Mitotic phosphorylation is essential for YAP-driven tumorigenesis in animals. YAP reduction significantly impairs cell migration and invasion. Immunohistochemistry shows significant upregulation and nuclear localization of YAP in metastases when compared with primary tumors and normal tissue in human. Mitotic phosphorylation of YAP controls a unique transcriptional program in pancreatic cells. Expression profiles reveal LPAR3 (lysophosphatidic acid receptor 3) as a mediator for mitotic phosphorylation-driven pancreatic cell motility and invasion. Together, this work identifies YAP as a novel regulator of pancreatic cancer cell motility, invasion and metastasis, and as a potential therapeutic target for invasive pancreatic cancer.
Collapse
|
21
|
Lu M, Wu B. Structural studies of G protein-coupled receptors. IUBMB Life 2016; 68:894-903. [PMID: 27766738 DOI: 10.1002/iub.1578] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Accepted: 10/08/2016] [Indexed: 11/08/2022]
Abstract
G protein-coupled receptors (GPCRs) comprise the largest membrane protein family. These receptors sense a variety of signaling molecules, activate multiple intracellular signal pathways, and act as the targets of over 40% of marketed drugs. Recent progress on GPCR structural studies provides invaluable insights into the structure-function relationship of the GPCR superfamily, deepening our understanding about the molecular mechanisms of GPCR signal transduction. Here, we review recent breakthroughs on GPCR structure determination and the structural features of GPCRs, and take the structures of chemokine receptor CCR5 and purinergic receptors P2Y1 R and P2Y12 R as examples to discuss the importance of GPCR structures on functional studies and drug discovery. In addition, we discuss the prospect of GPCR structure-based drug discovery. © 2016 IUBMB Life, 68(11):894-903, 2016.
Collapse
Affiliation(s)
- Mengjie Lu
- CAS Key laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Beili Wu
- CAS Key laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China. .,School of Life Science and Technology, ShanghaiTech University, Pudong, Shanghai, China.
| |
Collapse
|
22
|
Bradley SJ, Tobin AB. Design of Next-Generation G Protein-Coupled Receptor Drugs: Linking Novel Pharmacology and In Vivo Animal Models. Annu Rev Pharmacol Toxicol 2016; 56:535-59. [PMID: 26738479 DOI: 10.1146/annurev-pharmtox-011613-140012] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Despite the fact that G protein-coupled receptors (GPCRs) are the most successful drug targets in history, this supergene family of cell surface receptors has yet to be fully exploited as targets in the treatment of human disease. Here, we present optimism that this may change in the future by reviewing the substantial progress made in the understanding of GPCR molecular pharmacology that has generated an extensive toolbox of ligand types that include orthosteric, allosteric, and bitopic ligands, many of which show signaling bias. We discuss how combining these advances with recently described transgenic, chemical genetic, and optogenetic animal models will provide the framework to allow for the rational design of next-generation GPCR drugs that possess increased therapeutic efficacy and decreased adverse/toxic responses.
Collapse
Affiliation(s)
- Sophie J Bradley
- MRC Toxicology Unit, University of Leicester, Leicester LE1 9HN United Kingdom; ,
| | - Andrew B Tobin
- MRC Toxicology Unit, University of Leicester, Leicester LE1 9HN United Kingdom; ,
| |
Collapse
|
23
|
Maraviroc reduces neuropathic pain through polarization of microglia and astroglia – Evidence from in vivo and in vitro studies. Neuropharmacology 2016; 108:207-19. [DOI: 10.1016/j.neuropharm.2016.04.024] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Revised: 04/13/2016] [Accepted: 04/19/2016] [Indexed: 02/08/2023]
|
24
|
Patra SM, Chakraborty S, Shahane G, Prasanna X, Sengupta D, Maiti PK, Chattopadhyay A. Differential dynamics of the serotonin1A receptor in membrane bilayers of varying cholesterol content revealed by all atom molecular dynamics simulation. Mol Membr Biol 2016; 32:127-37. [PMID: 26508556 DOI: 10.3109/09687688.2015.1096971] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The serotonin1A receptor belongs to the superfamily of G protein-coupled receptors (GPCRs) and is a potential drug target in neuropsychiatric disorders. The receptor has been shown to require membrane cholesterol for its organization, dynamics and function. Although recent work suggests a close interaction of cholesterol with the receptor, the structural integrity of the serotonin1A receptor in the presence of cholesterol has not been explored. In this work, we have carried out all atom molecular dynamics simulations, totaling to 3 μs, to analyze the effect of cholesterol on the structure and dynamics of the serotonin1A receptor. Our results show that the presence of physiologically relevant concentration of membrane cholesterol alters conformational dynamics of the serotonin1A receptor and, on an average lowers conformational fluctuations. Our results show that, in general, transmembrane helix VII is most affected by the absence of membrane cholesterol. These results are in overall agreement with experimental data showing enhancement of GPCR stability in the presence of membrane cholesterol. Our results constitute a molecular level understanding of GPCR-cholesterol interaction, and represent an important step in our overall understanding of GPCR function in health and disease.
Collapse
Affiliation(s)
- Swarna M Patra
- a Center for Condensed Matter Theory, Department of Physics, Indian Institute of Science , Bangalore , India .,b Department of Chemistry , RV College of Engineering , Bangalore , India
| | - Sudip Chakraborty
- a Center for Condensed Matter Theory, Department of Physics, Indian Institute of Science , Bangalore , India
| | - Ganesh Shahane
- c CSIR-National Chemical Laboratory , Pune , India , and
| | | | - Durba Sengupta
- c CSIR-National Chemical Laboratory , Pune , India , and
| | - Prabal K Maiti
- a Center for Condensed Matter Theory, Department of Physics, Indian Institute of Science , Bangalore , India
| | | |
Collapse
|
25
|
Kleinau G, Müller A, Biebermann H. Oligomerization of GPCRs involved in endocrine regulation. J Mol Endocrinol 2016; 57:R59-80. [PMID: 27151573 DOI: 10.1530/jme-16-0049] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Accepted: 05/04/2016] [Indexed: 12/27/2022]
Abstract
More than 800 different human membrane-spanning G-protein-coupled receptors (GPCRs) serve as signal transducers at biological barriers. These receptors are activated by a wide variety of ligands such as peptides, ions and hormones, and are able to activate a diverse set of intracellular signaling pathways. GPCRs are of central importance in endocrine regulation, which underpins the significance of comprehensively studying these receptors and interrelated systems. During the last decade, the capacity for multimerization of GPCRs was found to be a common and functionally relevant property. The interaction between GPCR monomers results in higher order complexes such as homomers (identical receptor subtype) or heteromers (different receptor subtypes), which may be present in a specific and dynamic monomer/oligomer equilibrium. It is widely accepted that the oligomerization of GPCRs is a mechanism for determining the fine-tuning and expansion of cellular processes by modification of ligand action, expression levels, and related signaling outcome. Accordingly, oligomerization provides exciting opportunities to optimize pharmacological treatment with respect to receptor target and tissue selectivity or for the development of diagnostic tools. On the other hand, GPCR heteromerization may be a potential reason for the undesired side effects of pharmacological interventions, faced with numerous and common mutual signaling modifications in heteromeric constellations. Finally, detailed deciphering of the physiological occurrence and relevance of specific GPCR/GPCR-ligand interactions poses a future challenge. This review will tackle the aspects of GPCR oligomerization with specific emphasis on family A GPCRs involved in endocrine regulation, whereby only a subset of these receptors will be discussed in detail.
Collapse
Affiliation(s)
- Gunnar Kleinau
- Institute of Experimental Pediatric Endocrinology (IEPE)Charité-Universitätsmedizin, Berlin, Germany
| | - Anne Müller
- Institute of Experimental Pediatric Endocrinology (IEPE)Charité-Universitätsmedizin, Berlin, Germany
| | - Heike Biebermann
- Institute of Experimental Pediatric Endocrinology (IEPE)Charité-Universitätsmedizin, Berlin, Germany
| |
Collapse
|
26
|
Shahaf N, Pappalardo M, Basile L, Guccione S, Rayan A. How to Choose the Suitable Template for Homology Modelling of GPCRs: 5-HT7 Receptor as a Test Case. Mol Inform 2016; 35:414-23. [PMID: 27546045 DOI: 10.1002/minf.201501029] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Accepted: 05/19/2016] [Indexed: 01/06/2023]
Abstract
G protein-coupled receptors (GPCRs) are a super-family of membrane proteins that attract great pharmaceutical interest due to their involvement in almost every physiological activity, including extracellular stimuli, neurotransmission, and hormone regulation. Currently, structural information on many GPCRs is mainly obtained by the techniques of computer modelling in general and by homology modelling in particular. Based on a quantitative analysis of eighteen antagonist-bound, resolved structures of rhodopsin family "A" receptors - also used as templates to build 153 homology models - it was concluded that a higher sequence identity between two receptors does not guarantee a lower RMSD between their structures, especially when their pair-wise sequence identity (within trans-membrane domain and/or in binding pocket) lies between 25 % and 40 %. This study suggests that we should consider all template receptors having a sequence identity ≤50 % with the query receptor. In fact, most of the GPCRs, compared to the currently available resolved structures of GPCRs, fall within this range and lack a correlation between structure and sequence. When testing suitability for structure-based drug design, it was found that choosing as a template the most similar resolved protein, based on sequence resemblance only, led to unsound results in many cases. Molecular docking analyses were carried out, and enrichment factors as well as attrition rates were utilized as criteria for assessing suitability for structure-based drug design.
Collapse
Affiliation(s)
- Nir Shahaf
- Drug Discovery Informatics Lab, Qasemi-Research Center, Al-Qasemi Academic College, Baka El-Garbiah, 30100, Israel
| | - Matteo Pappalardo
- Department of Drug Sciences . .,Department of Chemical Sciences -, University of Catania -, V.leA.Doria 6, I-95125, Catania, Italy.
| | | | | | - Anwar Rayan
- Drug Discovery Informatics Lab, Qasemi-Research Center, Al-Qasemi Academic College, Baka El-Garbiah, 30100, Israel, . .,Institute of Applied Research, Galilee Society, Shefa-Amr, 20200, Israel.
| |
Collapse
|
27
|
Kumar GA, Roy S, Jafurulla M, Mandal C, Chattopadhyay A. Statin-induced chronic cholesterol depletion inhibits Leishmania donovani infection: Relevance of optimum host membrane cholesterol. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2016; 1858:2088-2096. [PMID: 27319380 DOI: 10.1016/j.bbamem.2016.06.010] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2016] [Revised: 06/08/2016] [Accepted: 06/15/2016] [Indexed: 12/15/2022]
Abstract
Leishmania are obligate intracellular protozoan parasites that invade and survive within host macrophages leading to leishmaniasis, a major cause of mortality and morbidity worldwide, particularly among economically weaker sections in tropical and subtropical regions. Visceral leishmaniasis is a potent disease caused by Leishmania donovani. The detailed mechanism of internalization of Leishmania is poorly understood. A basic step in the entry of Leishmania involves interaction of the parasite with the host plasma membrane. In this work, we have explored the effect of chronic metabolic cholesterol depletion using lovastatin on the entry and survival of Leishmania donovani in host macrophages. We show here that chronic cholesterol depletion of host macrophages results in reduction in the attachment of Leishmania promastigotes, along with a concomitant reduction in the intracellular amastigote load. These results assume further relevance since chronic cholesterol depletion is believed to mimic physiological cholesterol modulation. Interestingly, the reduction in the ability of Leishmania to enter host macrophages could be reversed upon metabolic replenishment of cholesterol. Importantly, enrichment of host membrane cholesterol resulted in reduction in the entry and survival of Leishmania in host macrophages. As a control, the binding of Escherichia coli to host macrophages remained invariant under these conditions, thereby implying specificity of cholesterol requirement for effective leishmanial infection. To the best of our knowledge, these results constitute the first comprehensive demonstration that an optimum content of host membrane cholesterol is necessary for leishmanial infection. Our results assume relevance in the context of developing novel therapeutic strategies targeting cholesterol-mediated leishmanial infection.
Collapse
Affiliation(s)
- G Aditya Kumar
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500 007, India
| | - Saptarshi Roy
- CSIR-Indian Institute of Chemical Biology, Raja S.C. Mullick Road, Kolkata 700 032, India
| | - Md Jafurulla
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500 007, India
| | - Chitra Mandal
- CSIR-Indian Institute of Chemical Biology, Raja S.C. Mullick Road, Kolkata 700 032, India.
| | | |
Collapse
|
28
|
Jo M, Jung ST. Engineering therapeutic antibodies targeting G-protein-coupled receptors. Exp Mol Med 2016; 48:e207. [PMID: 26846450 PMCID: PMC4892866 DOI: 10.1038/emm.2015.105] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2015] [Accepted: 09/21/2015] [Indexed: 12/16/2022] Open
Abstract
G-protein–coupled receptors (GPCRs) are one of the most attractive therapeutic target classes because of their critical roles in intracellular signaling and their clinical relevance to a variety of diseases, including cancer, infection and inflammation. However, high conformational variability, the small exposed area of extracellular epitopes and difficulty in the preparation of GPCR antigens have delayed both the isolation of therapeutic anti-GPCR antibodies as well as studies on the structure, function and biochemical mechanisms of GPCRs. To overcome the challenges in generating highly specific anti-GPCR antibodies with enhanced efficacy and safety, various forms of antigens have been successfully designed and employed for screening with newly emerged systems based on laboratory animal immunization and high-throughput-directed evolution.
Collapse
Affiliation(s)
- Migyeong Jo
- Department of Bio and Nano Chemistry, Kookmin University, Seoul, Korea
| | - Sang Taek Jung
- Department of Bio and Nano Chemistry, Kookmin University, Seoul, Korea
| |
Collapse
|
29
|
Dogra S, Sona C, Kumar A, Yadav PN. Tango assay for ligand-induced GPCR-β-arrestin2 interaction: Application in drug discovery. Methods Cell Biol 2015; 132:233-54. [PMID: 26928547 DOI: 10.1016/bs.mcb.2015.11.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
G protein-coupled receptors (GPCRs) are widely known to modulate almost all physiological functions and have been demonstrated over the time as therapeutic targets for wide gamut of diseases. The design and implementation of high-throughput GPCR-based assays that permit the efficient screening of large compound libraries to discover novel drug candidates are essential for a successful drug discovery endeavor. Usually, GPCR-based functional assays depend primarily on the measurement of G protein-mediated second messenger generation. However, with advent of advanced molecular biology tools and increased understanding of GPCR signal transduction, many G protein-independent pathways such as β-arrestin translocation are being utilized to detect the activity of GPCRs. These assays provide additional information on functional selectivity (also known as biased agonism) of compounds that could be harnessed to develop pathway-selective drug candidates to reduce the adverse effects associated with given GPCR target. In this chapter, we describe the basic principle, detailed methodologies and assay setup, result analysis and data interpretations of the β-arrestin2 Tango assay, and its comparison with cell-based G protein-dependent GPCR assays, which could be employed in a simple academic setup to facilitate GPCR-based drug discovery.
Collapse
Affiliation(s)
- Shalini Dogra
- Division of Pharmacology, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, India
| | - Chandan Sona
- Division of Pharmacology, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, India
| | - Ajeet Kumar
- Division of Pharmacology, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, India
| | - Prem N Yadav
- Division of Pharmacology, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, India
| |
Collapse
|
30
|
Abstract
Since their discovery, G protein-coupled receptors (GPCRs) constitute one of the most studied proteins leading to important discoveries and perspectives in terms of their biology and implication in physiology and pathophysiology. This is mostly linked to the remarkable advances in the development and application of the biophysical resonance energy transfer (RET)-based approaches, including bioluminescence and fluorescence resonance energy transfer (BRET and FRET, respectively). Indeed, BRET and FRET have been extensively applied to study different aspects of GPCR functioning such as their activation and regulation either statically or dynamically, in real-time and intact cells. Consequently, our view on GPCRs has considerably changed opening new challenges for the study of GPCRs in their native tissues in the aim to get more knowledge on how these receptors control the biological responses. Moreover, the technological aspect of this field of research promises further developments for robust and reliable new RET-based assays that may be compatible with high-throughput screening as well as drug discovery programs.
Collapse
Affiliation(s)
- Mohammed Akli Ayoub
- Biologie et Bioinformatique des Systèmes de Signalisation, Institut National de la Recherche Agronomique, UMR85, Unité Physiologie de la Reproduction et des Comportements; CNRS, UMR7247, Nouzilly, France; LE STUDIUM(®) Loire Valley Institute for Advanced Studies, Orléans, France.
| |
Collapse
|
31
|
Tripathy R, Mishra D, Konkimalla VB. A novel fuzzy C-means approach for uncovering cholesterol consensus motif from human G-protein coupled receptors (GPCR). KARBALA INTERNATIONAL JOURNAL OF MODERN SCIENCE 2015. [DOI: 10.1016/j.kijoms.2015.11.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
32
|
Towards predictive docking at aminergic G-protein coupled receptors. J Mol Model 2015; 21:284. [PMID: 26453085 DOI: 10.1007/s00894-015-2824-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Accepted: 09/15/2015] [Indexed: 12/23/2022]
Abstract
G protein-coupled receptors (GPCRs) are hard to crystallize. However, attempts to predict their structure have boomed as a result of advancements in crystallographic techniques. This trend has allowed computer-aided molecular modeling of GPCRs. We analyzed the performance of four molecular modeling programs in pose evaluation of re-docked antagonists / inverse agonists to 11 original crystal structures of aminergic GPCRs using an induced fit-docking procedure. AutoDock and Glide were used for docking. AutoDock binding energy function, GlideXP, Prime MM-GB/SA, and YASARA binding function were used for pose scoring. Root mean square deviation (RMSD) of the best pose ranged from 0.09 to 1.58 Å, and median RMSD of the top 60 poses ranged from 1.47 to 3.83 Å. However, RMSD of the top pose ranged from 0.13 to 7.33 Å and ranking of the best pose ranged from the 1st to 60th out of 60 poses. Moreover, analysis of ligand-receptor interactions of top poses revealed substantial differences from interactions found in crystallographic structures. Bad ranking of top poses and discrepancies between top docked poses and crystal structures render current simple docking methods unsuitable for predictive modeling of receptor-ligand interactions. Prime MM-GB/SA optimized for 3NY9 by multiple linear regression did not work well at 3NY8 and 3NYA, structures of the same receptor with different ligands. However, 9 of 11 trajectories of molecular dynamics simulations by Desmond of top poses converged with trajectories of crystal structures. Key interactions were properly detected for all structures. This procedure also worked well for cross-docking of tested β2-adrenergic antagonists. Thus, this procedure represents a possible way to predict interactions of antagonists with aminergic GPCRs.
Collapse
|
33
|
Zhang D, Zhao Q, Wu B. Structural Studies of G Protein-Coupled Receptors. Mol Cells 2015; 38:836-42. [PMID: 26467290 PMCID: PMC4625064 DOI: 10.14348/molcells.2015.0263] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Accepted: 10/08/2015] [Indexed: 01/25/2023] Open
Abstract
G protein-coupled receptors (GPCRs) constitute the largest and the most physiologically important membrane protein family that recognizes a variety of environmental stimuli, and are drug targets in the treatment of numerous diseases. Recent progress on GPCR structural studies shed light on molecular mechanisms of GPCR ligand recognition, activation and allosteric modulation, as well as structural basis of GPCR dimerization. In this review, we will discuss the structural features of GPCRs and structural insights of different aspects of GPCR biological functions.
Collapse
Affiliation(s)
- Dandan Zhang
- CAS Key Laboratory of Receptor Research, Shanghai Institute of Mate-ria Medica, Chinese Academy of Sciences, Pudong, Shanghai 201203,
China
| | - Qiang Zhao
- CAS Key Laboratory of Receptor Research, Shanghai Institute of Mate-ria Medica, Chinese Academy of Sciences, Pudong, Shanghai 201203,
China
| | - Beili Wu
- CAS Key Laboratory of Receptor Research, Shanghai Institute of Mate-ria Medica, Chinese Academy of Sciences, Pudong, Shanghai 201203,
China
| |
Collapse
|
34
|
Jafurulla M, Chattopadhyay A. Sphingolipids in the function of G protein-coupled receptors. Eur J Pharmacol 2015; 763:241-6. [DOI: 10.1016/j.ejphar.2015.07.019] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2015] [Revised: 06/01/2015] [Accepted: 07/07/2015] [Indexed: 11/26/2022]
|
35
|
Application of chemical biology in target identification and drug discovery. Arch Pharm Res 2015; 38:1642-50. [PMID: 26242900 DOI: 10.1007/s12272-015-0643-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Accepted: 07/29/2015] [Indexed: 10/23/2022]
Abstract
Drug discovery and development is vital to the well-being of mankind and sustainability of the pharmaceutical industry. Using chemical biology approaches to discover drug leads has become a widely accepted path partially because of the completion of the Human Genome Project. Chemical biology mainly solves biological problems through searching previously unknown targets for pharmacologically active small molecules or finding ligands for well-defined drug targets. It is a powerful tool to study how these small molecules interact with their respective targets, as well as their roles in signal transduction, molecular recognition and cell functions. There have been an increasing number of new therapeutic targets being identified and subsequently validated as a result of advances in functional genomics, which in turn led to the discovery of numerous active small molecules via a variety of high-throughput screening initiatives. In this review, we highlight some applications of chemical biology in the context of drug discovery.
Collapse
|
36
|
Mass-spectrometry-based method for screening of new peptide ligands for G-protein-coupled receptors. Anal Bioanal Chem 2015; 407:5299-307. [DOI: 10.1007/s00216-015-8692-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Revised: 04/07/2015] [Accepted: 04/09/2015] [Indexed: 10/23/2022]
|
37
|
Ul-Haq Z, Saeed M, Halim SA, Khan W. 3D structure prediction of human β1-adrenergic receptor via threading-based homology modeling for implications in structure-based drug designing. PLoS One 2015; 10:e0122223. [PMID: 25860348 PMCID: PMC4393300 DOI: 10.1371/journal.pone.0122223] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Accepted: 02/19/2015] [Indexed: 11/24/2022] Open
Abstract
Dilated cardiomyopathy is a disease of left ventricular dysfunction accompanied by impairment of the β1-adrenergic receptor (β1-AR) signal cascade. The disturbed β1-AR function may be based on an elevated sympathetic tone observed in patients with heart failure. Prolonged adrenergic stimulation may induce metabolic and electrophysiological disturbances in the myocardium, resulting in tachyarrhythmia that leads to the development of heart failure in human and sudden death. Hence, β1-AR is considered as a promising drug target but attempts to develop effective and specific drug against this tempting pharmaceutical target is slowed down due to the lack of 3D structure of Homo sapiens β1-AR (hsβADR1). This study encompasses elucidation of 3D structural and physicochemical properties of hsβADR1 via threading-based homology modeling. Furthermore, the docking performance of several docking programs including Surflex-Dock, FRED, and GOLD were validated by re-docking and cross-docking experiments. GOLD and Surflex-Dock performed best in re-docking and cross docking experiments, respectively. Consequently, Surflex-Dock was used to predict the binding modes of four hsβADR1 agonists. This study provides clear understanding of hsβADR1 structure and its binding mechanism, thus help in providing the remedial solutions of cardiovascular, effective treatment of asthma and other diseases caused by malfunctioning of the target protein.
Collapse
Affiliation(s)
- Zaheer Ul-Haq
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | - Maria Saeed
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | - Sobia Ahsan Halim
- National Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Waqasuddin Khan
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| |
Collapse
|
38
|
Chakraborty H, Chattopadhyay A. Excitements and challenges in GPCR oligomerization: molecular insight from FRET. ACS Chem Neurosci 2015; 6:199-206. [PMID: 25363209 DOI: 10.1021/cn500231d] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
G protein-coupled receptors (GPCRs) are the largest family of proteins involved in signal transduction across cell membranes, and they represent major drug targets in all clinical areas. Oligomerization of GPCRs and its implications in drug discovery constitute an exciting area in contemporary biology. In this Review, we have highlighted the application of fluorescence resonance energy transfer (FRET) in exploring GPCR oligomerization, with special emphasis on possible pitfalls and experimental complications involved. Based on FRET photophysics, we discuss some of the possible complications, and recommend that FRET results in complex cellular environments should be interpreted with caution. Although both hetero- and homo-FRET are used in measurements of GPCR oligomerization, we suggest that homo-FRET enjoys certain advantages over hetero-FRET. Given the seminal role of GPCRs as current drug targets, we envision that methodological progress in studying GPCR oligomerization would result in better therapeutic strategies.
Collapse
Affiliation(s)
- Hirak Chakraborty
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500 007, India
| | | |
Collapse
|
39
|
Shao X, Liu Y, Huang H, Zhuang L, Luo T, Huang H, Ge X. Down-regulation of G protein-coupled receptor 137 by RNA interference inhibits cell growth of two hepatoma cell lines. Cell Biol Int 2015; 39:418-26. [PMID: 25490967 DOI: 10.1002/cbin.10412] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Accepted: 10/14/2014] [Indexed: 12/16/2022]
Abstract
G protein-coupled receptors (GPCRs) are important signal transduction mediators and pharmacological therapeutic targets. G protein-coupled receptor 137 (GPR137) was initially reported as a novel orphan GPCR around 10 years ago. Some orphan GPCRs have been implicated in cancer cell proliferation and migration. The aim of this study is to investigate the role of GPR137 in hepatocellular carcinoma (HCC). GPR137 is widely expressed in several human HCC cell lines, as determined by real-time PCR. We then applied lentivirus mediated RNA interference (RNAi) to knock down GPR137 expression in two HCC cell lines HepG2 and Bel7404. Depletion of GPR137 remarkably inhibited cell proliferation and colony formation capacity. Knockdown of GPR137 in HepG2 cells led to cell cycle arrest at G0/G1 phase and G2/M phase, and induced cell apoptosis, as determined by flow cytometry analysis, which contributed to cell growth inhibition. Our findings suggested that GPR137 could facilitate HCC cell proliferation and thus promote hepatocarcinogenesis.
Collapse
Affiliation(s)
- Xin Shao
- Department of Pathology, Changzhou Hospital of Traditional Chinese Medicine, Changzhou, 213003, Jiangsu Province, China
| | | | | | | | | | | | | |
Collapse
|
40
|
Prazeres DMF, Martins SAM. G protein-coupled receptors: an overview of signaling mechanisms and screening assays. Methods Mol Biol 2015; 1272:3-19. [PMID: 25563173 DOI: 10.1007/978-1-4939-2336-6_1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
The existence of cellular receptors, a group of specialized biomolecules to which endogenous and exogenous compounds bind and exert an effect, is one of the most exciting aspects of cell biology. Among the different receptor types recognized today, G-protein-coupled receptors (GPCRs) constitute, undoubtedly, one of the most important classes, in part due to their versatility, but particularly, due to their central role in a multitude of physiological states. The unveiling of GPCR function and mode of action is a challenging task that prevails until our days, as the full potential of these receptors is far from being established. Such an undertaking calls for a joint effort of multidisciplinary teams that must combine state-of-the-art technologies with in-depth knowledge of cell biology to probe such specialized molecules. This review provides a concise coverage of the scientific progress that has been made in GPCR research to provide researchers with an updated overview of the field. A brief outline of the historical breakthroughs is followed by a discussion of GPCR signaling mechanisms and by a description of the role played by assay technologies.
Collapse
Affiliation(s)
- Duarte Miguel F Prazeres
- IBB - Institute for Biotechnology and Bioengineering, Av. Rovisco Pais, 1049-001, Lisbon, Portugal,
| | | |
Collapse
|
41
|
Chattopadhyay A, Rao BD, Jafurulla M. Solubilization of G Protein-Coupled Receptors. Methods Enzymol 2015; 557:117-34. [DOI: 10.1016/bs.mie.2015.01.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
42
|
Chattopadhyay A, Jafurulla M. Novel insights in membrane biology utilizing fluorescence recovery after photobleaching. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2015; 842:27-40. [PMID: 25408335 DOI: 10.1007/978-3-319-11280-0_3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
43
|
Tautermann CS, Seeliger D, Kriegl JM. What can we learn from molecular dynamics simulations for GPCR drug design? Comput Struct Biotechnol J 2014; 13:111-21. [PMID: 25709761 PMCID: PMC4334948 DOI: 10.1016/j.csbj.2014.12.002] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Revised: 11/28/2014] [Accepted: 12/03/2014] [Indexed: 01/05/2023] Open
Abstract
Recent years have seen a tremendous progress in the elucidation of experimental structural information for G-protein coupled receptors (GPCRs). Although for the vast majority of pharmaceutically relevant GPCRs structural information is still accessible only by homology models the steadily increasing amount of structural information fosters the application of structure-based drug design tools for this important class of drug targets. In this article we focus on the application of molecular dynamics (MD) simulations in GPCR drug discovery programs. Typical application scenarios of MD simulations and their scope and limitations will be described on the basis of two selected case studies, namely the binding of small molecule antagonists to the human CC chemokine receptor 3 (CCR3) and a detailed investigation of the interplay between receptor dynamics and solvation for the binding of small molecules to the human muscarinic acetylcholine receptor 3 (hM3R).
Collapse
Affiliation(s)
| | | | - Jan M. Kriegl
- Boehringer Ingelheim Pharma GmbH & Co. KG, Lead Identification and Optimization Support, Birkendorfer Str. 65, D-88397 Biberach a.d. Riss, Germany
| |
Collapse
|
44
|
Prasanna X, Chattopadhyay A, Sengupta D. Cholesterol modulates the dimer interface of the β₂-adrenergic receptor via cholesterol occupancy sites. Biophys J 2014; 106:1290-300. [PMID: 24655504 DOI: 10.1016/j.bpj.2014.02.002] [Citation(s) in RCA: 122] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Revised: 02/01/2014] [Accepted: 02/03/2014] [Indexed: 11/26/2022] Open
Abstract
The β2-adrenergic receptor is an important member of the G-protein-coupled receptor (GPCR) superfamily, whose stability and function are modulated by membrane cholesterol. The recent high-resolution crystal structure of the β2-adrenergic receptor revealed the presence of possible cholesterol-binding sites in the receptor. However, the functional relevance of cholesterol binding to the receptor remains unexplored. We used MARTINI coarse-grained molecular-dynamics simulations to explore dimerization of the β2-adrenergic receptor in lipid bilayers containing cholesterol. A novel (to our knowledge) aspect of our results is that receptor dimerization is modulated by membrane cholesterol. We show that cholesterol binds to transmembrane helix IV, and cholesterol occupancy at this site restricts its involvement at the dimer interface. With increasing cholesterol concentration, an increased presence of transmembrane helices I and II, but a reduced presence of transmembrane helix IV, is observed at the dimer interface. To our knowledge, this study is one of the first to explore the correlation between cholesterol occupancy and GPCR organization. Our results indicate that dimer plasticity is relevant not just as an organizational principle but also as a subtle regulatory principle for GPCR function. We believe these results constitute an important step toward designing better drugs for GPCR dimer targets.
Collapse
|
45
|
Doyle JR, Harwood BN, Krishnaji ST, Krishnamurthy VM, Lin WE, Fortin JP, Kumar K, Kopin AS. A two-step strategy to enhance activity of low potency peptides. PLoS One 2014; 9:e110502. [PMID: 25391026 PMCID: PMC4229100 DOI: 10.1371/journal.pone.0110502] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Accepted: 09/15/2014] [Indexed: 12/25/2022] Open
Abstract
Novel strategies are needed to expedite the generation and optimization of peptide probes targeting G protein-coupled receptors (GPCRs). We have previously shown that membrane tethered ligands (MTLs), recombinant proteins comprised of a membrane anchor, an extracellular linker, and a peptide ligand can be used to identify targeted receptor modulators. Although MTLs provide a useful tool to identify and/or modify functionally active peptides, a major limitation of this strategy is the reliance on recombinant protein expression. We now report the generation and pharmacological characterization of prototype peptide-linker-lipid conjugates, synthetic membrane anchored ligands (SMALs), which are designed as mimics of corresponding MTLs. In this study, we systematically compare the activity of selected peptides as MTLs versus SMALs. As prototypes, we focused on the precursor proteins of mature Substance P (SubP) and Cholecystokinin 4 (CCK4), specifically non-amidated SubP (SubP-COOH) and glycine extended CCK4 (CCK4-Gly-COOH). As low affinity soluble peptides these ligands each presented a challenging test case for assessment of MTL/SMAL technology. For each ligand, MTLs and corresponding SMALs showed agonist activity and comparable subtype selectivity. In addition, our results illustrate that membrane anchoring increases ligand potency. Furthermore, both MTL and SMAL induced signaling can be blocked by specific non-peptide antagonists suggesting that the anchored constructs may be orthosteric agonists. In conclusion, MTLs offer a streamlined approach for identifying low activity peptides which can be readily converted to higher potency SMALs. The ability to recapitulate MTL activity with SMALs extends the utility of anchored peptides as probes of GPCR function.
Collapse
Affiliation(s)
- Jamie R. Doyle
- Tufts Medical Center, Molecular Cardiology Research Institute, Molecular Pharmacology Research Center, Boston, Massachusetts, United States of America
| | - Benjamin N. Harwood
- Tufts Medical Center, Molecular Cardiology Research Institute, Molecular Pharmacology Research Center, Boston, Massachusetts, United States of America
- Program in Genetics, Sackler School of Graduate Biomedical Sciences, Tufts University, Boston, Massachusetts, United States of America
| | | | - Vijay M. Krishnamurthy
- Tufts University, Department of Chemistry, Medford, Massachusetts, United States of America
| | - Wei-En Lin
- Tufts University, Department of Chemistry, Medford, Massachusetts, United States of America
| | - Jean-Philippe Fortin
- Tufts Medical Center, Molecular Cardiology Research Institute, Molecular Pharmacology Research Center, Boston, Massachusetts, United States of America
| | - Krishna Kumar
- Tufts University, Department of Chemistry, Medford, Massachusetts, United States of America
| | - Alan S. Kopin
- Tufts Medical Center, Molecular Cardiology Research Institute, Molecular Pharmacology Research Center, Boston, Massachusetts, United States of America
- Program in Genetics, Sackler School of Graduate Biomedical Sciences, Tufts University, Boston, Massachusetts, United States of America
| |
Collapse
|
46
|
Abstract
G protein-coupled receptors (GPCRs) are the largest class of molecules involved in signal transduction across cell membranes and represent major targets in the development of novel drug candidates in all clinical areas. Although there have been some recent leads, structural information on GPCRs is relatively rare due to the difficulty associated with crystallization. A specific reason for this is the intrinsic flexibility displayed by GPCRs, which is necessary for their functional diversity. Since GPCRs are integral membrane proteins, interaction of membrane lipids with them constitutes an important area of research in GPCR biology. In particular, membrane cholesterol has been reported to have a modulatory role in the function of a number of GPCRs. The role of membrane cholesterol in GPCR function is discussed with specific example of the serotonin1A receptor. Recent results show that GPCRs are characterized with structural motifs that preferentially associate with cholesterol. An emerging and important concept is oligomerization of GPCRs and its role in GPCR function and signaling. The role of membrane cholesterol in GPCR oligomerization is highlighted. Future research in GPCR biology would offer novel insight in basic biology and provide new avenues for drug discovery.
Collapse
|
47
|
Discovery of high affinity ligands for β 2 -adrenergic receptor through pharmacophore-based high-throughput virtual screening and docking. J Mol Graph Model 2014; 53:148-160. [DOI: 10.1016/j.jmgm.2014.07.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Revised: 07/09/2014] [Accepted: 07/10/2014] [Indexed: 11/22/2022]
|
48
|
Khan HBH, Shanmugavalli R, Rajendran D, Bai MR, Sorimuthu S. Protective effect of Psidium guajava leaf extract on altered carbohydrate metabolism in streptozotocin-induced diabetic rats. J Diet Suppl 2014; 10:335-44. [PMID: 24237189 DOI: 10.3109/19390211.2013.830677] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Psidium guajava is an important plant of high medicinal value and has been used in traditional systems of medicine against various ailments. The antidiabetic effect of the ethanolic extract of Psidium guajava leaves and also its protective effect on altered glucose metabolism was evaluated in streptozotocin (stz)-induced diabetic rat model. Diabetes was induced in rats by means of intraperitoneal injection of 50-mg/kg body weight (b.wt.) of stz. Diabetes-induced rats were randomly divided into two groups. One group of rats was treated with Psidium guajava leaf extract at a dosage of 300-mg/kg b.wt. and the other group of rats was treated with the standard drug glyclazide at a dosage of 5-mg/kg b.wt. for 30 days. The blood glucose levels, plasma insulin, Hb, HbA1c were measured. The effect on the drug on altered glucose metabolizing enzymes were also studied. Treatment with Psidium guajava extract showed a significant reduction in blood glucose and HbA1c levels and a significant increase in plasma insulin levels. The drug also significantly restored the activities of carbohydrate metabolizing enzymes. This suggests that the potential antidiabetic effect of the ethanolic extract of the Psidium guajava leaves may be due to the presence of flavonoids and other phenolic components present in the drug.
Collapse
|
49
|
Du L, Zou L, Zhao L, Huang L, Wang P, Wu C. Label-free functional assays of chemical receptors using a bioengineered cell-based biosensor with localized extracellular acidification measurement. Biosens Bioelectron 2014; 54:623-7. [DOI: 10.1016/j.bios.2013.11.049] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2013] [Revised: 11/12/2013] [Accepted: 11/14/2013] [Indexed: 02/07/2023]
|
50
|
Jin P, Ren Z, Ye F, Ying W. A novel label-free live-cell biosensor for G-protein-coupled receptor functional assay with enhanced sensitivity. Anal Biochem 2014; 450:27-9. [DOI: 10.1016/j.ab.2013.12.036] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2013] [Revised: 12/29/2013] [Accepted: 12/30/2013] [Indexed: 12/12/2022]
|