1
|
Zukić S, Osmanović A, Harej Hrkać A, Kraljević Pavelić S, Špirtović-Halilović S, Veljović E, Roca S, Trifunović S, Završnik D, Maran U. Data-Driven Modelling of Substituted Pyrimidine and Uracil-Based Derivatives Validated with Newly Synthesized and Antiproliferative Evaluated Compounds. Int J Mol Sci 2024; 25:9390. [PMID: 39273338 PMCID: PMC11395534 DOI: 10.3390/ijms25179390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 08/21/2024] [Accepted: 08/26/2024] [Indexed: 09/15/2024] Open
Abstract
The pyrimidine heterocycle plays an important role in anticancer research. In particular, the pyrimidine derivative families of uracil show promise as structural scaffolds relevant to cervical cancer. This group of chemicals lacks data-driven machine learning quantitative structure-activity relationships (QSARs) that allow for generalization and predictive capabilities in the search for new active compounds. To achieve this, a dataset of pyrimidine and uracil compounds from ChEMBL were collected and curated. A workflow was developed for data-driven machine learning QSAR using an intuitive dataset design and forwards selection of molecular descriptors. The model was thoroughly externally validated against available data. Blind validation was also performed by synthesis and antiproliferative evaluation of new synthesized uracil-based and pyrimidine derivatives. The most active compound among new synthesized derivatives, 2,4,5-trisubstituted pyrimidine was predicted with the QSAR model with differences of 0.02 compared to experimentally tested activity.
Collapse
Affiliation(s)
- Selma Zukić
- Institute of Chemistry, University of Tartu, Ravila Street 14a, 50411 Tartu, Estonia
| | - Amar Osmanović
- University of Sarajevo-Faculty of Pharmacy, Zmaja od Bosne 8, 71000 Sarajevo, Bosnia and Herzegovina
| | - Anja Harej Hrkać
- Department of Basic and Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Rijeka, Braće Branchetta 20, 51000 Rijeka, Croatia
| | | | - Selma Špirtović-Halilović
- University of Sarajevo-Faculty of Pharmacy, Zmaja od Bosne 8, 71000 Sarajevo, Bosnia and Herzegovina
| | - Elma Veljović
- University of Sarajevo-Faculty of Pharmacy, Zmaja od Bosne 8, 71000 Sarajevo, Bosnia and Herzegovina
| | - Sunčica Roca
- Centre for Nuclear Magnetic Resonance (NMR), Ruđer Bošković Institute, Bijenička Street 54, 10000 Zagreb, Croatia
| | - Snežana Trifunović
- Faculty of Chemistry, University of Belgrade, Studentski trg 12-16, 11158 Belgrade, Serbia
| | - Davorka Završnik
- University of Sarajevo-Faculty of Pharmacy, Zmaja od Bosne 8, 71000 Sarajevo, Bosnia and Herzegovina
| | - Uko Maran
- Institute of Chemistry, University of Tartu, Ravila Street 14a, 50411 Tartu, Estonia
| |
Collapse
|
2
|
Chugunova E, Matveeva V, Tulesinova A, Iskanderov E, Akylbekov N, Dobrynin A, Khamatgalimov A, Appazov N, Boltayeva L, Duisembekov B, Zhanakov M, Aleksandrova Y, Sashenkova T, Klimanova E, Allayarova U, Balakina A, Mishchenko D, Burilov A, Neganova M. Water-Soluble Salts Based on Benzofuroxan Derivatives-Synthesis and Biological Activity. Int J Mol Sci 2022; 23:14902. [PMID: 36499230 PMCID: PMC9739695 DOI: 10.3390/ijms232314902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 11/16/2022] [Accepted: 11/18/2022] [Indexed: 11/29/2022] Open
Abstract
A series of novel water-soluble salts of benzofuroxans was achieved via aromatic nucleophilic substitution reaction of 4,6-dichloro-5-nitrobenzofuroxan with various amines. The salts obtained showed good effectiveness of the pre-sowing treatment of seeds of agricultural crops at concentrations of 20-40 mmol. In some cases, the seed treatment with salts leads not only to improved seed germination, but also to the suppression of microflora growth. Additionally, their anti-cancer activityin vitrohas been researched. The compounds with morpholine fragments or a fragment of N-dimethylpropylamine, demonstrated the highest cytotoxic activity, which is in good correlation with the ability to inhibit the glycolysis process in tumor cells. Two compounds 4e and 4g were selected for further experiments using laboratory animals. It was found that the lethal dose of 50% (LD50) is 22.0 ± 1.33 mg/kg for 4e and 13.75 ± 1.73 mg/kg for 4g, i.e., compound 4e is two times less toxic than 4g, according to the mouse model in vivo. It was shown that the studied compounds exhibit antileukemia activity after a single intraperitoneal injection at doses from 1.25 to 5 mg/kg, as a result of which the average lifespan of animals with a P388 murine leukemia tumor increases from 20 to 28%. Thus, the water-soluble salts of benzofuroxans can be considered as promisingcandidates for further development, both as anti-cancer agents and as stimulants for seed germination and regulators of microflora crop growth.
Collapse
Affiliation(s)
- Elena Chugunova
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Kazan 420088, Russia
| | - Victoria Matveeva
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Kazan 420088, Russia
| | - Alena Tulesinova
- The Kazan National Research Technological University, Kazan 420015, Russia
| | | | - Nurgali Akylbekov
- Laboratory of Engineering Profile “Physical and Chemical Methods of Analysis”, Korkyt Ata Kyzylorda University, Kyzylorda 120014, Kazakhstan
| | - Alexey Dobrynin
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Kazan 420088, Russia
| | - Ayrat Khamatgalimov
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Kazan 420088, Russia
| | - Nurbol Appazov
- Laboratory of Engineering Profile “Physical and Chemical Methods of Analysis”, Korkyt Ata Kyzylorda University, Kyzylorda 120014, Kazakhstan
- I. Zhakhaev Kazakh Scientific Research Institute of Rice Growing, Kyzylorda 120008, Kazakhstan
| | - Lyazat Boltayeva
- Kazakh Scientific Research Institute of Plant Protection and Quarantine Named after Zhazken Zhiembayev LLP, Almaty A30M0H6, Kazakhstan
| | - Bakhytzhan Duisembekov
- Kazakh Scientific Research Institute of Plant Protection and Quarantine Named after Zhazken Zhiembayev LLP, Almaty A30M0H6, Kazakhstan
| | - Mukhtar Zhanakov
- L.N. Gumilyov Eurasian National University, Astana 010008, Kazakhstan
| | - Yulia Aleksandrova
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Kazan 420088, Russia
- Institute of Physiologically Active Compounds at Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, Chernogolovka 142432, Russia
| | - Tatyana Sashenkova
- Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry—RAS, Chernogolovka 142432, Russia
| | - Elena Klimanova
- Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry—RAS, Chernogolovka 142432, Russia
| | - Ugulzhan Allayarova
- Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry—RAS, Chernogolovka 142432, Russia
| | - Anastasia Balakina
- Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry—RAS, Chernogolovka 142432, Russia
| | - Denis Mishchenko
- Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry—RAS, Chernogolovka 142432, Russia
- Faculty of Fundamental Physical-Chemical Engineering, M.V. Lomonosov—MSU, Moscow 119991, Russia
- Biomedical Institute of the Scientific and Educational Center, Moscow Regional State University in Chernogolovka, Mytishchi 141014, Russia
| | - Alexander Burilov
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Kazan 420088, Russia
| | - Margarita Neganova
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Kazan 420088, Russia
- Institute of Physiologically Active Compounds at Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, Chernogolovka 142432, Russia
| |
Collapse
|
3
|
Zhang C, Kang T, Wang X, Song J, Zhang J, Li G. Stimuli-responsive platinum and ruthenium complexes for lung cancer therapy. Front Pharmacol 2022; 13:1035217. [PMID: 36324675 PMCID: PMC9618881 DOI: 10.3389/fphar.2022.1035217] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 10/04/2022] [Indexed: 11/13/2022] Open
Abstract
Lung cancer is the most common cause of cancer-related deaths worldwide. More efficient treatments are desperately needed. For decades, the success of platinum-based anticancer drugs has promoted the exploration of metal-based agents. Four ruthenium-based complexes have also entered clinical trials as candidates of anticancer metallodrugs. However, systemic toxicity, severe side effects and drug-resistance impeded their applications and efficacy. Stimuli-responsiveness of Pt- and Ru-based complexes provide a great chance to weaken the side effects and strengthen the clinical efficacy in drug design. This review provides an overview on the stimuli-responsive Pt- and Ru-based metallic anticancer drugs for lung cancer. They are categorized as endo-stimuli-responsive, exo-stimuli-responsive, and dual-stimuli-responsive prodrugs based on the nature of stimuli. We describe various representative examples of structure, response mechanism, and potential medical applications in lung cancer. In the end, we discuss the future opportunities and challenges in this field.
Collapse
Affiliation(s)
- Cheng Zhang
- The Department of Thoracic Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Tong Kang
- Department of Dermatology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Xinyi Wang
- The Department of Thoracic Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Jiaqi Song
- Department of Biophysics, School of Basic Medical Sciences, Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Jia Zhang
- The Department of Thoracic Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
- *Correspondence: Jia Zhang, ; Guanying Li,
| | - Guanying Li
- Department of Biophysics, School of Basic Medical Sciences, Xi’an Jiaotong University, Xi’an, Shaanxi, China
- *Correspondence: Jia Zhang, ; Guanying Li,
| |
Collapse
|
4
|
Kell DB. The Transporter-Mediated Cellular Uptake and Efflux of Pharmaceutical Drugs and Biotechnology Products: How and Why Phospholipid Bilayer Transport Is Negligible in Real Biomembranes. Molecules 2021; 26:5629. [PMID: 34577099 PMCID: PMC8470029 DOI: 10.3390/molecules26185629] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 09/03/2021] [Accepted: 09/14/2021] [Indexed: 12/12/2022] Open
Abstract
Over the years, my colleagues and I have come to realise that the likelihood of pharmaceutical drugs being able to diffuse through whatever unhindered phospholipid bilayer may exist in intact biological membranes in vivo is vanishingly low. This is because (i) most real biomembranes are mostly protein, not lipid, (ii) unlike purely lipid bilayers that can form transient aqueous channels, the high concentrations of proteins serve to stop such activity, (iii) natural evolution long ago selected against transport methods that just let any undesirable products enter a cell, (iv) transporters have now been identified for all kinds of molecules (even water) that were once thought not to require them, (v) many experiments show a massive variation in the uptake of drugs between different cells, tissues, and organisms, that cannot be explained if lipid bilayer transport is significant or if efflux were the only differentiator, and (vi) many experiments that manipulate the expression level of individual transporters as an independent variable demonstrate their role in drug and nutrient uptake (including in cytotoxicity or adverse drug reactions). This makes such transporters valuable both as a means of targeting drugs (not least anti-infectives) to selected cells or tissues and also as drug targets. The same considerations apply to the exploitation of substrate uptake and product efflux transporters in biotechnology. We are also beginning to recognise that transporters are more promiscuous, and antiporter activity is much more widespread, than had been realised, and that such processes are adaptive (i.e., were selected by natural evolution). The purpose of the present review is to summarise the above, and to rehearse and update readers on recent developments. These developments lead us to retain and indeed to strengthen our contention that for transmembrane pharmaceutical drug transport "phospholipid bilayer transport is negligible".
Collapse
Affiliation(s)
- Douglas B. Kell
- Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Crown St, Liverpool L69 7ZB, UK;
- Novo Nordisk Foundation Centre for Biosustainability, Technical University of Denmark, Building 220, Kemitorvet, 2800 Kgs Lyngby, Denmark
- Mellizyme Biotechnology Ltd., IC1, Liverpool Science Park, Mount Pleasant, Liverpool L3 5TF, UK
| |
Collapse
|
5
|
Sun Y, Zhao D, Wang G, Jiang Q, Guo M, Kan Q, He Z, Sun J. A novel oral prodrug-targeting transporter MCT 1: 5-fluorouracil-dicarboxylate monoester conjugates. Asian J Pharm Sci 2019; 14:631-639. [PMID: 32104489 PMCID: PMC7032090 DOI: 10.1016/j.ajps.2019.04.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 04/09/2019] [Accepted: 04/17/2019] [Indexed: 11/05/2022] Open
Abstract
Monocarboxylate transporter 1 (MCT1) is responsible for oral absorption of short-chain monocarboxylic acids from small intestine, hence, it's likely to serve as an ideal design target for the development of oral prodrugs. However, potential application of MCT1 to facilitate the oral delivery is still unclear. Irregular oral absorption, poor permeability and bioavailability greatly limit the oral delivery efficiency of 5-fluorouracil (5-FU). Herein, we design three 5-FU-fatty acid conjugates targeting intestinal MCT1 with different lipophilic linkages. Interestingly, due to high MCT1 affinity and good gastrointestinal stability, 5-FU-octanedioic acid monoester prodrug exhibited significant improvement in membrane permeability (13.1-fold) and oral bioavailability (4.1-fold) compared to 5-FU. More surprisingly, stability experiment in intestinal homogenates showed that 5-FU prodrugs could be properly activated to release 5-FU within intestinal cells, which provides an ideal foundation for the improvement of oral bioavailability. In summary, good gastrointestinal stability, high membrane permeability and appropriate intestinal cell bioactivation are the important factors for high-efficiency 5-FU oral prodrugs, and such work provides a good platform for the development of novel oral prodrugs targeting intestinal transporters.
Collapse
Affiliation(s)
- Yixin Sun
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Dongyang Zhao
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Gang Wang
- School of Pharmacy, Guangxi University of Chinese Medicine, Nangning 530200, China
| | - Qikun Jiang
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Mengran Guo
- School of Pharmacy, Shenyang Pharmaceutical University, No.103, Wenhua Road, Shenyang 110016, China
| | - Qiming Kan
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Zhonggui He
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Jin Sun
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| |
Collapse
|
6
|
Harnessing the therapeutic potential of anticancer drugs through amorphous solid dispersions. Biochim Biophys Acta Rev Cancer 2019; 1873:188319. [PMID: 31678141 DOI: 10.1016/j.bbcan.2019.188319] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 10/28/2019] [Accepted: 10/28/2019] [Indexed: 12/19/2022]
Abstract
The treatment of cancer is still a major challenge. But tremendous progress in anticancer drug discovery and development has occurred in the last few decades. However, this progress has resulted in few effective oncology products due to challenges associated with anticancer drug delivery. Oral administration is the most preferred route for anticancer drug delivery, but the majority of anticancer drugs currently in product pipelines and the majority of those that have been commercially approved have inherently poor water solubility, and this cannot be mitigated without compromising their potency and stability. The poor water solubility of anticancer drugs, in conjunction with other factors, leads to suboptimal pharmacokinetic performance. Thus, these drugs have limited efficacy and safety when administered orally. The amorphous solid dispersion (ASD) is a promising formulation technology that primarily enhances the aqueous solubility of poorly water-soluble drugs. In this review, we discuss the challenges associated with the oral administration of anticancer drugs and the use of ASD technology in alleviating these challenges. We emphasize the ability of ASDs to improve not only the pharmacokinetics of poorly water-soluble anticancer drugs, but also their efficacy and safety. The goal of this paper is to rationalize the application of ASD technology in the formulation of anticancer drugs, thereby creating superior oncology products that lead to improved therapeutic outcomes.
Collapse
|
7
|
Caldorera-Moore M, Vela Ramirez JE, Peppas NA. Transport and delivery of interferon-α through epithelial tight junctions via pH-responsive poly(methacrylic acid-grafted-ethylene glycol) nanoparticles. J Drug Target 2019; 27:582-589. [PMID: 30457357 PMCID: PMC6522304 DOI: 10.1080/1061186x.2018.1547732] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 11/01/2018] [Accepted: 11/06/2018] [Indexed: 12/16/2022]
Abstract
Whereas significant advancements have been made in our fundamental understanding of cancer, they have not yet translated into effective clinical cancer treatments. One of the areas that has the potential to improve the efficacy of cancer therapies is the development of novel drug delivery technologies. In particular, the design of pH-sensitive polymeric complexation hydrogels may allow for targeted oral delivery of a wide variety of chemotherapeutic drugs and proteins. In this work, poly(methacrylic acid-grafted-ethylene glycol) hydrogel nanoparticles were synthesised, characterised, and studied as matrix-type, diffusion-controlled, pH-responsive carriers to enable the oral delivery of the chemotherapeutic agent interferon alpha (IFN-α). The biophysical mechanisms controlling the transport of IFN-α were investigated using a Caco-2/HT29-MTX co-culture as a gastrointestinal (GI) tract model. The synthesised nanoparticles exhibited pH-responsive swelling behaviour and allowed the permeation of IFN-α through the tight junctions of the developed cellular GI epithelium model. These studies demonstrate the capabilities of these particles to contribute to the improved oral delivery of protein chemotherapeutics.
Collapse
Affiliation(s)
- Mary Caldorera-Moore
- Department of Biomedical Engineering, Louisiana Tech University, Ruston, LA 71272
| | - Julia E. Vela Ramirez
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, TX 78712, USA
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX 78712, USA
- Institute for Biomaterials, Drug Delivery, and Regenerative Medicine, The University of Texas at Austin, Austin, TX 78712, USA
| | - Nicholas A. Peppas
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, TX 78712, USA
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX 78712, USA
- Institute for Biomaterials, Drug Delivery, and Regenerative Medicine, The University of Texas at Austin, Austin, TX 78712, USA
- Department of Surgery and Perioperative Care, Dell Medical School, The University of Texas at Austin, Austin, TX 78712, USA
- Department of Pediatrics, Dell Medical School, The University of Texas at Austin, Austin, TX 78712, USA
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin, Texas 78712, USA
| |
Collapse
|
8
|
Abstract
The success of platinum-based anticancer agents has motivated the exploration of novel metal-based drugs for several decades, whereas problems such as drug-resistance and systemic toxicity hampered their clinical applications and efficacy. Stimuli-responsiveness of some metal complexes offers a good opportunity for designing site-specific prodrugs to maximize the therapeutic efficacy and minimize the side effect of metallodrugs. This review presents a comprehensive and up-to-date overview on the therapeutic stimuli-responsive metallodrugs that have appeared in the past two decades, where stimuli such as redox, pH, enzyme, light, temperature, and so forth were involved. The compounds are classified into three major categories based on the nature of stimuli, that is, endo-stimuli-responsive metallodrugs, exo-stimuli-responsive metallodrugs, and dual-stimuli-responsive metallodrugs. Representative examples of each type are discussed in terms of structure, response mechanism, and potential medical applications. In the end, future opportunities and challenges in this field are tentatively proposed. With diverse metal complexes being introduced, the foci of this review are pointed to platinum and ruthenium complexes.
Collapse
Affiliation(s)
- Xiaohui Wang
- College of Chemistry and Molecular Engineering , Nanjing Tech University , Nanjing 211816 , P. R. China
| | - Xiaoyong Wang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences , Nanjing University , Nanjing 210023 , P. R. China
| | - Suxing Jin
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences , Nanjing University , Nanjing 210023 , P. R. China
| | - Nafees Muhammad
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry , Sun Yat-Sen University , Guangzhou 510275 , P. R. China
| | - Zijian Guo
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering , Nanjing University , Nanjing 210093 , P. R. China
| |
Collapse
|
9
|
Hajnal K, Gabriel H, Aura R, Erzsébet V, Blanka SS. Prodrug Strategy in Drug Development. ACTA MEDICA MARISIENSIS 2016. [DOI: 10.1515/amma-2016-0032] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Abstract
Prodrugs are chemically modified derivatives introduced in therapy due to their advantageous physico-chemical properties (greater stability, improved solubility, increased permeability), used in inactive form. Biological effect is exerted by the active derivatives formed in organism through chemical transformation (biotransformation). Currently, 10% of pharmaceutical products are used as prodrugs, nearly half of them being converted to active form by hydrolysis, mainly by ester hydrolysis. The use of prodrugs aims to improve the bioavailability of compounds in order to resolve some unfavorable characteristics and to reduce first-pass metabolism. Other objectives are to increase drug absorption, to extend duration of action or to achieve a better tissue/organ selective transport in case of non-oral drug delivery forms. Prodrugs can be characterized by chemical structure, activation mechanism or through the presence of certain functional groups suitable for their preparation. Currently we distinguish in therapy traditional prodrugs prepared by chemical derivatisation, bioprecursors and targeted delivery systems. The present article is a review regarding the introduction and applications of prodrug design in various areas of drug development.
Collapse
Affiliation(s)
- Kelemen Hajnal
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Medicine and Pharmacy, Tîrgu Mureş, Romania
| | - Hancu Gabriel
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Medicine and Pharmacy, Tîrgu Mureş, Romania
| | - Rusu Aura
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Medicine and Pharmacy, Tîrgu Mureş, Romania
| | - Varga Erzsébet
- Department of Pharmacognosy and Phytotherapy, Faculty of Pharmacy, University of Medicine and Pharmacy, Tîrgu Mureş, Romania
| | - Székely Szentmiklósi Blanka
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Medicine and Pharmacy, Tîrgu Mureş, Romania
| |
Collapse
|
10
|
Sawicki E, Schellens JHM, Beijnen JH, Nuijen B. Inventory of oral anticancer agents: Pharmaceutical formulation aspects with focus on the solid dispersion technique. Cancer Treat Rev 2016; 50:247-263. [PMID: 27776286 DOI: 10.1016/j.ctrv.2016.09.012] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Accepted: 09/13/2016] [Indexed: 11/16/2022]
Abstract
Dissolution from the pharmaceutical formulation is a prerequisite for complete and consistent absorption of any orally administered drug, including anticancer agents (oncolytics). Poor dissolution of an oncolytic can result in low oral bioavailability, high variability in blood concentrations and with that suboptimal or even failing therapy. This review discusses pharmaceutical formulation aspects and absorption pharmacokinetics of currently licensed orally administered oncolytics. In nearly half of orally dosed oncolytics poor dissolution is likely to play a major role in low and unpredictable absorption. Dissolution-limited drug absorption can be improved with a solid dispersion which is a formulation method that induces super-saturated drug dissolution and with that it enhances in vivo absorption. This review discusses formulation principles with focus on the solid dispersion technology and how it works to enhance drug absorption. There are currently three licensed orally dosed oncolytics formulated as a solid dispersion (everolimus, vemurafenib and regorafenib) and these formulations result in remarkably improved dissolution and absorption compared to what can be achieved with conventional formulations of the respective oncolytics. Because of the successful implementation of these three solid dispersion formulations, we encourage the application of this formulation method for poorly soluble oral oncolytics.
Collapse
Affiliation(s)
- E Sawicki
- Department of Pharmacy & Pharmacology, The Netherlands Cancer Institute/MC Slotervaart, Louwesweg 6, 1066 EC Amsterdam, The Netherlands.
| | - J H M Schellens
- Department of Clinical Pharmacology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands; Science Faculty, Utrecht Institute for Pharmaceutical Sciences (UIPS), Division of Pharmaco-epidemiology & Clinical Pharmacology, Utrecht University, P.O. Box 80082, 3508 TB Utrecht, The Netherlands
| | - J H Beijnen
- Department of Pharmacy & Pharmacology, The Netherlands Cancer Institute/MC Slotervaart, Louwesweg 6, 1066 EC Amsterdam, The Netherlands; Department of Clinical Pharmacology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands; Science Faculty, Utrecht Institute for Pharmaceutical Sciences (UIPS), Division of Pharmaco-epidemiology & Clinical Pharmacology, Utrecht University, P.O. Box 80082, 3508 TB Utrecht, The Netherlands
| | - B Nuijen
- Department of Pharmacy & Pharmacology, The Netherlands Cancer Institute/MC Slotervaart, Louwesweg 6, 1066 EC Amsterdam, The Netherlands
| |
Collapse
|
11
|
Abstract
INTRODUCTION Most anticancer drugs have poor aqueous solubility and low permeability across the gastrointestinal tract. Furthermore, extensive efflux by P-glycoproteins (P-gp) in the small intestine also limits the efficient delivery of anticancer drugs via oral route. Area covered: This review explores the prodrug strategy for oral delivery of anticancer drugs. Different categories of oral anticancer prodrugs along with recent clinical studies have been comprehensively reviewed here. Furthermore, novel anticancer prodrugs such as polymer-prodrugs and lipid-prodrugs have been discussed in detail. Finally, various nanocarrier-based approaches employed for oral delivery of anticancer prodrugs have also been discussed. Expert opinion: Premature degradation of anticancer prodrugs in the gastrointestinal tract could lead to variable pharmacokinetics and undesired toxicity. Despite their increased aqueous solubility, the oral bioavailability of several anticancer prodrugs are limited by their poor permeability across the gastrointestinal tract. These limitations can be overcome by the use of functional excipients (polymers, lipids, amino acids/dipeptides), which are specifically absorbed via transporters and receptor-mediated endocytosis. Oral delivery of anticancer prodrugs using nanocarrier-based drug delivery system is a recent development; however it should be justified based on the comparative advantages of encapsulating prodrug in a nanocarrier versus the use of anticancer prodrug molecule itself.
Collapse
Affiliation(s)
- Amit K Jain
- a Department of Chemical Engineering , Texas Tech University , Lubbock , TX , USA
| | - Sanyog Jain
- b Centre for Pharmaceutical Nanotechnology, Department of Pharmaceutics , National Institute of Pharmaceutical Education and Research (NIPER) , Mohali , Punjab , India
| |
Collapse
|
12
|
Lipid nanocarriers based on natural oils with high activity against oxygen free radicals and tumor cell proliferation. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2015; 56:88-94. [PMID: 26249569 DOI: 10.1016/j.msec.2015.06.019] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Revised: 05/09/2015] [Accepted: 06/09/2015] [Indexed: 11/20/2022]
Abstract
The development of nano-dosage forms of phytochemicals represents a significant progress of the scientific approach in the biomedical research. The aim of this study was to assess the effectiveness of lipid nanocarriers based on natural oils (grape seed oil, fish oil and laurel leaf oil) in counteracting free radicals and combating certain tumor cells. No drug was encapsulated in the nanocarriers. The cytotoxic effect exerted by bioactive nanocarriers against two tumor cells, MDA-MB 231 and HeLa cell lines, and two normal cells, L929 and B16 cell lines, was measured using the MTT assay, while oxidative damage was assessed by measuring the total antioxidant activity using chemiluminescence analysis. The best performance was obtained for nanocarriers based on an association of grape seed and laurel leaf oils, with a capacity to scavenge about 98% oxygen free radicals. A dose of nanocarriers of 5mg·mL(-1) has led to a drastic decrease in tumor cell proliferation even in the absence of an antitumor drug (e.g. about 50% viability for MDA-MB 231 cell line and 60% viability for HeLa cell line). A comparative survival profile of normal and tumor cells, which were exposed to an effective dose of 2.5mg·mL(-1) lipid nanocarriers, has revealed a death rate of 20% for normal B16 cells and of 40% death rate for MDA-MB 231 and HeLa tumor cells. The results in this study imply that lipid nanocarriers based on grape seed oil in association with laurel leaf oil could be a candidate to reduce the delivery system toxicity and may significantly improve the therapeutic efficacy of antitumor drugs in clinical applications.
Collapse
|
13
|
del Carmen Hurtado-Sánchez M, Acedo-Valenzuela MI, Durán-Merás I, Rodríguez-Cáceres MI. Determination of chemotherapeutic drugs in human urine by capillary electrophoresis with UV and fluorimetric detection using solid-supported liquid-liquid extraction for sample clean-up. J Sep Sci 2015; 38:1990-7. [DOI: 10.1002/jssc.201401443] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Revised: 03/11/2015] [Accepted: 03/14/2015] [Indexed: 12/30/2022]
Affiliation(s)
| | | | - Isabel Durán-Merás
- Department of Analytical Chemistry, University of Extremadura; Badajoz Spain
| | | |
Collapse
|
14
|
Yu K, Li R, Yang Z, Wang F, Wu W, Wang X, Nie C, Chen L. Discovery of a potent microtubule-targeting agent: Synthesis and biological evaluation of water-soluble amino acid prodrug of combretastatin A-4 derivatives. Bioorg Med Chem Lett 2015; 25:2302-7. [PMID: 25933592 DOI: 10.1016/j.bmcl.2015.04.028] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2014] [Revised: 03/25/2015] [Accepted: 04/09/2015] [Indexed: 02/05/2023]
Abstract
Amino acid prodrugs are known to be very useful for improving the aqueous solubility of sparingly water soluble drugs (Drug Discovery Today 2013, 18, 93). Therefore, we synthesized eleven novel combretastatin A-4 amino acid derivatives and evaluated their anti-tumor activities in vitro and in vivo. Among them, compound 15 (valine attached to compound 3, which was shown to be a potent tubulin polymerization inhibitor in our previous study) exhibited high efficacy in tumor-bearing mice, and pharmacokinetic analysis in rats indicated that compound 15 was an effective prodrug as well. Besides, compound 15 significantly inhibited tubulin polymerization in vitro and in vivo by binding to the colchicine binding site. In addition, compound 15 induced cell cycle arrest in the G2/M phase and triggered apoptosis in a caspase-dependent manner. In conclusion, our study showed that compound 15 could have significant anti-tumor activity as a novel microtubule polymerization disrupting agent with improved aqueous solubility.
Collapse
Affiliation(s)
- Kun Yu
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Rong Li
- School of Pharmacy, Chengdu University of TCM, Chengdu, Sichuan 611137, PR China
| | - Zhuang Yang
- College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, PR China
| | - Fang Wang
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Wenshuang Wu
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Xiaoyan Wang
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Chunlai Nie
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China.
| | - Lijuan Chen
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China.
| |
Collapse
|
15
|
Iglesias LE, Lewkowicz ES, Medici R, Bianchi P, Iribarren AM. Biocatalytic approaches applied to the synthesis of nucleoside prodrugs. Biotechnol Adv 2015; 33:412-34. [PMID: 25795057 DOI: 10.1016/j.biotechadv.2015.03.009] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2014] [Revised: 03/01/2015] [Accepted: 03/04/2015] [Indexed: 10/23/2022]
Abstract
Nucleosides are valuable bioactive molecules, which display antiviral and antitumour activities. Diverse types of prodrugs are designed to enhance their therapeutic efficacy, however this strategy faces the troublesome selectivity issues of nucleoside chemistry. In this context, the aim of this review is to give an overview of the opportunities provided by biocatalytic procedures in the preparation of nucleoside prodrugs. The potential of biocatalysis in this research area will be presented through examples covering the different types of nucleoside prodrugs: nucleoside analogues as prodrugs, nucleoside lipophilic prodrugs and nucleoside hydrophilic prodrugs.
Collapse
Affiliation(s)
- Luis E Iglesias
- Laboratorio de Biocatálisis y Biotransformaciones, Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Roque Sáenz Peña 352, 1876 Bernal, Buenos Aires, Argentina
| | - Elizabeth S Lewkowicz
- Laboratorio de Biocatálisis y Biotransformaciones, Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Roque Sáenz Peña 352, 1876 Bernal, Buenos Aires, Argentina
| | - Rosario Medici
- Biocatalysis Group, Delft University of Technology, Julianalaan 67, 2628 BC Delft, The Netherlands
| | - Paola Bianchi
- Laboratorio de Biocatálisis y Biotransformaciones, Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Roque Sáenz Peña 352, 1876 Bernal, Buenos Aires, Argentina
| | - Adolfo M Iribarren
- Laboratorio de Biocatálisis y Biotransformaciones, Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Roque Sáenz Peña 352, 1876 Bernal, Buenos Aires, Argentina; Laboratorio de Química de Ácidos Nucleicos, INGEBI-CONICET, Vuelta de Obligado 2490, 1428 Ciudad Autónoma de Buenos Aires, Argentina.
| |
Collapse
|
16
|
Andey T, Sudhakar G, Marepally S, Patel A, Banerjee R, Singh M. Lipid nanocarriers of a lipid-conjugated estrogenic derivative inhibit tumor growth and enhance cisplatin activity against triple-negative breast cancer: pharmacokinetic and efficacy evaluation. Mol Pharm 2015; 12:1105-20. [PMID: 25661724 DOI: 10.1021/mp5008629] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Breast cancer is the leading cause of malignancies among women globally. The triple negative breast cancer (TNBC) subtype is the most difficult to treat and accounts for 15% of all cases. Targeted therapies have been developed for TNBC but come short of clinical translation due to acquired tumor resistance. An effective therapy against TNBC must combine properties of target specificity, efficient tumor killing, and translational relevance. The objective of this study was to formulate a nontoxic, cationic, lipid-conjugated estrogenic derivative (ESC8), with demonstrated anticancer activity, for oral delivery in mice bearing triple negative breast cancer (TNBC) as xenograft tumors. The in vitro cell viability, Caco-2 permeability, and cell cycle dynamics of ESC8-treated TNBC cells were investigated. ESC8 was formulated as liposomes, solid lipid nanoparticles (SLNs), and nanostructured lipid carriers (NLCs) and characterized for size, zeta potential, entrapment efficiency, size stability, and tumor biodistribution. Pharmacokinetic modeling of plasma concentration-time course data was carried out following intravenous and oral administration in Sprague-Dawley rats. In vivo efficacy investigation of ESC8-SLNC was carried out in Nu/Nu mice bearing MDA-MB-231 TNBC as xenograft tumors, and the molecular dynamics modulating tumor growth inhibition was analyzed by Western blot. In vitro ESC8 inhibited TNBC and non-TNBC cell viability with IC50 ranging from 1.81 to 3.33 μM. ESC8 was superior to tamoxifen and Cisplatin in inhibiting MDA-MB-231 cell viability; and at 2.0 μM ESC8 enhanced Cisplatin cytotoxicity 16-fold. Intravenous ESC8 (2.0 mg/kg) was eliminated at a rate of 0.048 ± 0.01 h(-1) with a half-life of 14.63 ± 2.95 h in rats. ESC8 was orally bioavailable (47.03%) as solid lipid nanoparticles (ESC8-SLN). ESC8-SLN (10 mg/kg/day, ×14 days, p.o.) inhibited breast tumor growth by 74% (P < 0.0001 vs control) in mice bearing MDA-MB-231 cells as xenografts; and when given in combination with Cisplatin (2.0 mg/kg/biweekly, ×2 weeks, IV), tumor growth was inhibited by 87% (P = 0.0002, vs ESC8-SLN; 10 mg/kg/day, ×14 days, p.o). ESC8-SLN tumor growth inhibition was associated with increased expression of p21 and Caspase-9; as well as by inhibition of EGFR, Slug, p-Akt1, Vimentin, NFkβ, and IKKγ. These results show the promise of ESC8 as an oral adjuvant or neoadjuvant against triple negative breast cancer.
Collapse
Affiliation(s)
- Terrick Andey
- †Department of Pharmaceutical Sciences, School of Pharmacy, Massachusetts College of Pharmacy and Health Sciences, 19 Foster Street, Worcester, Massachusetts 01608, United States
| | - Godeshala Sudhakar
- ‡Biomaterials Group, CSIR-Indian Institute of Chemical Technology, Uppal Road, Hyderabad, Andhra Pradesh 500007, India
| | - Srujan Marepally
- §Institute for Stem Cell Biology and Regenerative Medicine (inStem), NCBS-TIFR, UAS-GKVK, Bengaluru, Karnataka 560067, India
| | | | - Rajkumar Banerjee
- ‡Biomaterials Group, CSIR-Indian Institute of Chemical Technology, Uppal Road, Hyderabad, Andhra Pradesh 500007, India
| | | |
Collapse
|
17
|
Prachayasittikul V, Pingaew R, Nantasenamat C, Prachayasittikul S, Ruchirawat S, Prachayasittikul V. Investigation of aromatase inhibitory activity of metal complexes of 8-hydroxyquinoline and uracil derivatives. Drug Des Devel Ther 2014; 8:1089-96. [PMID: 25152615 PMCID: PMC4140444 DOI: 10.2147/dddt.s67300] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
PURPOSE Estrogens play important roles in the pathogenesis and progression of breast cancer as well as estrogen-related diseases. Aromatase is a key enzyme in the rate-limiting step of estrogen production, in which its inhibition is one strategy for controlling estrogen levels to improve prognosis of estrogen-related cancers and diseases. Herein, a series of metal (Mn, Cu, and Ni) complexes of 8-hydroxyquinoline (8HQ) and uracil derivatives (4-9) were investigated for their aromatase inhibitory and cytotoxic activities. METHODS The aromatase inhibition assay was performed according to a Gentest™ kit using CYP19 enzyme, wherein ketoconazole and letrozole were used as reference drugs. The cytotoxicity was tested on normal embryonic lung cells (MRC-5) using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. RESULTS Only Cu complexes (6 and 9) exhibited aromatase inhibitory effect with IC50 0.30 and 1.7 μM, respectively. Cytotoxicity test against MRC-5 cells showed that Mn and Cu complexes (5 and 6), as well as free ligand 8HQ, exhibited activity with IC50 range 0.74-6.27 μM. CONCLUSION Cu complexes (6 and 9) were found to act as a novel class of aromatase inhibitor. Our findings suggest that these 8HQ-Cu-uracil complexes are promising agents that could be potentially developed as a selective anticancer agent for breast cancer and other estrogen-related diseases.
Collapse
Affiliation(s)
- Veda Prachayasittikul
- Department of Clinical Microbiology and Applied Technology, Faculty of Medical Technology, Mahidol University, Bangkok, Thailand
| | - Ratchanok Pingaew
- Department of Chemistry, Faculty of Science, Srinakharinwirot University, Bangkok, Thailand
| | - Chanin Nantasenamat
- Center of Data Mining and Biomedical Informatics, Faculty of Medical Technology, Mahidol University, Bangkok, Thailand
| | - Supaluk Prachayasittikul
- Center of Data Mining and Biomedical Informatics, Faculty of Medical Technology, Mahidol University, Bangkok, Thailand
| | - Somsak Ruchirawat
- Laboratory of Medicinal Chemistry, Chulabhorn Research Institute, Bangkok, Thailand ; Chulabhorn Graduate Institute, Bangkok, Thailand
| | - Virapong Prachayasittikul
- Department of Clinical Microbiology and Applied Technology, Faculty of Medical Technology, Mahidol University, Bangkok, Thailand
| |
Collapse
|