1
|
Ikeda Y, Matsuda S. Gut Protective Effect from D-Methionine or Butyric Acid against DSS and Carrageenan-Induced Ulcerative Colitis. Molecules 2023; 28:4392. [PMID: 37298868 PMCID: PMC10254188 DOI: 10.3390/molecules28114392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 05/25/2023] [Accepted: 05/26/2023] [Indexed: 06/12/2023] Open
Abstract
Microbiome dysbiosis resulting in altered metabolite profiles may be associated with certain diseases, including inflammatory bowel diseases (IBD), which are characterized by active intestinal inflammation. Several studies have indicated the beneficial anti-inflammatory effect of metabolites from gut microbiota, such as short-chain fatty acids (SCFAs) and/or D-amino acids in IBD therapy, through orally administered dietary supplements. In the present study, the potential gut protective effects of d-methionine (D-Met) and/or butyric acid (BA) have been investigated in an IBD mouse model. We have also built an IBD mouse model, which was cost-effectively induced with low molecular weight DSS and kappa-carrageenan. Our findings revealed that D-Met and/or BA supplementation resulted in the attenuation of the disease condition as well as the suppression of several inflammation-related gene expressions in the IBD mouse model. The data shown here may suggest a promising therapeutic potential for improving symptoms of gut inflammation with an impact on IBD therapy. However, molecular metabolisms need to be further explored.
Collapse
Affiliation(s)
| | - Satoru Matsuda
- Department of Food Science and Nutrition, Nara Women’s University, Kita-Uoya Nishimachi, Nara 630-8506, Japan;
| |
Collapse
|
2
|
Rivera Velez SM, Newkirk M, Roux A, Ellis G, Harlan R, Go MDA, Parimi PS, Graham D. Characterization of D-amino acids in colostral, transitional, and mature preterm human milk. Amino Acids 2023; 55:51-59. [PMID: 36580144 DOI: 10.1007/s00726-022-03204-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 09/08/2022] [Indexed: 12/30/2022]
Abstract
D-Amino acids are regulatory molecules that affect biological processes. Therefore, being able to accurately detect and quantify these compounds is important for understanding their impact on nutrition and health. There is a paucity of information regarding D-amino acids in human milk. We developed a fast method for simultaneous analysis of amino acid enantiomers in human milk using liquid chromatography with tandem mass spectrometry. The method enables the separation of 41 amino acids without chemical derivatization. Our results revealed that human milk from mothers of preterm infants contains concentrations of D-amino acids that range from 0.5 to 45% that of their L-counterparts and that levels of most D-amino acids decrease as the milk production matures. Moreover, we found that Holder pasteurization of milk does not cause racemization of L-amino acids. To our knowledge, this is the first study to describe percentages of D-amino acid levels in human milk; changes in D-amino acid concentration as the milk matures; and the effect of Holder pasteurization on D- and L-amino acid concentrations in human milk.
Collapse
Affiliation(s)
- Sol Maiam Rivera Velez
- Molecular Determinants Center and Core, Johns Hopkins All Children's Hospital, Saint Petersburg, FL, 33701, USA
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Maternal, Fetal and Neonatal Institute, Johns Hopkins All Children's Hospital, Saint Petersburg, FL, 33701, USA
| | - Melanie Newkirk
- Clinical Nutrition, Lactation, Milk Depot, Johns Hopkins All Children's Hospital, Saint Petersburg, FL, 33701, USA
| | - Aurelie Roux
- Molecular Determinants Center and Core, Johns Hopkins All Children's Hospital, Saint Petersburg, FL, 33701, USA
| | - Greg Ellis
- Molecular Determinants Center and Core, Johns Hopkins All Children's Hospital, Saint Petersburg, FL, 33701, USA
| | - Robert Harlan
- Molecular Determinants Center and Core, Johns Hopkins All Children's Hospital, Saint Petersburg, FL, 33701, USA
| | - Mitzi Donabel Ang Go
- Division of Neonatology, Department of Pediatrics, Doernbecher Children's Hospital, Oregon Health and Science University, Portland, OR, 97239, USA
| | - Prabhu Satya Parimi
- Division of Neonatology, Case Western Reserve University, Metro Health Medical Center, Cleveland, OH, 44109, USA
| | - David Graham
- Molecular Determinants Center and Core, Johns Hopkins All Children's Hospital, Saint Petersburg, FL, 33701, USA.
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
| |
Collapse
|
3
|
Ikeda Y, Taniguchi K, Sawamura H, Tsuji A, Matsuda S. Promising role of D-amino acids in irritable bowel syndrome. World J Gastroenterol 2022; 28:4471-4474. [PMID: 36159020 PMCID: PMC9453761 DOI: 10.3748/wjg.v28.i31.4471] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 06/14/2022] [Accepted: 07/22/2022] [Indexed: 02/06/2023] Open
Abstract
Irritable bowel syndrome (IBS) is an important health care concern. Alterations in the microbiota of the gut-brain axis may be linked to the pathophysiology of IBS. Some dietary intake could contribute to produce various metabolites including D-amino acids by the fermentation by the gut microbiota. D-amino acids are the enantiomeric counterparts of L-amino acids, in general, which could play key roles in cellular physiological processes against various oxidative stresses. Therefore, the presence of D-amino acids has been shown to be linked to the protection of several organs in the body. In particular, the gut microbiota could play significant roles in the stability of emotion via the action of D-amino acids. Here, we would like to shed light on the roles of D-amino acids, which could be used for the treatment of IBS.
Collapse
Affiliation(s)
- Yuka Ikeda
- Department of Food Science and Nutrition, Nara Women's University, Nara 630-8506, Japan
| | - Kurumi Taniguchi
- Department of Food Science and Nutrition, Nara Women's University, Nara 630-8506, Japan
| | - Haruka Sawamura
- Department of Food Science and Nutrition, Nara Women's University, Nara 630-8506, Japan
| | - Ai Tsuji
- Department of Food Science and Nutrition, Nara Women's University, Nara 630-8506, Japan
| | - Satoru Matsuda
- Department of Food Science and Nutrition, Nara Women's University, Nara 630-8506, Japan
| |
Collapse
|
4
|
Wang P, Zhou W, Liu J, Sui F, Wang Z. Modulome-Fangjiome Association Study (MoFAS) reveals differential target distribution among four similar fangjis (formulas). JOURNAL OF ETHNOPHARMACOLOGY 2021; 279:113822. [PMID: 33460760 DOI: 10.1016/j.jep.2021.113822] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 01/09/2021] [Accepted: 01/11/2021] [Indexed: 06/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Precise target distribution is a key issue for further appropriate applications of fangjis (formulas) with similar efficacy and herbal constituents to maximize efficacy and minimize toxicity. AIM OF THE STUDY To develop an algorithm for investigating the differential target distributions and characteristic mechanisms of fangjis. MAIN METHODS In this study, we proposed a Modulome-Fangjiome Association Study (MoFAS) for comparing fangjis from qi-invigorating and xue-nourishing fangjiome (represented by four fangjis: FEJ, SDT, LYG and QOL). Firstly, the database-driven target network of these 4 fangjis was constructed as qi-xue network and decomposed into modules. Then, the modular map with functional landscape were constructed based on consistency score and enrichment analysis. Finally, we employed a targeting rate (TR) matrix to assess the contribution of this fangjiome to modulome (a set of modules) and compared characteristic effect of fangjis by principal component analysis (PCA). RESULTS A qi-xue network constituted by 579 proteins and 23 modules were constructed. In the functional landscape, 3 primary modules were mainly involved in the endocrine system and environmental adaptation. For the target distribution, SDT and QOL were more similar; the FEJ and LYG were located distant from other fangjis according to PCA. The common effects of FEJ, SDT, and QOL focused on stress response and organism development in environmental perturbation, but the FEJ was superior in regulating critical targets, primarily focusing on hormone and neurotransmitter processes. SDT and QOL were concentrated on the majority scale of the qi-xue network, especially for the mitotic cell cycle and development. LYG only targeted lymphocyte costimulation and icosanoid biosynthetic processes. CONCLUSION In this study, for the first time, we investigated the difference in the target distribution of qi-invigorating and xue-nourishing fangjiome and provided direct evidence for the characteristic therapeutic effect of these fangjis, which may promote the precise application of fangjis and support the identification of appropriate populations.
Collapse
Affiliation(s)
- Pengqian Wang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Weiwei Zhou
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Jun Liu
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Feng Sui
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Zhong Wang
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| |
Collapse
|
5
|
Shen J. D-Amino acid substituted peptides as potential alternatives of homochiral L-configurations. Amino Acids 2021; 53:265-280. [PMID: 33537892 DOI: 10.1007/s00726-021-02947-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 01/22/2021] [Indexed: 11/28/2022]
Abstract
On the primitive Earth, both L- and D-amino acids would have been present. However, only L-amino acids are essential blocks to construct proteins in modern life. To study the relative stability of D-amino acid substituted peptides, a variety of computational methods were applied. Ten prebiotic amino acids (Gly, Ala, Asp, Glu, Ile, Leu, Pro, Ser, Thr, and Val) were previously determined by multiple meteorite, spark discharge, and hydrothermal vent studies. Some previously reported early Earth polypeptide analogs were focused on in this study. Tripeptides composed of only Asp, Ser, and Val exemplified that different positions (i.e., N-terminus, C-terminus, and middle) made a difference in the minimal folding energy of peptides, while the chemical classification of amino acid (hydrophobic, acidic, or hydroxylic) did not show a significant difference. Hierarchical cluster analysis for dipeptides with all possible combinations of the proposed ten prebiotic amino acids and their D-amino acid substituted derivatives generated five clusters. Primordial simple polypeptides were modeled to test the significance of molecular fluctuations, secondary structure occupancies, and folding energy differences based on these clusters. We found peptides with α-helices, long β-sheets, and long loops are usually less sensitive to D-amino acid replacements in comparison to short β-sheets. Intriguingly, amongst 129 D-amino acid residues, mutation sensitivity profiles presented that the ratio of more to less stable residues was about 1. In conclusion, some combinations of a mixture of L- and D-amino acids can potentially act as essential building blocks of life.
Collapse
Affiliation(s)
- Jianxun Shen
- School of Earth and Environmental Sciences and Centre for Exoplanet Science, University of St Andrews, St Andrews, KY16 9AL, UK.
| |
Collapse
|
6
|
He H, Shi X, Lawrence A, Hrovat J, Turner C, Cui JY, Gu H. 2,2',4,4'-tetrabromodiphenyl ether (BDE-47) induces wide metabolic changes including attenuated mitochondrial function and enhanced glycolysis in PC12 cells. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 201:110849. [PMID: 32559690 DOI: 10.1016/j.ecoenv.2020.110849] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 05/25/2020] [Accepted: 06/01/2020] [Indexed: 06/11/2023]
Abstract
Polybrominated diphenyl ethers (PBDEs) are extensively used as brominated flame retardants in various factory products. As environmental pollutants, the adverse effects of PBDEs on human health have been receiving considerable attention. However, the precise fundamental mechanisms of toxicity induced by PBDEs are still not fully understood. In this study, the mechanism of cytotoxicity induced by 2,2',4,4'-tetrabromodiphenyl ether (BDE-47) was investigated by combining Seahorse XFp analysis and mass spectrometry-based metabolomics and flux approaches in PC12 cells, one of the most widely used neuron-like cell lines for investigating cytotoxic effects. The Seahorse results suggest that BDE-47 significantly attenuated mitochondrial respiration and enhanced glycolysis in PC12 cells. Additionally, metabolomics results revealed the reduction of TCA metabolites such as citrate, succinate, aconitate, malate, fumarate, and glutamate after BDE-47 exposure. Metabolic flux analysis showed that BDE-47 exposure reduced the oxidative metabolic capacity of mitochondria in PC12 cells. Furthermore, various altered metabolites were found in multiple metabolic pathways, especially in glycine-serine-threonine metabolism and glutathione metabolism. A total of 17 metabolic features were determined in order to distinguish potentially disturbed metabolite markers of BDE-47 exposure. Our findings provide possible biomarkers of cytotoxic effects induced by BDE-47 exposure, and elicit a deeper understanding of the intramolecular mechanisms that could be used in further studies to validate the potential neurotoxicity of PBDEs in vivo. Based on our results, therapeutic approaches targeting mitochondrial function and the glycolysis pathway may be a promising direction against PBDE exposure.
Collapse
Affiliation(s)
- Hailang He
- Department of Respiratory Medicine, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province, 210029, PR China; Arizona Metabolomics Laboratory, College of Health Solutions, Arizona State University, Scottsdale, AZ, 85259, USA
| | - Xiaojian Shi
- Arizona Metabolomics Laboratory, College of Health Solutions, Arizona State University, Scottsdale, AZ, 85259, USA
| | - Alex Lawrence
- Arizona Metabolomics Laboratory, College of Health Solutions, Arizona State University, Scottsdale, AZ, 85259, USA
| | - Jonathan Hrovat
- Arizona Metabolomics Laboratory, College of Health Solutions, Arizona State University, Scottsdale, AZ, 85259, USA
| | - Cassidy Turner
- Arizona Metabolomics Laboratory, College of Health Solutions, Arizona State University, Scottsdale, AZ, 85259, USA
| | - Julia Yue Cui
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, 98105, USA.
| | - Haiwei Gu
- Arizona Metabolomics Laboratory, College of Health Solutions, Arizona State University, Scottsdale, AZ, 85259, USA.
| |
Collapse
|
7
|
Aso K, Nishigawa T, Nagamachi S, Takakura M, Furuse M. Orally administrated D-arginine exhibits higher enrichment in the brain and milk than L-arginine in ICR mice. J Vet Med Sci 2020; 82:307-313. [PMID: 31932535 PMCID: PMC7118480 DOI: 10.1292/jvms.19-0630] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
D-Amino acids exert various physiological functions and are widely present in animals.
However, they are absorbed to a lesser extent than L-amino acids. Little is known about
D-arginine (D-Arg); however, its isomer L-Arg serves as a substrate for several
metabolites and exhibits various functions including promotion of growth hormone
secretion. Milk is the only nutrient source for infants; it plays an important role during
their initial growth and brain development. No studies have evaluated the availability of
D-Arg in the brain and milk in mammals. Here, we have studied the differential
availability of orally administered D- and L-Arg in the brain and milk using ICR mice. Our
results revealed that without D-Arg administration, D-Arg was undetectable in both plasma
and brain samples. However, the plasma D-Arg was about twice the concentration of L-Arg
post administration of the same. In the cerebral cortex and hypothalamus, L-Arg
concentration remained almost constant for over period of 90 min after L-Arg treatment.
Nevertheless, the L-Arg concentration decreased after D-Arg administration with time
compared to the case post L-Arg administration. Contrastingly, D-Arg level sharply
increased at both the brain regions with time after D-Arg treatment. Furthermore, L-Arg
concentration in the milk hardly increased after L-Arg administration. Interestingly, oral
administration of D-Arg showed efficient enrichment of D-Arg in milk, compared with L-Arg.
Thus, our results imply that D-Arg may be available for brain development and infant
nourishment through milk as an oral drug and/or nutrient supplement.
Collapse
Affiliation(s)
- Kenta Aso
- Laboratory of Regulation in Metabolism and Behavior, Faculty of Agriculture, Kyushu University, Fukuoka 819-0395, Japan
| | - Takuma Nishigawa
- Laboratory of Regulation in Metabolism and Behavior, Faculty of Agriculture, Kyushu University, Fukuoka 819-0395, Japan
| | - Satsuki Nagamachi
- Laboratory of Regulation in Metabolism and Behavior, Faculty of Agriculture, Kyushu University, Fukuoka 819-0395, Japan
| | - Mayumi Takakura
- Laboratory of Regulation in Metabolism and Behavior, Faculty of Agriculture, Kyushu University, Fukuoka 819-0395, Japan
| | - Mitsuhiro Furuse
- Laboratory of Regulation in Metabolism and Behavior, Faculty of Agriculture, Kyushu University, Fukuoka 819-0395, Japan
| |
Collapse
|
8
|
Luo S, Ju Y, Zhou J, Gu Q, Xu J, Zhou H. Crystal structure of CntK, the cofactor-independent histidine racemase in staphylopine-mediated metal acquisition of Staphylococcus aureus. Int J Biol Macromol 2019; 135:725-733. [DOI: 10.1016/j.ijbiomac.2019.05.169] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 05/22/2019] [Accepted: 05/22/2019] [Indexed: 11/29/2022]
|
9
|
Nagano T, Yamao S, Terachi A, Yarimizu H, Itoh H, Katasho R, Kawai K, Nakashima A, Iwasaki T, Kikkawa U, Kamada S. d-amino acid oxidase promotes cellular senescence via the production of reactive oxygen species. Life Sci Alliance 2019; 2:2/1/e201800045. [PMID: 30659069 PMCID: PMC6339261 DOI: 10.26508/lsa.201800045] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 01/11/2019] [Accepted: 01/11/2019] [Indexed: 12/13/2022] Open
Abstract
This study reveals a novel role of d-amino acid oxidase in promoting cellular senescence induced by genotoxic stresses via enzymatic generation of reactive oxygen species. d-amino acid oxidase (DAO) is a flavin adenine dinucleotide (FAD)–dependent oxidase metabolizing neutral and polar d-amino acids. Unlike l-amino acids, the amounts of d-amino acids in mammalian tissues are extremely low, and therefore, little has been investigated regarding the physiological role of DAO. We have recently identified DAO to be up-regulated in cellular senescence, a permanent cell cycle arrest induced by various stresses, such as persistent DNA damage and oxidative stress. Because DAO produces reactive oxygen species (ROS) as byproducts of substrate oxidation and the accumulation of ROS mediates the senescence induction, we explored the relationship between DAO and senescence. We found that inhibition of DAO impaired senescence induced by DNA damage, and ectopic expression of wild-type DAO, but not enzymatically inactive mutant, enhanced it in an ROS-dependent manner. Furthermore, addition of d-amino acids and riboflavin, a metabolic precursor of FAD, to the medium potentiated the senescence-promoting effect of DAO. These results indicate that DAO promotes senescence through the enzymatic ROS generation, and its activity is regulated by the availability of its substrate and coenzyme.
Collapse
Affiliation(s)
- Taiki Nagano
- Biosignal Research Center, Kobe University, Kobe, Japan.,Department of Biology, Graduate School of Science, Kobe University, Kobe, Japan
| | - Shunsuke Yamao
- Department of Biology, Graduate School of Science, Kobe University, Kobe, Japan
| | - Anju Terachi
- Department of Biology, Graduate School of Science, Kobe University, Kobe, Japan
| | - Hidetora Yarimizu
- Department of Biology, Graduate School of Science, Kobe University, Kobe, Japan
| | - Haruki Itoh
- Department of Biology, Graduate School of Science, Kobe University, Kobe, Japan
| | - Ryoko Katasho
- Department of Biology, Faculty of Science, Kobe University, Kobe, Japan
| | - Kosuke Kawai
- Department of Biology, Graduate School of Science, Kobe University, Kobe, Japan
| | - Akio Nakashima
- Biosignal Research Center, Kobe University, Kobe, Japan.,Department of Bioresource Science, Graduate School of Agricultural Science, Kobe University, Kobe, Japan
| | - Tetsushi Iwasaki
- Biosignal Research Center, Kobe University, Kobe, Japan.,Department of Biology, Graduate School of Science, Kobe University, Kobe, Japan.,Department of Biology, Faculty of Science, Kobe University, Kobe, Japan
| | - Ushio Kikkawa
- Biosignal Research Center, Kobe University, Kobe, Japan.,Department of Bioresource Science, Graduate School of Agricultural Science, Kobe University, Kobe, Japan
| | - Shinji Kamada
- Biosignal Research Center, Kobe University, Kobe, Japan .,Department of Biology, Graduate School of Science, Kobe University, Kobe, Japan.,Department of Biology, Faculty of Science, Kobe University, Kobe, Japan
| |
Collapse
|
10
|
Fraschetti C, Montagna M, Crestoni ME, Calcaterra A, Aiello F, Santi L, Filippi A. Kinetic enantioselectivity of a protonated bis(diamido)-bridged basket resorcin[4]arene towards alanine peptides. Org Biomol Chem 2018; 15:1183-1189. [PMID: 28084488 DOI: 10.1039/c6ob02734b] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Efficient enantiodiscrimination of some alanine-containing di- and tri-peptides by using chiral protonated bis(diamido)-bridged basket resorcin[4]arenes depends on several factors, including the basicity of the amino acid residues at the C- and N-termini of the peptide.
Collapse
Affiliation(s)
- C Fraschetti
- Dipartimento di Chimica e Tecnologie del Farmaco, "Sapienza" Università di Roma, P.le A. Moro 5, 00185 Roma, Italy.
| | - M Montagna
- Dipartimento di Chimica e Tecnologie del Farmaco, "Sapienza" Università di Roma, P.le A. Moro 5, 00185 Roma, Italy.
| | - M E Crestoni
- Dipartimento di Chimica e Tecnologie del Farmaco, "Sapienza" Università di Roma, P.le A. Moro 5, 00185 Roma, Italy.
| | - A Calcaterra
- Dipartimento di Chimica e Tecnologie del Farmaco, "Sapienza" Università di Roma, P.le A. Moro 5, 00185 Roma, Italy.
| | - F Aiello
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, Pisa, Italy
| | - L Santi
- Dipartimento di Chimica e Tecnologie del Farmaco, "Sapienza" Università di Roma, P.le A. Moro 5, 00185 Roma, Italy.
| | - A Filippi
- Dipartimento di Chimica e Tecnologie del Farmaco, "Sapienza" Università di Roma, P.le A. Moro 5, 00185 Roma, Italy.
| |
Collapse
|
11
|
Mitochondrial dysfunction associated with nitric oxide pathways in glutamate neurotoxicity. CLINICA E INVESTIGACION EN ARTERIOSCLEROSIS 2017; 29:92-97. [DOI: 10.1016/j.arteri.2016.04.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Revised: 03/30/2016] [Accepted: 04/05/2016] [Indexed: 12/26/2022]
|