1
|
Hao QQ, Chen XM, Pannecouque C, De Clercq E, Wang S, Chen FE. Structure-directed linker optimization of novel HEPTs as non-nucleoside inhibitors of HIV-1 reverse transcriptase. Bioorg Chem 2023; 133:106413. [PMID: 36791619 DOI: 10.1016/j.bioorg.2023.106413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 02/02/2023] [Accepted: 02/03/2023] [Indexed: 02/11/2023]
Abstract
1-[(2-Hydroxyethoxy)methyl]-6-(phenylthio)thymines (HEPTs) have been previously described as an important class of HIV-1 nonnucleoside reverse transcriptase inhibitors (NNRTIs). In our continuously pursuing HEPT optimization efforts, a series of novel HEPTs, featuring -C(OH)CH2R, -CC, or -CHCH2R linker at the benzylic α-methylene unit, were developed as NNRTIs. Among these new HEPTs, the compound C20 with -CHCH3 group at the benzylic α-methylene unit conferred the highest potency toward WT HIV-1 and selectivity (EC50 = 0.23 μM, SI = 150.20), which was better than the lead compound HEPT (EC50 = 7 μM, SI = 106). Also, C20 was endowed with high efficacy against clinically relevant mutant strains (EC50(L100I) = 1.07 μM; EC50(K103N) = 4.33 μM; EC50(Y181C) = 5.57 μM; EC50(E138K) = 1.06 μM; EC50(F227L+V106A) = 5.45 μM) and wild-type HIV-1 reverse transcriptase (RT) with an IC50 value of 0.55 μM. Molecular docking and molecular dynamics simulations, as well as preliminary structure-activity relationship (SAR) analysis of these new compounds, provided a deeper insight into the key structural features of the interactions between HEPT analogs and HIV-1 RT and laid the foundation for further modification on HEPT scaffold.
Collapse
Affiliation(s)
- Qing-Qing Hao
- Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of Chemistry, Fudan University, Shanghai 200433, China; Shanghai Engineering Center of Industrial Asymmetric Catalysis for Chiral Drugs, Shanghai 200433, China; Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Xiao-Mei Chen
- Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | | | - Erik De Clercq
- Rega Institute for Medical Research, KU Leuven, Herestraat 49, B-3000 Leuven, Belgium
| | - Shuai Wang
- Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of Chemistry, Fudan University, Shanghai 200433, China; Shanghai Engineering Center of Industrial Asymmetric Catalysis for Chiral Drugs, Shanghai 200433, China.
| | - Fen-Er Chen
- Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of Chemistry, Fudan University, Shanghai 200433, China; Shanghai Engineering Center of Industrial Asymmetric Catalysis for Chiral Drugs, Shanghai 200433, China; Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
2
|
Karimi N, Roudsari RV, Hajimahdi Z, Zarghi A. Design, Synthesis and Docking Studies of Thioimidazolyl Diketoacid Derivatives Targeting HIV-1 Integrase. Med Chem 2021; 18:616-628. [PMID: 34587886 DOI: 10.2174/1573406417666210929124944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 07/05/2021] [Accepted: 08/07/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Integrase enzyme is a validated drug target to discover novel structures as anti-HIV-1 agents. OBJECTIVE Novel series of thioimidazolyl diketo acid derivatives characterizing various substituents at N-1 and 2-thio positions of central ring were developed as HIV-1 integrase inhibitors. RESULTS The obtained molecules were evaluated in the enzyme assay, displaying promising integrase inhibitory activity with IC50 values ranging from 0.9 to 7.7 M. The synthesized compounds were also tested for antiviral activity and cytotoxicity using HeLa cells infected by the single-cycle replicable HIV-1 NL4-3. CONCLUSION The most potent compound was 18i with EC50=19 µM, IC50 0.9 µM and SI= 10.5. Docking studies indicated that the binding mode of the active molecule is well aligned with the known HIV-1 integrase inhibitors.
Collapse
Affiliation(s)
- Nafiseh Karimi
- Department of Pharmaceutical Chemistry, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran. Iran
| | - Rouhollah Vahabpour Roudsari
- Department of Medical Lab technology, School of Allied Medical Sciences of Shahid Beheshti University of Medical Sciences, Tehran. Iran
| | - Zahra Hajimahdi
- Department of Pharmaceutical Chemistry, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran. Iran
| | - Afshin Zarghi
- Department of Pharmaceutical Chemistry, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran. Iran
| |
Collapse
|
3
|
Karimi N, Vahabpour Roudsari R, Azami Movahed M, Hajimahdi Z, Zarghi A. 4-(1-Benzyl-1 H-benzo[ d]imidazol-2-yl)-4-oxo-2-butenoic Acid Derivatives: Design, Synthesis and Anti-HIV-1 Activity. IRANIAN JOURNAL OF PHARMACEUTICAL RESEARCH : IJPR 2021; 20:408-417. [PMID: 34400969 PMCID: PMC8170749 DOI: 10.22037/ijpr.2020.114341.14803] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Acquired immunodeficiency syndrome (AIDS) is still an incurable disease with increasing mortality rate. Despite the development of effective FDA-approved anti-HIV drugs, there are some problems due to the growing of resistant viral strands. Therefore, discovery of novel anti-HIV agents is so needed. Integrase, targeted in highly active antiretroviral therapy (HAART), is a crucial enzyme in viral replication. In this study, new benzimidazolyl diketo acid derivatives were designed according to required features for inhibitors of HIV-1 integrase. Designed compounds were synthesized and evaluated for anti-HIV-1 effects. According to the cell-based biological assay’s results, most of the tested compounds demonstrated good anti-HIV-1 activity, ranging from 40-90 µM concentration with no severe cytotoxicity. The most potent compound was 13g with EC50 value of 40 µM and CC50 value of 550 µM. Docking analysis of compound 13g in integrase active site was in good agreement with well-known integrase inhibitors, proposing that anti-HIV-1 potency of compounds may be via integrase inhibition.
Collapse
Affiliation(s)
- Nafiseh Karimi
- Department of Pharmaceutical Chemistry, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Student Research Committee, Department of Pharmaceutical Chemistry, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Rouhollah Vahabpour Roudsari
- Department of Medical Lab Technology, School of Allied Medical Sciences of Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahsa Azami Movahed
- Department of Pharmaceutical Chemistry, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zahra Hajimahdi
- Department of Pharmaceutical Chemistry, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Afshin Zarghi
- Department of Pharmaceutical Chemistry, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
4
|
Five-Membered Cyclic Carbonates: Versatility for Applications in Organic Synthesis, Pharmaceutical, and Materials Sciences. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11115024] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
This review presents the recent advances involving several applications of five-membered cyclic carbonates and derivatives. With more than 150 references, it covers the period from 2012 to 2020, with special emphasis on the use of five-membered cyclic carbonates as building blocks for organic synthesis and material elaboration. We demonstrate the application of cyclic carbonates in several important chemical transformations, such as decarboxylation, hydrogenation, and transesterification reactions, among others. The presence of cyclic carbonates in molecules with high biological potential is also displayed, together with the importance of these compounds in the preparation of materials such as urethanes, polyurethanes, and flame retardants.
Collapse
|
5
|
Ghimire D, Kc Y, Timilsina U, Goel K, Nitz TJ, Wild CT, Gaur R. A single G10T polymorphism in HIV-1 subtype C Gag-SP1 regulates sensitivity to maturation inhibitors. Retrovirology 2021; 18:9. [PMID: 33836787 PMCID: PMC8033686 DOI: 10.1186/s12977-021-00553-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 03/23/2021] [Indexed: 08/30/2023] Open
Abstract
BACKGROUND Maturation inhibitors (MIs) potently block HIV-1 maturation by inhibiting the cleavage of the capsid protein and spacer peptide 1 (CA-SP1). Bevirimat (BVM), a highly efficacious first-in-class MI against HIV-1 subtype B isolates, elicited sub-optimal efficacy in clinical trials due to polymorphisms in the CA-SP1 region of the Gag protein (SP1:V7A). HIV-1 subtype C inherently contains this polymorphism thus conferring BVM resistance, however it displayed sensitivity to second generation BVM analogs. RESULTS In this study, we have assessed the efficacy of three novel second-generation MIs (BVM analogs: CV-8611, CV-8612, CV-8613) against HIV-1 subtype B and C isolates. The BVM analogs were potent inhibitors of both HIV-1 subtype B (NL4-3) and subtype C (K3016) viruses. Serial passaging of the subtype C, K3016 virus strain in the presence of BVM analogs led to identification of two mutant viruses-Gag SP1:A1V and CA:I201V. While the SP1:A1V mutant was resistant to the MIs, the CA:I120V mutant displayed partial resistance and a MI-dependent phenotype. Further analysis of the activity of the BVM analogs against two additional HIV-1 subtype C strains, IndieC1 and ZM247 revealed that they had reduced sensitivity as compared to K3016. Sequence analysis of the three viruses identified two polymorphisms at SP1 residues 9 and 10 (K3016: N9, G10; IndieC1/ZM247: S9, T10). The N9S and S9N mutants had no change in MI-sensitivity. On the other hand, replacing glycine at residue 10 with threonine in K3016 reduced its MI sensitivity whereas introducing glycine at SP1 10 in place of threonine in IndieC1 and ZM247 significantly enhanced their MI sensitivity. Thus, the specific glycine residue 10 of SP1 in the HIV-1 subtype C viruses determined sensitivity towards BVM analogs. CONCLUSIONS We have identified an association of a specific glycine at position 10 of Gag-SP1 with an MI susceptible phenotype of HIV-1 subtype C viruses. Our findings have highlighted that HIV-1 subtype C viruses, which were inherently resistant to BVM, may also be similarly predisposed to exhibit a significant degree of resistance to second-generation BVM analogs. Our work has strongly suggested that genetic differences between HIV-1 subtypes may produce variable MI sensitivity that needs to be considered in the development of novel, potent, broadly-active MIs.
Collapse
Affiliation(s)
- Dibya Ghimire
- Faculty of Life Sciences and Biotechnology, South Asian University, New Delhi, 110021, India
| | - Yuvraj Kc
- Faculty of Life Sciences and Biotechnology, South Asian University, New Delhi, 110021, India
| | - Uddhav Timilsina
- Faculty of Life Sciences and Biotechnology, South Asian University, New Delhi, 110021, India.,Department of Microbiology and Immunology, University at Buffalo, Buffalo, NY, 14203, USA
| | - Kriti Goel
- Faculty of Life Sciences and Biotechnology, South Asian University, New Delhi, 110021, India
| | - T J Nitz
- DFH Pharma, Gaithersburg, MD, 20886, USA
| | | | - Ritu Gaur
- Faculty of Life Sciences and Biotechnology, South Asian University, New Delhi, 110021, India.
| |
Collapse
|
6
|
Swidorski JJ, Jenkins S, Hanumegowda U, Parker DD, Beno BR, Protack T, Ng A, Gupta A, Shanmugam Y, Dicker IB, Krystal M, Meanwell NA, Regueiro-Ren A. Design and exploration of C-3 benzoic acid bioisosteres and alkyl replacements in the context of GSK3532795 (BMS-955176) that exhibit broad spectrum HIV-1 maturation inhibition. Bioorg Med Chem Lett 2021; 36:127823. [PMID: 33508465 DOI: 10.1016/j.bmcl.2021.127823] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 01/11/2021] [Accepted: 01/18/2021] [Indexed: 11/30/2022]
Abstract
GSK3532795 (formerly BMS-955176) is a second-generation HIV-1 maturation inhibitor that has shown broad spectrum antiviral activity and preclinical PK predictive of once-daily dosing in humans. Although efficacy was confirmed in clinical trials, the observation of gastrointestinal intolerability and the emergence of drug resistant virus in a Phase 2b clinical study led to the discontinuation of GSK3532795. As part of the effort to further map the maturation inhibitor pharmacophore and provide additional structural options, the evaluation of alternates to the C-3 phenyl substituent in this chemotype was pursued. A cyclohexene carboxylic acid provided exceptional inhibition of wild-type, V370A and ΔV370 mutant viruses in addition to a suitable PK profile following oral dosing to rats. In addition, a novel spiro[3.3]hept-5-ene was designed to extend the carboxylic acid further from the triterpenoid core while reducing side chain flexibility compared to the other alkyl substituents. This modification was shown to closely emulate the C-3 benzoic acid moiety of GSK3532795 from both a potency and PK perspective, providing a non-traditional, sp3-rich bioisostere of benzene. Herein, we detail additional modifications to the C-3 position of the triterpenoid core that offer effective replacements for the benzoic acid of GSK3532795 and capture the interplay between these new C-3 elements and C-17 modifications that contribute to enhanced polymorph coverage.
Collapse
Affiliation(s)
- Jacob J Swidorski
- Department of Discovery Chemistry, Bristol Myers Squibb Research and Development, 5 Research Parkway, Wallingford, CT 06492, USA.
| | - Susan Jenkins
- Department of Pharmaceutical Candidate Optimization, Bristol Myers Squibb Research and Development, 5 Research Parkway, Wallingford, CT 06492, USA
| | - Umesh Hanumegowda
- Department of Pharmaceutical Candidate Optimization, Bristol Myers Squibb Research and Development, 5 Research Parkway, Wallingford, CT 06492, USA
| | - Dawn D Parker
- Department of Pharmaceutical Candidate Optimization, Bristol Myers Squibb Research and Development, 5 Research Parkway, Wallingford, CT 06492, USA
| | - Brett R Beno
- Department of Computer-Assisted Drug Design, Bristol Myers Squibb Research and Development, 5 Research Parkway, Wallingford, CT 06492, USA
| | - Tricia Protack
- Department of Virology, Bristol Myers Squibb Research and Development, 5 Research Parkway, Wallingford, CT 06492, USA
| | - Alicia Ng
- Department of Discovery Chemistry, Bristol Myers Squibb Research and Development, 5 Research Parkway, Wallingford, CT 06492, USA
| | - Anuradha Gupta
- Biocon Bristol Myers Squibb Research & Development Center, Bangalore, India
| | - Yoganand Shanmugam
- Biocon Bristol Myers Squibb Research & Development Center, Bangalore, India
| | - Ira B Dicker
- Department of Virology, Bristol Myers Squibb Research and Development, 5 Research Parkway, Wallingford, CT 06492, USA
| | - Mark Krystal
- Department of Virology, Bristol Myers Squibb Research and Development, 5 Research Parkway, Wallingford, CT 06492, USA
| | - Nicholas A Meanwell
- Department of Discovery Chemistry, Bristol Myers Squibb Research and Development, 5 Research Parkway, Wallingford, CT 06492, USA
| | - Alicia Regueiro-Ren
- Department of Discovery Chemistry, Bristol Myers Squibb Research and Development, 5 Research Parkway, Wallingford, CT 06492, USA
| |
Collapse
|
7
|
Differding E. Trends in Drug Discovery over Five Decades – The European Federation for Medicinal Chemistry International Symposium on Medicinal Chemistry (EFMC−ISMC). ChemMedChem 2020; 15:2352-2358. [DOI: 10.1002/cmdc.202000840] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Indexed: 01/08/2023]
Affiliation(s)
- Edmond Differding
- Differding Consulting srl Route de Blocry, 55 1348 Louvain-la-Neuve Belgium
| |
Collapse
|
8
|
Safakish M, Hajimahdi Z, Vahabpour R, Zabihollahi R, Zarghi A. Novel Benzoxazin-3-one Derivatives: Design, Synthesis, Molecular Modeling, Anti-HIV-1 and Integrase Inhibitory Assay. Med Chem 2020; 16:938-946. [DOI: 10.2174/1573406415666190826161123] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Revised: 08/05/2019] [Accepted: 08/08/2019] [Indexed: 01/17/2023]
Abstract
Introduction:
Integrase is a validated drug target for anti-HIV-1 therapy. The second
generation integrase inhibitors display π-stacking interaction ability with 3’-end nucleotide as a
streamlined metal chelating pharmacophore.
Method:
In this study, we introduced benzoxazin-3-one scaffold for integrase inhibitory potential
as bioisostere replacement strategy of 2-benzoxazolinone.
Results:
Molecular modeling studies revealed that amide functionality alongside oxadiazole heteroatoms
and sulfur in the second position of oxadiazole ring could mimic the metal chelating
pharmacophore. The halobenzyl ring occupies hydrophobic site created by the cytidylate nucleotide
(DC-16).
Conclusion:
The most potent and selective compound displayed 110 μM IC50 with a selectivity
index of more than 2.
Collapse
Affiliation(s)
- Mahdieh Safakish
- Department of Medicinal Chemistry, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zahra Hajimahdi
- Department of Medicinal Chemistry, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Rouhollah Vahabpour
- Medical Lab Technology Department, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Rezvan Zabihollahi
- Medical Lab Technology Department, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Afshin Zarghi
- Department of Medicinal Chemistry, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
9
|
Gomes CB, Balaguez RA, Larroza A, Smaniotto TA, Domingues M, Casaril AM, Silva MS, Rodrigues OED, Savegnago L, Alves D. Organocatalysis in the Synthesis of 1,2,3‐Triazoyl‐zidovudine Derivatives: Synthesis and Preliminary Antioxidant Activity. ChemistrySelect 2020. [DOI: 10.1002/slct.202003355] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Carolina B. Gomes
- LASOL-CCQFA Universidade Federal de Pelotas - UFPel P.O. Box 354 96010-900 Pelotas RS Brazil
| | - Renata A. Balaguez
- LASOL-CCQFA Universidade Federal de Pelotas - UFPel P.O. Box 354 96010-900 Pelotas RS Brazil
| | - Allya Larroza
- LASOL-CCQFA Universidade Federal de Pelotas - UFPel P.O. Box 354 96010-900 Pelotas RS Brazil
| | - Thiago A. Smaniotto
- Programa de Pós-Graduação em Biotecnologia (PPGB) Universidade Federal de Pelotas - UFPel Pelotas RS Brazil
| | - Micaela Domingues
- Programa de Pós-Graduação em Biotecnologia (PPGB) Universidade Federal de Pelotas - UFPel Pelotas RS Brazil
| | - Angela M. Casaril
- Programa de Pós-Graduação em Biotecnologia (PPGB) Universidade Federal de Pelotas - UFPel Pelotas RS Brazil
| | - Márcio S. Silva
- LASOL-CCQFA Universidade Federal de Pelotas - UFPel P.O. Box 354 96010-900 Pelotas RS Brazil
| | - Oscar E. D. Rodrigues
- LabSelen-NanoBio - Departamento de Química Universidade Federal de Santa Maria UFSM 97115-900 Santa Maria RS Brazil
| | - Lucielli Savegnago
- Programa de Pós-Graduação em Biotecnologia (PPGB) Universidade Federal de Pelotas - UFPel Pelotas RS Brazil
| | - Diego Alves
- LASOL-CCQFA Universidade Federal de Pelotas - UFPel P.O. Box 354 96010-900 Pelotas RS Brazil
| |
Collapse
|
10
|
Repurposing Drugs to Fight Hepatic Malaria Parasites. Molecules 2020; 25:molecules25153409. [PMID: 32731386 PMCID: PMC7435416 DOI: 10.3390/molecules25153409] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 07/23/2020] [Accepted: 07/24/2020] [Indexed: 12/16/2022] Open
Abstract
Malaria remains one of the most prevalent infectious diseases worldwide, primarily affecting some of the most vulnerable populations around the globe. Despite achievements in the treatment of this devastating disease, there is still an urgent need for the discovery of new drugs that tackle infection by Plasmodium parasites. However, de novo drug development is a costly and time-consuming process. An alternative strategy is to evaluate the anti-plasmodial activity of compounds that are already approved for other purposes, an approach known as drug repurposing. Here, we will review efforts to assess the anti-plasmodial activity of existing drugs, with an emphasis on the obligatory and clinically silent liver stage of infection. We will also review the current knowledge on the classes of compounds that might be therapeutically relevant against Plasmodium in the context of other communicable diseases that are prevalent in regions where malaria is endemic. Repositioning existing compounds may constitute a faster solution to the current gap of prophylactic and therapeutic drugs that act on Plasmodium parasites, overall contributing to the global effort of malaria eradication.
Collapse
|
11
|
Kamyar K, Safakish M, Zebardast T, Hajimahdi Z, Zarghi A. Molecular Docking and QSAR Study of 2-Benzoxazolinone, Quinazoline and Diazocoumarin Derivatives as Anti-HIV-1 Agents. IRANIAN JOURNAL OF PHARMACEUTICAL RESEARCH : IJPR 2020; 18:1253-1263. [PMID: 32641936 PMCID: PMC6934961 DOI: 10.22037/ijpr.2019.1100746] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
A series of 2-benzoxazolinone, diazocoumarin and quinazoline derivatives have been shown to inhibit HIV replication in cell culture. To understand the pharmacophore properties of selected molecules and design new anti-HIV agents, quantitative structure–activity relationship (QSAR) study was developed using a descriptor selection approach based on the stepwise method. Multiple linear regression method was applied to relate the anti-HIV activities of dataset molecules to the selected descriptors. Obtained QSAR model was statistically significant with correlation coefficient R2 of 0.84 and leave one out coefficient Q2 of 0.73. The model was validated by test set molecules giving satisfactory prediction value (R2test) of 0.79. Molecules also were docked on HIV integrase enzyme and showed important interactions with the key residues in enzyme active site. These data might be helpful for design and discovery of novel anti-HIV compounds.
Collapse
Affiliation(s)
- Kamyar Kamyar
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Chemistry, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.,Active Pharmaceutical Ingeredients Research Center, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mahdieh Safakish
- Department of Medicinal Chemistry, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Tannaz Zebardast
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Chemistry, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.,Food and Drug Department, Iran University of Medical Sciences, Tehran, Iran
| | - Zahra Hajimahdi
- Department of Medicinal Chemistry, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Afshin Zarghi
- Department of Medicinal Chemistry, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
12
|
Ivanov S, Lagunin A, Filimonov D, Tarasova O. Network-Based Analysis of OMICs Data to Understand the HIV-Host Interaction. Front Microbiol 2020; 11:1314. [PMID: 32625189 PMCID: PMC7311653 DOI: 10.3389/fmicb.2020.01314] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 05/25/2020] [Indexed: 12/22/2022] Open
Abstract
The interaction of human immunodeficiency virus with human cells is responsible for all stages of the viral life cycle, from the infection of CD4+ cells to reverse transcription, integration, and the assembly of new viral particles. To date, a large amount of OMICs data as well as information from functional genomics screenings regarding the HIV–host interaction has been accumulated in the literature and in public databases. We processed databases containing HIV–host interactions and found 2910 HIV-1-human protein-protein interactions, mostly related to viral group M subtype B, 137 interactions between human and HIV-1 coding and non-coding RNAs, essential for viral lifecycle and cell defense mechanisms, 232 transcriptomics, 27 proteomics, and 34 epigenomics HIV-related experiments. Numerous studies regarding network-based analysis of corresponding OMICs data have been published in recent years. We overview various types of molecular networks, which can be created using OMICs data, including HIV–human protein–protein interaction networks, co-expression networks, gene regulatory and signaling networks, and approaches for the analysis of their topology and dynamics. The network-based analysis can be used to determine the critical pathways and key proteins involved in the HIV life cycle, cellular and immune responses to infection, viral escape from host defense mechanisms, and mechanisms mediating different susceptibility of humans to infection. The proteins and pathways identified in these studies represent a basis for developing new anti-HIV therapeutic strategies such as new drugs preventing infection of CD4+ cells and viral replication, effective vaccines, “shock and kill” and “block and lock” approaches to cure latent infection.
Collapse
Affiliation(s)
- Sergey Ivanov
- Department of Bioinformatics, Institute of Biomedical Chemistry, Moscow, Russia.,Department of Bioinformatics, Pirogov Russian National Research Medical University, Moscow, Russia
| | - Alexey Lagunin
- Department of Bioinformatics, Institute of Biomedical Chemistry, Moscow, Russia.,Department of Bioinformatics, Pirogov Russian National Research Medical University, Moscow, Russia
| | - Dmitry Filimonov
- Department of Bioinformatics, Institute of Biomedical Chemistry, Moscow, Russia
| | - Olga Tarasova
- Department of Bioinformatics, Institute of Biomedical Chemistry, Moscow, Russia
| |
Collapse
|
13
|
Co-crystals, Salts or Mixtures of Both? The Case of Tenofovir Alafenamide Fumarates. Pharmaceutics 2020; 12:pharmaceutics12040342. [PMID: 32290280 PMCID: PMC7238255 DOI: 10.3390/pharmaceutics12040342] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 04/03/2020] [Accepted: 04/07/2020] [Indexed: 01/18/2023] Open
Abstract
Tenofovir alafenamide fumarate (TAF) is the newest prodrug of tenofovir that constitutes several drug products used for the treatment of HIV/AIDS. Although the solid-state properties of its predecessor tenofovir disoproxil fumarate have been investigated and described in the literature, there are no data in the scientific literature on the solid state properties of TAF. In our report, we describe the preparation of two novel polymorphs II and III of tenofovir alafenamide monofumarate (TA MF2 and TA MF3). The solid-state structure of these compounds was investigated in parallel to the previously known tenofovir alafenamide monofumarate form I (TA MF1) and tenofovir alafenamide hemifumarate (TA HF). Interestingly, the single-crystal X-ray diffraction of TA HF revealed that this derivative exists as a co-crystal form. In addition, we prepared a crystalline tenofovir alafenamide free base (TA) and its hydrochloride salt (TA HCl), which enabled us to determine the structure of TA MF derivatives using 15N-ssNMR (15N-solid state nuclear magnetic resonance). Surprisingly, we observed that TA MF1 exists as a mixed ionization state complex or pure salt, while TA MF2 and TA MF3 can be obtained as pure co-crystal forms.
Collapse
|
14
|
Ivashchenko AA, Ivanenkov YA, Koryakova AG, Karapetian RN, Mitkin OD, Aladinskiy VA, Kravchenko DV, Savchuk NP, Ivashchenko AV. Synthesis, biological evaluation and in silico modeling of novel integrase strand transfer inhibitors (INSTIs). Eur J Med Chem 2020; 189:112064. [PMID: 31972393 DOI: 10.1016/j.ejmech.2020.112064] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 01/10/2020] [Accepted: 01/10/2020] [Indexed: 12/19/2022]
Abstract
Although a relatively wide range of therapeutic options is currently available for the treatment of HIV/AIDS, it is still among the most serious and virulent diseases and is associated with a high mortality rate. Integrase strand transfer inhibitors (INSTIs), e.g., FDA-approved dolutegravir (DTG), bictegravir (BIC) and cabotegravir (CAB), have recently been included in standard highly active antiretroviral therapy (HAART) schemes as one of the five major components responsible for the most beneficial clinical outcome. In this paper, we describe a combinatorial amide synthesis, biological evaluation and in silico modeling of new INSTIs containing heteroaromatic bioisosteric substitution instead of the well-studied halogen-substituted benzyl fragment. With the focus on the mentioned diversity point, a medium-sized library of compounds was selected for synthesis. A biological study revealed that many molecules were highly active INSTIs (EC50 < 10 nM). Two compounds 1{4} and 1{26} demonstrated picomolar antiviral activity that was comparable with CAB and were more active than DTG and BIC. Molecular docking study was performed to evaluate the binding mode of compounds in the active site of HIV-1 IN. In rats, lead compound 1{26} showed two-fold greater bioavailability than CAB and had a similar half-life. Compound 1{26} and its sodium salt were considerably more soluble in water than the parent drugs. Both molecules were very stable in human liver microsomes and plasma, demonstrated high affinity towards plasma proteins and did not show cytochrome (CYP) inhibition. This benefit profile indicates the great potential of these molecules as attractive candidates for subsequent evaluation as oral long-acting drugs and long-acting nanosuspension formulations for intramuscular injection.
Collapse
Affiliation(s)
- Andrey A Ivashchenko
- Chemical Diversity Research Institute, Rabochaya St. 2a, Khimki, Moscow Region, 141401, Russia; ChemDiv, 6605 Nancy Ridge Drive, San Diego, CA, 92121, United States
| | - Yan A Ivanenkov
- ChemDiv, 6605 Nancy Ridge Drive, San Diego, CA, 92121, United States; Institute of Biochemistry and Genetics Russian Academy of Science (IBG RAS) Ufa Scientific Centre, Ufa, Russia.
| | - Angela G Koryakova
- Chemical Diversity Research Institute, Rabochaya St. 2a, Khimki, Moscow Region, 141401, Russia
| | - Ruben N Karapetian
- Chemical Diversity Research Institute, Rabochaya St. 2a, Khimki, Moscow Region, 141401, Russia
| | - Oleg D Mitkin
- Chemical Diversity Research Institute, Rabochaya St. 2a, Khimki, Moscow Region, 141401, Russia
| | - Vladimir A Aladinskiy
- Institute of Biochemistry and Genetics Russian Academy of Science (IBG RAS) Ufa Scientific Centre, Ufa, Russia
| | - Dmitry V Kravchenko
- Chemical Diversity Research Institute, Rabochaya St. 2a, Khimki, Moscow Region, 141401, Russia
| | - Nikolai P Savchuk
- Chemical Diversity Research Institute, Rabochaya St. 2a, Khimki, Moscow Region, 141401, Russia; ChemDiv, 6605 Nancy Ridge Drive, San Diego, CA, 92121, United States; Viriom Inc, 12760 High Bluff Drive, St 370, San Diego, CA, 92130, United States
| | - Alexander V Ivashchenko
- Chemical Diversity Research Institute, Rabochaya St. 2a, Khimki, Moscow Region, 141401, Russia; ChemDiv, 6605 Nancy Ridge Drive, San Diego, CA, 92121, United States; Avisa Pharmaceuticals LLC, 1835 E. Hallandale Beach Blvd, #442, Hallandale Beach, Fl, 33009, United States
| |
Collapse
|
15
|
Hershkovits AS, Pozdnyakov I, Meir O, Mor A. Sub-inhibitory membrane damage undermines Staphylococcus aureus virulence. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2019; 1861:1172-1179. [PMID: 30974095 DOI: 10.1016/j.bbamem.2019.04.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 12/20/2018] [Accepted: 01/06/2019] [Indexed: 12/15/2022]
Abstract
We investigated antibacterial properties of a recently described membrane-active lipopeptide, C10OOc12O (decanoyl-ornithyl-ornithyl-dodecanoyl-ornithyl-amide) against Gram-positive bacteria (GPB). Minimal inhibitory concentrations (MICs) and kinetics were compared in culture media and plasma. Chemo-sensitization to antibiotics was determined using the checkerboard assay. Membrane damages were estimated using diverse membrane potential sensitive dyes. ATP levels and relevant enzymes activities were measured using commercial bioassay kits. While relatively weakly active in simple culture media, sub-MIC levels (~ten-fold) of C10OOc12O have significantly improved the antibacterial function of Human plasma. Mechanistic studies indicated that C10OOc12O-treated bacteria have sustained mild membrane damage(s) in association with rapid (within 2 min) but low (<10%) dissipation of the trans-membrane potential; Intracellular ATP levels were transiently reduced (~20%) whereas extracellular ATP increased only at MIC values; Sub-inhibitory concentrations were sufficient for inhibiting major agr-regulated virulence factors (lipase and α-toxin) and for sensitizing MRSA USA300 to the antibiotic oxacillin to the point of reverting the bacteria status from oxacillin-resistant to oxacillin-sensitive (i.e., oxacillin MIC was reduced from 32 to 0.1 mg/l). These findings argue that by means of mild depolarization, C10OOc12O affects the quorum sensing regulator in a manner that transiently weakens bacterial defenses, thereby enforcing studies that support the potential usefulness of fighting S. aureus (and possibly other GPB) infections, by targeting its virulence.
Collapse
Affiliation(s)
- Ayelet Sarah Hershkovits
- Department of Biotechnology and Food Engineering, Technion-Israel Institute of Technology, Haifa, Israel
| | - Igor Pozdnyakov
- Department of Biotechnology and Food Engineering, Technion-Israel Institute of Technology, Haifa, Israel
| | - Ohad Meir
- Department of Biotechnology and Food Engineering, Technion-Israel Institute of Technology, Haifa, Israel
| | - Amram Mor
- Department of Biotechnology and Food Engineering, Technion-Israel Institute of Technology, Haifa, Israel.
| |
Collapse
|
16
|
New targets for HIV drug discovery. Drug Discov Today 2019; 24:1139-1147. [PMID: 30885676 DOI: 10.1016/j.drudis.2019.03.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 01/23/2019] [Accepted: 03/11/2019] [Indexed: 02/07/2023]
Abstract
Recent estimates suggest close to one million people per year die globally owing to HIV-related illnesses. Therefore, there is still a need to identify new targets to develop future treatments. Many of the more recently identified targets are host-related and these might be more difficult for the virus to develop drug resistance to. In addition, there are virus-related targets (capsid and RNAse H) that have yet to be exploited clinically. Several of the newer targets also address virulence factors, virus latency or target persistence. The targets highlighted in this review could represent the next generation of viable candidates for drug discovery projects as well as continue the search for a cure for this disease.
Collapse
|
17
|
Urano E, Timilsina U, Kaplan JA, Ablan S, Ghimire D, Pham P, Kuruppu N, Mandt R, Durell SR, Nitz TJ, Martin DE, Wild CT, Gaur R, Freed EO. Resistance to Second-Generation HIV-1 Maturation Inhibitors. J Virol 2019; 93:e02017-18. [PMID: 30567982 PMCID: PMC6401422 DOI: 10.1128/jvi.02017-18] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Accepted: 12/10/2018] [Indexed: 12/26/2022] Open
Abstract
A betulinic acid-based compound, bevirimat (BVM), inhibits HIV-1 maturation by blocking a late step in protease-mediated Gag processing: the cleavage of the capsid-spacer peptide 1 (CA-SP1) intermediate to mature CA. Previous studies showed that mutations conferring resistance to BVM cluster around the CA-SP1 cleavage site. Single amino acid polymorphisms in the SP1 region of Gag and the C terminus of CA reduced HIV-1 susceptibility to BVM, leading to the discontinuation of BVM's clinical development. We recently reported a series of "second-generation" BVM analogs that display markedly improved potency and breadth of activity relative to the parent molecule. Here, we demonstrate that viral clones bearing BVM resistance mutations near the C terminus of CA are potently inhibited by second-generation BVM analogs. We performed de novo selection experiments to identify mutations that confer resistance to these novel compounds. Selection experiments with subtype B HIV-1 identified an Ala-to-Val mutation at SP1 residue 1 and a Pro-to-Ala mutation at CA residue 157 within the major homology region (MHR). In selection experiments with subtype C HIV-1, we identified mutations at CA residue 230 (CA-V230M) and SP1 residue 1 (SP1-A1V), residue 5 (SP1-S5N), and residue 10 (SP1-G10R). The positions at which resistance mutations arose are highly conserved across multiple subtypes of HIV-1. We demonstrate that the mutations confer modest to high-level maturation inhibitor resistance. In most cases, resistance was not associated with a detectable increase in the kinetics of CA-SP1 processing. These results identify mutations that confer resistance to second-generation maturation inhibitors and provide novel insights into the mechanism of resistance.IMPORTANCE HIV-1 maturation inhibitors are a class of small-molecule compounds that block a late step in the viral protease-mediated processing of the Gag polyprotein precursor, the viral protein responsible for the formation of virus particles. The first-in-class HIV-1 maturation inhibitor bevirimat was highly effective in blocking HIV-1 replication, but its activity was compromised by naturally occurring sequence polymorphisms within Gag. Recently developed bevirimat analogs, referred to as "second-generation" maturation inhibitors, overcome this issue. To understand more about how these second-generation compounds block HIV-1 maturation, here we selected for HIV-1 mutants that are resistant to these compounds. Selections were performed in the context of two different subtypes of HIV-1. We identified a small set of mutations at highly conserved positions within the capsid and spacer peptide 1 domains of Gag that confer resistance. Identification and analysis of these maturation inhibitor-resistant mutants provide insights into the mechanisms of resistance to these compounds.
Collapse
Affiliation(s)
- Emiko Urano
- Virus-Cell Interaction Section, HIV Dynamics and Replication Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland, USA
| | - Uddhav Timilsina
- Faculty of Life Sciences and Biotechnology, South Asian University, New Delhi, India
| | - Justin A Kaplan
- Virus-Cell Interaction Section, HIV Dynamics and Replication Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland, USA
| | - Sherimay Ablan
- Virus-Cell Interaction Section, HIV Dynamics and Replication Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland, USA
| | - Dibya Ghimire
- Faculty of Life Sciences and Biotechnology, South Asian University, New Delhi, India
| | - Phuong Pham
- Virus-Cell Interaction Section, HIV Dynamics and Replication Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland, USA
| | - Nishani Kuruppu
- Virus-Cell Interaction Section, HIV Dynamics and Replication Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland, USA
| | - Rebecca Mandt
- Virus-Cell Interaction Section, HIV Dynamics and Replication Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland, USA
| | - Stewart R Durell
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| | | | | | | | - Ritu Gaur
- Faculty of Life Sciences and Biotechnology, South Asian University, New Delhi, India
| | - Eric O Freed
- Virus-Cell Interaction Section, HIV Dynamics and Replication Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland, USA
| |
Collapse
|
18
|
Heesterbeek DAC, Martin NI, Velthuizen A, Duijst M, Ruyken M, Wubbolts R, Rooijakkers SHM, Bardoel BW. Complement-dependent outer membrane perturbation sensitizes Gram-negative bacteria to Gram-positive specific antibiotics. Sci Rep 2019; 9:3074. [PMID: 30816122 PMCID: PMC6395757 DOI: 10.1038/s41598-019-38577-9] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Accepted: 01/02/2019] [Indexed: 01/21/2023] Open
Abstract
Gram-negative bacteria are refractory to the action of many antibiotics due to their impermeable outer membrane. An important player of the immune system is the complement system, a protein network in serum that directly kills Gram-negative bacteria through pore-formation by the Membrane Attack Complexes (MAC). We here show that the MAC rapidly perforates the outer membrane but that inner membrane damage, which is essential for killing, is relatively slow. Importantly, we demonstrate that MAC-induced outer membrane damage sensitizes Gram-negative bacteria to otherwise ineffective, Gram-positive-specific, antimicrobials. Synergy between serum and nisin was observed for 22 out of 53 tested Gram-negative clinical isolates and for multi-drug resistant (MDR) blood isolates. The in vivo relevance of this process is further highlighted by the fact that blood sensitizes a MDR K. pneumoniae strain to vancomycin. Altogether, these data imply that antibiotics that are considered ineffective to treat infections with Gram-negatives may have different functional outcomes in patients, due to the presence of the complement system.
Collapse
Affiliation(s)
- D A C Heesterbeek
- Medical Microbiology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - N I Martin
- Institute of Biology Leiden, Leiden University, Leiden, Netherlands
| | - A Velthuizen
- Medical Microbiology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - M Duijst
- Medical Microbiology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - M Ruyken
- Medical Microbiology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - R Wubbolts
- Department of Biochemistry and Cell Biology, Utrecht University, Utrecht, Netherlands
| | - S H M Rooijakkers
- Medical Microbiology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - B W Bardoel
- Medical Microbiology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands.
| |
Collapse
|
19
|
Zorn KM, Lane TR, Russo DP, Clark AM, Makarov V, Ekins S. Multiple Machine Learning Comparisons of HIV Cell-based and Reverse Transcriptase Data Sets. Mol Pharm 2019; 16:1620-1632. [PMID: 30779585 DOI: 10.1021/acs.molpharmaceut.8b01297] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The human immunodeficiency virus (HIV) causes over a million deaths every year and has a huge economic impact in many countries. The first class of drugs approved were nucleoside reverse transcriptase inhibitors. A newer generation of reverse transcriptase inhibitors have become susceptible to drug resistant strains of HIV, and hence, alternatives are urgently needed. We have recently pioneered the use of Bayesian machine learning to generate models with public data to identify new compounds for testing against different disease targets. The current study has used the NIAID ChemDB HIV, Opportunistic Infection and Tuberculosis Therapeutics Database for machine learning studies. We curated and cleaned data from HIV-1 wild-type cell-based and reverse transcriptase (RT) DNA polymerase inhibition assays. Compounds from this database with ≤1 μM HIV-1 RT DNA polymerase activity inhibition and cell-based HIV-1 inhibition are correlated (Pearson r = 0.44, n = 1137, p < 0.0001). Models were trained using multiple machine learning approaches (Bernoulli Naive Bayes, AdaBoost Decision Tree, Random Forest, support vector classification, k-Nearest Neighbors, and deep neural networks as well as consensus approaches) and then their predictive abilities were compared. Our comparison of different machine learning methods demonstrated that support vector classification, deep learning, and a consensus were generally comparable and not significantly different from each other using 5-fold cross validation and using 24 training and test set combinations. This study demonstrates findings in line with our previous studies for various targets that training and testing with multiple data sets does not demonstrate a significant difference between support vector machine and deep neural networks.
Collapse
Affiliation(s)
- Kimberley M Zorn
- Collaborations Pharmaceuticals, Inc. , Main Campus Drive, Lab 3510 , Raleigh , North Carolina 27606 , United States
| | - Thomas R Lane
- Collaborations Pharmaceuticals, Inc. , Main Campus Drive, Lab 3510 , Raleigh , North Carolina 27606 , United States
| | - Daniel P Russo
- Collaborations Pharmaceuticals, Inc. , Main Campus Drive, Lab 3510 , Raleigh , North Carolina 27606 , United States.,The Rutgers Center for Computational and Integrative Biology , Camden , New Jersey 08102 , United States
| | - Alex M Clark
- Molecular Materials Informatics, Inc. , 2234 Duvernay Street , Montreal , Quebec H3J2Y3 , Canada
| | - Vadim Makarov
- Bach Institute of Biochemistry , Research Center of Biotechnology of the Russian Academy of Sciences , Leninsky Prospekt 33-2 , Moscow 119071 , Russia
| | - Sean Ekins
- Collaborations Pharmaceuticals, Inc. , Main Campus Drive, Lab 3510 , Raleigh , North Carolina 27606 , United States
| |
Collapse
|
20
|
Wang Z, Yu Z, Kang D, Zhang J, Tian Y, Daelemans D, De Clercq E, Pannecouque C, Zhan P, Liu X. Design, synthesis and biological evaluation of novel acetamide-substituted doravirine and its prodrugs as potent HIV-1 NNRTIs. Bioorg Med Chem 2019; 27:447-456. [DOI: 10.1016/j.bmc.2018.12.039] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2018] [Revised: 12/15/2018] [Accepted: 12/29/2018] [Indexed: 10/27/2022]
|
21
|
Ganta KK, Chaubey B. Endoplasmic reticulum stress leads to mitochondria-mediated apoptosis in cells treated with anti-HIV protease inhibitor ritonavir. Cell Biol Toxicol 2018; 35:189-204. [DOI: 10.1007/s10565-018-09451-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 10/17/2018] [Indexed: 12/20/2022]
|
22
|
Luthra S, Rominski A, Sander P. The Role of Antibiotic-Target-Modifying and Antibiotic-Modifying Enzymes in Mycobacterium abscessus Drug Resistance. Front Microbiol 2018; 9:2179. [PMID: 30258428 PMCID: PMC6143652 DOI: 10.3389/fmicb.2018.02179] [Citation(s) in RCA: 134] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 08/24/2018] [Indexed: 11/21/2022] Open
Abstract
The incidence and prevalence of non-tuberculous mycobacterial (NTM) infections have been increasing worldwide and lately led to an emerging public health problem. Among rapidly growing NTM, Mycobacterium abscessus is the most pathogenic and drug resistant opportunistic germ, responsible for disease manifestations ranging from “curable” skin infections to only “manageable” pulmonary disease. Challenges in M. abscessus treatment stem from the bacteria’s high-level innate resistance and comprise long, costly and non-standardized administration of antimicrobial agents, poor treatment outcomes often related to adverse effects and drug toxicities, and high relapse rates. Drug resistance in M. abscessus is conferred by an assortment of mechanisms. Clinically acquired drug resistance is normally conferred by mutations in the target genes. Intrinsic resistance is attributed to low permeability of M. abscessus cell envelope as well as to (multi)drug export systems. However, expression of numerous enzymes by M. abscessus, which can modify either the drug-target or the drug itself, is the key factor for the pathogen’s phenomenal resistance to most classes of antibiotics used for treatment of other moderate to severe infectious diseases, like macrolides, aminoglycosides, rifamycins, β-lactams and tetracyclines. In 2009, when M. abscessus genome sequence became available, several research groups worldwide started studying M. abscessus antibiotic resistance mechanisms. At first, lack of tools for M. abscessus genetic manipulation severely delayed research endeavors. Nevertheless, the last 5 years, significant progress has been made towards the development of conditional expression and homologous recombination systems for M. abscessus. As a result of recent research efforts, an erythromycin ribosome methyltransferase, two aminoglycoside acetyltransferases, an aminoglycoside phosphotransferase, a rifamycin ADP-ribosyltransferase, a β-lactamase and a monooxygenase were identified to frame the complex and multifaceted intrinsic resistome of M. abscessus, which clearly contributes to complications in treatment of this highly resistant pathogen. Better knowledge of the underlying mechanisms of drug resistance in M. abscessus could improve selection of more effective chemotherapeutic regimen and promote development of novel antimicrobials which can overwhelm the existing resistance mechanisms. This article reviews the currently elucidated molecular mechanisms of antibiotic resistance in M. abscessus, with a focus on its drug-target-modifying and drug-modifying enzymes.
Collapse
Affiliation(s)
- Sakshi Luthra
- Institute of Medical Microbiology, University of Zurich, Zurich, Switzerland
| | - Anna Rominski
- Institute of Medical Microbiology, University of Zurich, Zurich, Switzerland
| | - Peter Sander
- Institute of Medical Microbiology, University of Zurich, Zurich, Switzerland.,National Center for Mycobacteria, Zurich, Switzerland
| |
Collapse
|
23
|
Wang Z, Kang D, Chen M, Wu G, Feng D, Zhao T, Zhou Z, Huo Z, Jing L, Zuo X, Daelemans D, De Clercq E, Pannecouque C, Zhan P, Liu X. Design, synthesis, and antiviral evaluation of novel hydrazone-substituted thiophene[3,2-d
]pyrimidine derivatives as potent human immunodeficiency virus-1 inhibitors. Chem Biol Drug Des 2018; 92:2009-2021. [DOI: 10.1111/cbdd.13373] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 06/21/2018] [Accepted: 07/22/2018] [Indexed: 12/15/2022]
Affiliation(s)
- Zhao Wang
- Department of Medicinal Chemistry; Key Laboratory of Chemical Biology (Ministry of Education); School of Pharmaceutical Sciences; Shandong University; Jinan Shandong China
| | - Dongwei Kang
- Department of Medicinal Chemistry; Key Laboratory of Chemical Biology (Ministry of Education); School of Pharmaceutical Sciences; Shandong University; Jinan Shandong China
| | - Meng Chen
- Shandong Center for Disease Control and Prevention; Jinan Shandong China
| | - Gaochan Wu
- Department of Medicinal Chemistry; Key Laboratory of Chemical Biology (Ministry of Education); School of Pharmaceutical Sciences; Shandong University; Jinan Shandong China
| | - Da Feng
- Department of Medicinal Chemistry; Key Laboratory of Chemical Biology (Ministry of Education); School of Pharmaceutical Sciences; Shandong University; Jinan Shandong China
| | - Tong Zhao
- Department of Medicinal Chemistry; Key Laboratory of Chemical Biology (Ministry of Education); School of Pharmaceutical Sciences; Shandong University; Jinan Shandong China
| | - Zhongxia Zhou
- Department of Medicinal Chemistry; Key Laboratory of Chemical Biology (Ministry of Education); School of Pharmaceutical Sciences; Shandong University; Jinan Shandong China
| | - Zhipeng Huo
- Department of Medicinal Chemistry; Key Laboratory of Chemical Biology (Ministry of Education); School of Pharmaceutical Sciences; Shandong University; Jinan Shandong China
| | - Lanlan Jing
- Department of Medicinal Chemistry; Key Laboratory of Chemical Biology (Ministry of Education); School of Pharmaceutical Sciences; Shandong University; Jinan Shandong China
| | - Xiaofang Zuo
- Department of Medicinal Chemistry; Key Laboratory of Chemical Biology (Ministry of Education); School of Pharmaceutical Sciences; Shandong University; Jinan Shandong China
| | - Dirk Daelemans
- Rega Institute for Medical Research; Laboratory of Virology and Chemotherapy; K.U. Leuven; Leuven Belgium
| | - Erik De Clercq
- Rega Institute for Medical Research; Laboratory of Virology and Chemotherapy; K.U. Leuven; Leuven Belgium
| | - Christophe Pannecouque
- Rega Institute for Medical Research; Laboratory of Virology and Chemotherapy; K.U. Leuven; Leuven Belgium
| | - Peng Zhan
- Department of Medicinal Chemistry; Key Laboratory of Chemical Biology (Ministry of Education); School of Pharmaceutical Sciences; Shandong University; Jinan Shandong China
| | - Xinyong Liu
- Department of Medicinal Chemistry; Key Laboratory of Chemical Biology (Ministry of Education); School of Pharmaceutical Sciences; Shandong University; Jinan Shandong China
| |
Collapse
|
24
|
Botelho SF, Martins MAP, Reis AMM. Analysis of new drugs registered in Brazil in view of the Unified Health System and the disease burden. CIENCIA & SAUDE COLETIVA 2018; 23:215-228. [PMID: 29267825 DOI: 10.1590/1413-81232018231.21672015] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Accepted: 11/29/2015] [Indexed: 11/22/2022] Open
Abstract
The most important aspect of a new drug in terms of public health is its therapeutic value and benefit it provides for the patient and for the society. The aim of this study was to analyze new drugs registered in Brazil between 2003 and 2013 with respect to Pharmaceutical Assistance programs within the Brazilian health system and to the disease burden in the country. In our retrospective cohort study, new drugs registered in Brazil were identified through document analysis of databases and publicly available documents from National Health Surveillance Agency. The data on disease burden in Brazil was obtained from the Global Burden of Disease Study 2012, published by the World Health Organization. The level of therapeutic innovation was determined using the Motola algorithm. Although a total of 159 new medicines were used in the cohort, only 28 (17.6%) were classified as important therapeutic innovations. There is a disproportionate relationship between the percentage of new drugs and the burden of disease, with an under-representation of drugs for infectious respiratory diseases, heart disease, and digestive diseases. Incentive strategies for research and development of medicines should be prioritized to reduce the disparity regarding the burden of disease and to help develop innovative medicines necessary to improve health throughout the country.
Collapse
Affiliation(s)
- Stephanie Ferreira Botelho
- Programa de Pós-Graduação em Medicamentos e Assistência Farmacêutica, Faculdade de Farmácia, Universidade Federal de Minas Gerais. Av. Antônio Carlos 6627, Pampulha. 31270-901 Belo Horizonte MG Brasil.
| | - Maria Auxiliadora Parreiras Martins
- Programa de Pós-Graduação em Medicamentos e Assistência Farmacêutica, Faculdade de Farmácia, Universidade Federal de Minas Gerais. Av. Antônio Carlos 6627, Pampulha. 31270-901 Belo Horizonte MG Brasil.
| | - Adriano Max Moreira Reis
- Programa de Pós-Graduação em Medicamentos e Assistência Farmacêutica, Faculdade de Farmácia, Universidade Federal de Minas Gerais. Av. Antônio Carlos 6627, Pampulha. 31270-901 Belo Horizonte MG Brasil.
| |
Collapse
|
25
|
Tian L, Gong L, Zhang X. Copper-Catalyzed Enantioselective Synthesis of β-Amino Alcohols Featuring Tetrasubstituted Tertiary Carbons. Adv Synth Catal 2018. [DOI: 10.1002/adsc.201701613] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Lan Tian
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University; Collaborative Innovation Center for Biotherapy; Chengdu People's Republic of China
| | - Liang Gong
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University; Collaborative Innovation Center for Biotherapy; Chengdu People's Republic of China
| | - Xia Zhang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University; Collaborative Innovation Center for Biotherapy; Chengdu People's Republic of China
| |
Collapse
|
26
|
Huo Z, Zhang H, Kang D, Zhou Z, Wu G, Desta S, Zuo X, Wang Z, Jing L, Ding X, Daelemans D, De Clercq E, Pannecouque C, Zhan P, Liu X. Discovery of Novel Diarylpyrimidine Derivatives as Potent HIV-1 NNRTIs Targeting the "NNRTI Adjacent" Binding Site. ACS Med Chem Lett 2018; 9:334-338. [PMID: 29670696 DOI: 10.1021/acsmedchemlett.7b00524] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2017] [Accepted: 02/27/2018] [Indexed: 12/18/2022] Open
Abstract
A novel series of diarylpyrimidine derivatives, which could simultaneously occupy the classical NNRTIs binding pocket (NNIBP) and the newly reported "NNRTI Adjacent" binding site, were designed, synthesized, and evaluated for their antiviral activities in MT-4 cell cultures. The results demonstrated that six compounds (20, 27 and 31-34) showed excellent activities against wild-type (WT) HIV-1 strain (EC50 = 2.4-3.8 nM), which were more potent than that of ETV (EC50 = 4.0 nM). Furthermore, 20, 27, 33, and 34 showed more potent or equipotent activity against single mutant HIV-1 strains compared to that of ETV. Especially, 20 showed marked antiviral activity, which was 1.5-fold greater against WT and 1.5- to 3-fold greater against L100I, K103N, Y181C, Y188L, and E138K when compared with ETV. In addition, all compounds showed lower toxicity (CC50 = 5.1-149.2 μM) than ETV (CC50 = 2.2 μM). The HIV-1 RT inhibitory assay was further conducted to confirm their binding target. Preliminary structure-activity relationships (SARs), molecular modeling, and calculated physicochemical properties of selected compounds were also discussed comprehensively.
Collapse
Affiliation(s)
- Zhipeng Huo
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, 250012 Ji’nan, Shandong, P. R. China
| | - Heng Zhang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, 250012 Ji’nan, Shandong, P. R. China
| | - Dongwei Kang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, 250012 Ji’nan, Shandong, P. R. China
| | - Zhongxia Zhou
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, 250012 Ji’nan, Shandong, P. R. China
| | - Gaochan Wu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, 250012 Ji’nan, Shandong, P. R. China
| | - Samuel Desta
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, 250012 Ji’nan, Shandong, P. R. China
| | - Xiaofang Zuo
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, 250012 Ji’nan, Shandong, P. R. China
| | - Zhao Wang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, 250012 Ji’nan, Shandong, P. R. China
| | - Lanlan Jing
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, 250012 Ji’nan, Shandong, P. R. China
| | - Xiao Ding
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, 250012 Ji’nan, Shandong, P. R. China
| | - Dirk Daelemans
- Laboratory of Virology and Chemotherapy, Rega Institute for Medical Research, K. U. Leuven, Herestraat 49 Postbus 1043 (09.A097), B-3000 Leuven, Belgium
| | - Erik De Clercq
- Laboratory of Virology and Chemotherapy, Rega Institute for Medical Research, K. U. Leuven, Herestraat 49 Postbus 1043 (09.A097), B-3000 Leuven, Belgium
| | - Christophe Pannecouque
- Laboratory of Virology and Chemotherapy, Rega Institute for Medical Research, K. U. Leuven, Herestraat 49 Postbus 1043 (09.A097), B-3000 Leuven, Belgium
| | - Peng Zhan
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, 250012 Ji’nan, Shandong, P. R. China
| | - Xinyong Liu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, 250012 Ji’nan, Shandong, P. R. China
| |
Collapse
|
27
|
Douguet D. Data Sets Representative of the Structures and Experimental Properties of FDA-Approved Drugs. ACS Med Chem Lett 2018. [PMID: 29541361 DOI: 10.1021/acsmedchemlett.7b00462] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Presented here are several data sets that gather information collected from the labels of the FDA approved drugs: their molecular structures and those of the described active metabolites, their associated pharmacokinetics and pharmacodynamics data, and the history of their marketing authorization by the FDA. To date, 1852 chemical structures have been identified with a molecular weight less than 2000 of which 492 are or have active metabolites. To promote the sharing of data, the original web server was upgraded for browsing the database and downloading the data sets (http://chemoinfo.ipmc.cnrs.fr/edrug3d). It is believed that the multidimensional chemistry-oriented collections are an essential resource for a thorough analysis of the current drug chemical space. The data sets are envisioned as being used in a wide range of endeavors that include drug repurposing, drug design, privileged structures analyses, structure-activity relationship studies, and improving of absorption, distribution, metabolism, and elimination predictive models.
Collapse
Affiliation(s)
- Dominique Douguet
- Université Côte d’Azur, Inserm, CNRS, IPMC, 660 Route des Lucioles, 06560 Valbonne, France
| |
Collapse
|
28
|
Tan Z, Jia X, Ma F, Feng Y, Lu H, Jin JO, Wu D, Yin L, Liu L, Zhang L. Increased MMAB level in mitochondria as a novel biomarker of hepatotoxicity induced by Efavirenz. PLoS One 2017; 12:e0188366. [PMID: 29190729 PMCID: PMC5708658 DOI: 10.1371/journal.pone.0188366] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Accepted: 11/06/2017] [Indexed: 12/02/2022] Open
Abstract
Background Efavirenz (EFV), a non-nucleoside reverse transcriptase inhibitor (NNRTI), has been widely used in the therapy of human immunodeficiency virus (HIV) infection. Some of its toxic effects on hepatic cells have been reported to display features of mitochondrial dysfunction through bioenergetic stress and autophagy, etc. However, alteration of protein levels, especially mitochondrial protein levels, in hepatic cells during treatment of EFV has not been fully investigated. Methods We built a cell model of EFV-induced liver toxicity through treating Huh-7 cells with different concentrations of EFV for different time followed by the analysis of cell viability using cell counting kit -8 (CCK8) and reactive oxygen species (ROS) using 2',7'-dichlorodihydrofluorescein diacetate (DCFH-DA) and MitoSox dye. Proteomic profiles in the mitochondria of Huh-7 cells stimulated by EFV were analyzed. Four differentially expressed proteins were quantified by real time RT-PCR. We also detected the expression of mitochondrial precursor Cob(I)yrinic acid a,c-diamide adenosyltransferase (MMAB) by immunohistochemistry analysis in clinical samples. The expression levels of MMAB and ROS were detected in EFV-treated Huh-7 cells with and without shRNA used to knock down MMAB, and in primary hepatocytes (PHC). The effects of other anti-HIV drugs (nevirapine (NVP) and tenofovirdisoproxil (TDF)), and hydrogen peroxide (H2O2) were also tested. Amino acid analysis and fatty aldehyde dehydrogenase (ALDH3A2) expression after MMAB expression knock-down with shRNA was used to investigate the metabolic effect of MMAB in Huh-7 cells. Results EFV treatment inhibited cell viability and increased ROS production with time- and concentration-dependence. Proteomic study was performed at 2 hours after EFV treatment. After treated Huh-7 cells with EFV (2.5mg/L or 10 mg/L) for 2 h, fifteen differentially expressed protein spots from purified mitochondrion that included four mitochondria proteins were detected in EFV-treated Huh-7 cells compared to controls. Consistent with protein expression levels, mRNA expression levels of mitochondrial protein MMAB were also increased by EFV treatment. In addition, the liver of EFV-treated HIV infected patients showed substantially higher levels of MMAB expression compared to the livers of untreated or protease inhibitor (PI)-treated HIV-infected patients. Furthermore, ROS were found to be decreased in Huh-7 cells treated with shMMAB compared with empty plasmid treated with EFV at the concentration of 2.5 or 10 mg/L. MMAB was increased in EFV-treated Huh-7 cells and primary hepatocytes. However, no change in MMAB expression was detected after treatment of Huh-7 cells and primary hepatocytes with anti-HIV drugs nevirapine (NVP) and tenofovirdisoproxil (TDF), or hydrogen peroxide (H2O2), although ROS was increased in these cells. Finally, knockdown of MMAB by shRNA induced increases in the β-Alanine (β-Ala) production levels and decrease in ALDH3A2 expression. Conclusions A mitochondrial proteomic study was performed to study the proteins related to EFV-inducted liver toxicity. MMAB might be a target and potential biomarker of hepatotoxicity in EFV-induced liver toxicity.
Collapse
Affiliation(s)
- Zhimi Tan
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Xiaofang Jia
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Fang Ma
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Yanling Feng
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Hongzhou Lu
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Jun-O Jin
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Dage Wu
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Lin Yin
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Li Liu
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Lijun Zhang
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
- * E-mail:
| |
Collapse
|
29
|
Parizadeh N, Alipour E, Soleymani S, Zabihollahi R, Aghasadeghi MR, Hajimahdi Z, Zarghi A. Synthesis of Novel 3-(5-(Alkyl/arylthio)-1,3,4-Oxadiazol-2-yl)-8-Phenylquinolin-4(1H)-One Derivatives as Anti-HIV Agents. PHOSPHORUS SULFUR 2017. [DOI: 10.1080/10426507.2017.1394302] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Niloofar Parizadeh
- Department of Organic Chemistry, Azad University, Tehran North Branch, Tehran, Iran
| | - Eskandar Alipour
- Department of Organic Chemistry, Azad University, Tehran North Branch, Tehran, Iran
| | - Sepehr Soleymani
- Hepatitis and AIDS department, Pasteur institute of Iran, Tehran, Iran
| | | | | | - Zahra Hajimahdi
- Department of Pharmaceutical Chemistry, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Afshin Zarghi
- Department of Pharmaceutical Chemistry, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
30
|
Arca HÇ, Mosquera-Giraldo LI, Dahal D, Taylor LS, Edgar KJ. Multidrug, Anti-HIV Amorphous Solid Dispersions: Nature and Mechanisms of Impacts of Drugs on Each Other’s Solution Concentrations. Mol Pharm 2017; 14:3617-3627. [DOI: 10.1021/acs.molpharmaceut.7b00203] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Hale Çiğdem Arca
- Macromolecules
Innovation Institute, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Laura I. Mosquera-Giraldo
- Department
of Industrial and Physical Pharmacy, Purdue University, West Lafayette, Indiana 47907, United States
| | - Durga Dahal
- Department
of Biological Sciences, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Lynne S. Taylor
- Department
of Industrial and Physical Pharmacy, Purdue University, West Lafayette, Indiana 47907, United States
| | - Kevin J. Edgar
- Macromolecules
Innovation Institute, Virginia Tech, Blacksburg, Virginia 24061, United States
- Department
of Sustainable Biomaterials, Virginia Tech, Blacksburg, Virginia 24061, United States
| |
Collapse
|
31
|
Wang T, Yuan XS, Wu MB, Lin JP, Yang LR. The advancement of multidimensional QSAR for novel drug discovery - where are we headed? Expert Opin Drug Discov 2017; 12:769-784. [PMID: 28562095 DOI: 10.1080/17460441.2017.1336157] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
INTRODUCTION The Multidimensional quantitative structure-activity relationship (multidimensional-QSAR) method is one of the most popular computational methods employed to predict interesting biochemical properties of existing or hypothetical molecules. With continuous progress, the QSAR method has made remarkable success in various fields, such as medicinal chemistry, material science and predictive toxicology. Areas covered: In this review, the authors cover the basic elements of multidimensional -QSAR including model construction, validation and application. It includes and emphasizes the very recent developments of multidimensional -QSAR such as: HQSAR, G-QSAR, MIA-QSAR, multi-target QSAR. The advantages and disadvantages of each method are also discussed and typical examples of their application are detailed. Expert opinion: Although there are defects in multidimensional-QSAR modeling, it is still of enormous help to chemists, biologists and other researchers in various fields. In the authors' opinion, the latest more precise and feasible QSAR models should be further developed by integrating new descriptors, algorithms and other relevant computational techniques. Apart from being applied in traditional fields (e.g. lead optimization and predictive risk assessment), QSAR should be used more widely as a routine method in other emerging research fields including the modeling of nanoparticles(NPs), mixture toxicity and peptides.
Collapse
Affiliation(s)
- Tao Wang
- a School of biological science , Jining Medical University , Jining , China.,b Department of Chemical and Biological Engineering , Zhejiang University , Hangzhou , China
| | - Xin-Song Yuan
- b Department of Chemical and Biological Engineering , Zhejiang University , Hangzhou , China
| | - Mian-Bin Wu
- b Department of Chemical and Biological Engineering , Zhejiang University , Hangzhou , China
| | - Jian-Ping Lin
- b Department of Chemical and Biological Engineering , Zhejiang University , Hangzhou , China
| | - Li-Rong Yang
- b Department of Chemical and Biological Engineering , Zhejiang University , Hangzhou , China
| |
Collapse
|
32
|
Zhang H, Tian Y, Kang D, Huo Z, Zhou Z, Liu H, De Clercq E, Pannecouque C, Zhan P, Liu X. Discovery of uracil-bearing DAPYs derivatives as novel HIV-1 NNRTIs via crystallographic overlay-based molecular hybridization. Eur J Med Chem 2017; 130:209-222. [DOI: 10.1016/j.ejmech.2017.02.047] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Revised: 02/13/2017] [Accepted: 02/17/2017] [Indexed: 10/20/2022]
|
33
|
Insights into the activity of maturation inhibitor PF-46396 on HIV-1 clade C. Sci Rep 2017; 7:43711. [PMID: 28252110 PMCID: PMC5333120 DOI: 10.1038/srep43711] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Accepted: 01/26/2017] [Indexed: 12/03/2022] Open
Abstract
HIV maturation inhibitors are an emerging class of anti-retroviral compounds that inhibit the viral protease-mediated cleavage of the Gag, CA-SP1 (capsid-spacer peptide 1) peptide to mature CA. The first-in-class maturation inhibitor bevirimat (BVM) displayed potent activity against HIV-1 clade B but was ineffective against other HIV-1 clades including clade C. Another pyridone-based maturation inhibitor, PF-46396 displayed potent activity against HIV-1 clade B. In this study, we aimed at determining the activity of PF-46396 against HIV-1 clade C. We employed various biochemical and virological assays to demonstrate that PF-46396 is effective against HIV-1 clade C. We observed a dose dependent accumulation of CA-SP1 intermediate in presence of the compound. We carried out mutagenesis in the CA- SP1 region of HIV-1 clade C Gag and observed that the mutations conferred resistance against the compound. Many mutations inhibited Gag processing thereby reducing virus release in the absence of the compound. However, presence of PF-46396 rescued these defects and enhanced virus release, replication capacity and infectivity of HIV-1 clade C. These results put together identify PF-46396 as a broadly active maturation inhibitor against HIV-1 clade B and C and help in rational designing of novel analogs with reduced toxicity and increased efficacy for its potential use in clinics.
Collapse
|
34
|
Thenin-Houssier S, Valente ST. HIV-1 Capsid Inhibitors as Antiretroviral Agents. Curr HIV Res 2016; 14:270-82. [PMID: 26957201 DOI: 10.2174/1570162x14999160224103555] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Revised: 08/12/2015] [Accepted: 09/01/2015] [Indexed: 01/09/2023]
Abstract
BACKGROUND The infectious human immunodeficiency virus (HIV) particle is characterized by a conical capsid that encloses the viral RNA genome. The capsid is essential for HIV-1 replication and plays crucial roles in both early and late stages of the viral life cycle. Early on, upon fusion of the viral and cellular membranes, the viral capsid is released into the host cell cytoplasm and dissociates in a process known as uncoating, tightly associated with the reverse transcription of the viral genome. During the late stages of viral replication, the Gag polyprotein, precursor of the capsid protein, assemble at the plasma membrane to form immature non-infectious viral particles. After a maturation step by the viral protease, the capsid assembles to form a fullerene-like conical shape characteristic of the mature infectious particle. Mutations affecting the uncoating process, or capsid assembly and maturation, have been shown to hamper viral infectivity. The key role of capsid in viral replication and the absence of approved drugs against this protein have promoted the development of antiretrovirals. Screening based on the inhibition of capsid assembly and virtual screening for molecules binding to the capsid have successfully identified a number of potential small molecule compounds. Unfortunately, none of these molecules is currently used in the clinic. CONCLUSION Here we review the discovery and the mechanism of action of the small molecules and peptides identified as capsid inhibitors, and discuss their therapeutic potential.
Collapse
Affiliation(s)
| | - Susana T Valente
- Department Immunology and Microbial Sciences, The Scripps Research Institute, 130 Scripps Way, 3C1, Jupiter, FL 33458, USA.
| |
Collapse
|
35
|
Kirtane AR, Langer R, Traverso G. Past, Present, and Future Drug Delivery Systems for Antiretrovirals. J Pharm Sci 2016; 105:3471-3482. [PMID: 27771050 DOI: 10.1016/j.xphs.2016.09.015] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 09/06/2016] [Accepted: 09/15/2016] [Indexed: 10/20/2022]
Abstract
The human immunodeficiency virus has infected millions of people and the epidemic continues to grow rapidly in some parts of the world. Antiretroviral (ARV) therapy has provided improved treatment and prolonged the life expectancy of patients. Moreover, there is growing interest in using ARVs to protect against new infections. Hence, ARVs have emerged as our primary strategy in combating the virus. Unfortunately, several challenges limit the optimal performance of these drugs. First, ARVs often require life-long use and complex dosing regimens. This results in low patient adherence and periods of lapsed treatment manifesting in drug resistance. This has prompted the development of alternate dosage forms such as vaginal rings and long-acting injectables that stand to improve patient adherence. Another problem central to therapeutic failure is the inadequate penetration of drugs into infected tissues. This can lead to incomplete treatment, development of resistance, and viral rebound. Several strategies have been developed to improve drug penetration into these drug-free sanctuaries. These include encapsulation of drugs in nanoparticles, use of pharmacokinetic enhancers, and cell-based drug delivery platforms. In this review, we discuss issues surrounding ARV therapy and their impact on drug efficacy. We also describe various drug delivery-based approaches developed to overcome these issues.
Collapse
Affiliation(s)
- Ameya R Kirtane
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139; The David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| | - Robert Langer
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139; The David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139; Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139.
| | - Giovanni Traverso
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139; The David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139; Division of Gastroenterology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115.
| |
Collapse
|
36
|
Ju T, Hu D, Xiang SH, Guo J. Sulfotyrosine dipeptide: Synthesis and evaluation as HIV-entry inhibitor. Bioorg Chem 2016; 68:105-11. [PMID: 27475281 DOI: 10.1016/j.bioorg.2016.07.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Revised: 07/19/2016] [Accepted: 07/25/2016] [Indexed: 10/21/2022]
Abstract
Human immunodeficiency virus type 1 (HIV-1) is responsible for the worldwide AIDS pandemic. Due to the lack of prophylactic HIV-1 vaccine, drug treatment of the infected patients becomes essential to reduce the viral load and to slow down progression of the disease. Because of drug resistance, finding new antiviral agents is necessary for AIDS drug therapies. The interaction of gp120 and co-receptor (CCR5/CXCR4) mediates the entry of HIV-1 into host cells, which has been increasingly exploited in recent years as the target for new antiviral agents. A conserved co-receptor binding site on gp120 that recognizes sulfotyrosine (sTyr) residues represents a structural target to design novel HIV entry inhibitors. In this work, we developed an efficient synthesis of sulfotyrosine dipeptide and evaluated it as an HIV-1 entry inhibitor.
Collapse
Affiliation(s)
- Tong Ju
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE 68588, United States
| | - Duoyi Hu
- Nebraska Center for Virology, School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE 68588, United States
| | - Shi-Hua Xiang
- Nebraska Center for Virology, School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE 68588, United States.
| | - Jiantao Guo
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE 68588, United States.
| |
Collapse
|
37
|
Carvalho ALM, Silva JAD, Lira AAM, Conceição TMF, Nunes RDS, de Albuquerque Junior RLC, Sarmento VHV, Leal LB, de Santana DP. Evaluation of Microemulsion and Lamellar Liquid Crystalline Systems for Transdermal Zidovudine Delivery. J Pharm Sci 2016; 105:2188-93. [DOI: 10.1016/j.xphs.2016.04.013] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Revised: 04/13/2016] [Accepted: 04/14/2016] [Indexed: 12/13/2022]
|
38
|
Wu B, Tang J, Wilson DJ, Huber AD, Casey MC, Ji J, Kankanala J, Xie J, Sarafianos SG, Wang Z. 3-Hydroxypyrimidine-2,4-dione-5-N-benzylcarboxamides Potently Inhibit HIV-1 Integrase and RNase H. J Med Chem 2016; 59:6136-48. [PMID: 27283261 DOI: 10.1021/acs.jmedchem.6b00040] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Resistance selection by human immunodeficiency virus (HIV) toward known drug regimens necessitates the discovery of structurally novel antivirals with a distinct resistance profile. On the basis of our previously reported 3-hydroxypyrimidine-2,4-dione (HPD) core, we have designed and synthesized a new integrase strand transfer (INST) inhibitor type featuring a 5-N-benzylcarboxamide moiety. Significantly, the 6-alkylamino variant of this new chemotype consistently conferred low nanomolar inhibitory activity against HIV-1. Extended antiviral testing against a few raltegravir-resistant HIV-1 clones revealed a resistance profile similar to that of the second generation INST inhibitor (INSTI) dolutegravir. Although biochemical testing and molecular modeling also strongly corroborate the inhibition of INST as the antiviral mechanism of action, selected antiviral analogues also potently inhibited reverse transcriptase (RT) associated RNase H, implying potential dual target inhibition. In vitro ADME assays demonstrated that this novel chemotype possesses largely favorable physicochemical properties suitable for further development.
Collapse
Affiliation(s)
- Bulan Wu
- Center for Drug Design, Academic Health Center, University of Minnesota , Minneapolis, Minnesota 55455, United States
| | - Jing Tang
- Center for Drug Design, Academic Health Center, University of Minnesota , Minneapolis, Minnesota 55455, United States
| | - Daniel J Wilson
- Center for Drug Design, Academic Health Center, University of Minnesota , Minneapolis, Minnesota 55455, United States
| | - Andrew D Huber
- Department of Molecular Microbiology and Immunology and Department of Biochemistry, Christopher S. Bond Life Sciences Center, University of Missouri , Columbia, Missouri 65211, United States
| | - Mary C Casey
- Department of Molecular Microbiology and Immunology and Department of Biochemistry, Christopher S. Bond Life Sciences Center, University of Missouri , Columbia, Missouri 65211, United States
| | - Juan Ji
- Department of Molecular Microbiology and Immunology and Department of Biochemistry, Christopher S. Bond Life Sciences Center, University of Missouri , Columbia, Missouri 65211, United States
| | - Jayakanth Kankanala
- Center for Drug Design, Academic Health Center, University of Minnesota , Minneapolis, Minnesota 55455, United States
| | - Jiashu Xie
- Center for Drug Design, Academic Health Center, University of Minnesota , Minneapolis, Minnesota 55455, United States
| | - Stefan G Sarafianos
- Department of Molecular Microbiology and Immunology and Department of Biochemistry, Christopher S. Bond Life Sciences Center, University of Missouri , Columbia, Missouri 65211, United States
| | - Zhengqiang Wang
- Center for Drug Design, Academic Health Center, University of Minnesota , Minneapolis, Minnesota 55455, United States
| |
Collapse
|
39
|
Identification of potent maturation inhibitors against HIV-1 clade C. Sci Rep 2016; 6:27403. [PMID: 27264714 PMCID: PMC4893694 DOI: 10.1038/srep27403] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Accepted: 05/18/2016] [Indexed: 12/05/2022] Open
Abstract
Antiretroviral therapy has led to a profound improvement in the clinical care of HIV-infected patients. However, drug tolerability and the evolution of drug resistance have limited treatment options for many patients. Maturation inhibitors are a new class of antiretroviral agents for treatment of HIV-1. They act by interfering with the maturation of the virus by blocking the last step in Gag processing: the cleavage of the capsid-spacer peptide 1 (CA-SP1) intermediate to mature CA by the viral protease (PR). The first-in-class maturation inhibitor bevirimat (BVM) failed against a subset of HIV-1 isolates in clinical trials due to polymorphisms present in the CA-SP1 region of the Gag protein. Sequence analysis indicated that these polymorphisms are more common in non-clade B strains of HIV-1 such as HIV-1 clade C. Indeed, BVM was found to be ineffective against HIV-1 clade C molecular clones tested in this study. A number of BVM analogs were synthesized by chemical modifications at the C-28 position to improve its activity. The new BVM analogs displayed potent activity against HIV-1 clade B and C and also reduced infectivity of the virus. This study identifies novel and broadly active BVM analogs that may ultimately demonstrate efficacy in the clinic.
Collapse
|
40
|
Lee WG, Frey KM, Gallardo-Macias R, Spasov KA, Chan AH, Anderson KS, Jorgensen WL. Discovery and crystallography of bicyclic arylaminoazines as potent inhibitors of HIV-1 reverse transcriptase. Bioorg Med Chem Lett 2015; 25:4824-4827. [PMID: 26166629 PMCID: PMC4607639 DOI: 10.1016/j.bmcl.2015.06.074] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Accepted: 06/22/2015] [Indexed: 10/23/2022]
Abstract
Non-nucleoside inhibitors of HIV-1 reverse transcriptase (HIV-RT) are reported that incorporate a 7-indolizinylamino or 2-naphthylamino substituent on a pyrimidine or 1,3,5-triazine core. The most potent compounds show below 10 nanomolar activity towards wild-type HIV-1 and variants bearing Tyr181Cys and Lys103Asn/Tyr181Cys resistance mutations. The compounds also feature good aqueous solubility. Crystal structures for two complexes enhance the analysis of the structure-activity data.
Collapse
Affiliation(s)
- Won-Gil Lee
- Department of Chemistry, Yale University, New Haven, CT 06520-8107, USA
| | - Kathleen M Frey
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06520-8066, USA
| | | | - Krasimir A Spasov
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06520-8066, USA
| | - Albert H Chan
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06520-8066, USA
| | - Karen S Anderson
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06520-8066, USA.
| | | |
Collapse
|
41
|
Alkyl Amine Bevirimat Derivatives Are Potent and Broadly Active HIV-1 Maturation Inhibitors. Antimicrob Agents Chemother 2015; 60:190-7. [PMID: 26482309 DOI: 10.1128/aac.02121-15] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Accepted: 10/12/2015] [Indexed: 11/20/2022] Open
Abstract
Concomitant with the release of human immunodeficiency virus type 1 (HIV-1) particles from the infected cell, the viral protease cleaves the Gag polyprotein precursor at a number of sites to trigger virus maturation. We previously reported that a betulinic acid-derived compound, bevirimat (BVM), blocks HIV-1 maturation by disrupting a late step in protease-mediated Gag processing: the cleavage of the capsid-spacer peptide 1 (CA-SP1) intermediate to mature CA. BVM was shown in multiple clinical trials to be safe and effective in reducing viral loads in HIV-1-infected patients. However, naturally occurring polymorphisms in the SP1 region of Gag (e.g., SP1-V7A) led to a variable response in some BVM-treated patients. The reduced susceptibility of SP1-polymorphic HIV-1 to BVM resulted in the discontinuation of its clinical development. To overcome the loss of BVM activity induced by polymorphisms in SP1, we carried out an extensive medicinal chemistry campaign to develop novel maturation inhibitors. In this study, we focused on alkyl amine derivatives modified at the C-28 position of the BVM scaffold. We identified a set of derivatives that are markedly more potent than BVM against an HIV-1 clade B clone (NL4-3) and show robust antiviral activity against a variant of NL4-3 containing the V7A polymorphism in SP1. One of the most potent of these compounds also strongly inhibited a multiclade panel of primary HIV-1 isolates. These data demonstrate that C-28 alkyl amine derivatives of BVM can, to a large extent, overcome the loss of susceptibility imposed by polymorphisms in SP1.
Collapse
|
42
|
Polanski J, Bogocz J, Tkocz A. Top 100 bestselling drugs represent an arena struggling for new FDA approvals: drug age as an efficiency indicator. Drug Discov Today 2015; 20:1300-4. [PMID: 26160060 DOI: 10.1016/j.drudis.2015.06.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Revised: 06/09/2015] [Accepted: 06/29/2015] [Indexed: 11/17/2022]
Abstract
We analyzed a list of the top 100 bestselling drugs as a struggling market for new FDA approvals. Using the time from drug approval by the FDA as a measure of drug age, our analysis showed that the top 100 bestselling drugs are getting older. This reflects the stalled launch of new drugs into the market during recent years.
Collapse
Affiliation(s)
- Jaroslaw Polanski
- Institute of Chemistry, University of Silesia, Szkolna 9, 40-006 Katowice, Poland.
| | - Jacek Bogocz
- Institute of Chemistry, University of Silesia, Szkolna 9, 40-006 Katowice, Poland
| | - Aleksandra Tkocz
- Institute of Chemistry, University of Silesia, Szkolna 9, 40-006 Katowice, Poland
| |
Collapse
|
43
|
Microplate-based assay for identifying small molecules that bind a specific intersubunit interface within the assembled HIV-1 capsid. Antimicrob Agents Chemother 2015; 59:5190-5. [PMID: 26077250 DOI: 10.1128/aac.00646-15] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Accepted: 06/05/2015] [Indexed: 12/19/2022] Open
Abstract
Despite the availability of >30 effective drugs for managing HIV-1 infection, no current therapy is curative, and long-term management is challenging owing to the emergence and spread of drug-resistant mutants. Identification of drugs against novel HIV-1 targets would expand the current treatment options and help to control resistance. The highly conserved HIV-1 capsid protein represents an attractive target because of its multiple roles in replication of the virus. However, the low antiviral potencies of the reported HIV-1 capsid-targeting inhibitors render them unattractive for therapeutic development. To facilitate the identification of more-potent HIV-1 capsid inhibitors, we developed a scintillation proximity assay to screen for small molecules that target a biologically active and specific intersubunit interface in the HIV-1 capsid. The assay, which is based on competitive displacement of a known capsid-binding small-molecule inhibitor, exhibited a signal-to-noise ratio of >9 and a Z factor of >0.8. In a pilot screen of a chemical library containing 2,400 druglike compounds, we obtained a hit rate of 1.8%. This assay has properties that are suitable for screening large compound libraries to identify novel HIV-1 capsid ligands with antiviral activity.
Collapse
|