1
|
Pazhouhesh Far N, Hajiheidari Varnousafaderani M, Faghihkhorasani F, Etemad S, Abdulwahid AHRR, Bakhtiarinia N, Mousaei A, Dortaj E, Karimi S, Ebrahimi N, Aref AR. Breaking the barriers: Overcoming cancer resistance by targeting the NLRP3 inflammasome. Br J Pharmacol 2024. [PMID: 39394867 DOI: 10.1111/bph.17352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 08/06/2024] [Accepted: 08/14/2024] [Indexed: 10/14/2024] Open
Abstract
Inflammation has a pivotal role in the initiation and progression of various cancers, contributing to crucial processes such as metastasis, angiogenesis, cell proliferation and invasion. Moreover, the release of cytokines mediated by inflammation within the tumour microenvironment (TME) has a crucial role in orchestrating these events. The activation of inflammatory caspases, facilitated by the recruitment of caspase-1, is initiated by the activation of pattern recognition receptors on the immune cell membrane. This activation results in the production of proinflammatory cytokines, including IL-1β and IL-18, and participates in diverse biological processes with significant implications. The NOD-Like Receptor Protein 3 (NLRP3) inflammasome holds a central role in innate immunity and regulates inflammation through releasing IL-1β and IL-18. Moreover, it interacts with various cellular compartments. Recently, the mechanisms underlying NLRP3 inflammasome activation have garnered considerable attention. Disruption in NLRP3 inflammasome activation has been associated with a spectrum of inflammatory diseases, encompassing diabetes, enteritis, neurodegenerative diseases, obesity and tumours. The NLRP3 impact on tumorigenesis varies across different cancer types, with contrasting roles observed. For example, colorectal cancer associated with colitis can be suppressed by NLRP3, whereas gastric and skin cancers may be promoted by its activity. This review provides comprehensive insights into the structure, biological characteristics and mechanisms of the NLRP3 inflammasome, with a specific focus on the relationship between NLRP3 and tumour-related immune responses, and TME. Furthermore, the review explores potential strategies for targeting cancers via NLRP3 inflammasome modulation. This encompasses innovative approaches, including NLRP3-based nanoparticles, gene-targeted therapy and immune checkpoint inhibitors.
Collapse
Affiliation(s)
- Nazanin Pazhouhesh Far
- Department of Microbiology, Faculty of Advanced Science and Technology, Tehran Medical Science, Islamic Azad University, Tehran, Iran
| | | | | | - Sareh Etemad
- Department of Pathology, Faculty of Anatomical Pathology, Ghaem Hospital, University of Medicine, Mashhad, Iran
| | | | | | - Afsaneh Mousaei
- Department of Biology, College of Science, Qaemshahr Branch, Islamic Azad University, Qaem Shahr, Iran
| | - Elahe Dortaj
- Department of Ergonomics, School of Health, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Soroush Karimi
- Nano Drug Delivery Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Nasim Ebrahimi
- Genetics Division, Department of Cell and Molecular Biology and Microbiology, Faculty of Science and Technology, University of Isfahan, Isfahan, Iran
| | - Amir Reza Aref
- Mass General Cancer Center, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| |
Collapse
|
2
|
Wang X, Lin J, Wang Z, Li Z, Wang M. Possible therapeutic targets for NLRP3 inflammasome-induced breast cancer. Discov Oncol 2023; 14:93. [PMID: 37300757 DOI: 10.1007/s12672-023-00701-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Accepted: 05/25/2023] [Indexed: 06/12/2023] Open
Abstract
Inflammation plays a major role in the development and progression of breast cancer(BC). Proliferation, invasion, angiogenesis, and metastasis are all linked to inflammation and tumorigenesis. Furthermore, tumor microenvironment (TME) inflammation-mediated cytokine releases play a critical role in these processes. By recruiting caspase-1 through an adaptor apoptosis-related spot protein, inflammatory caspases are activated by the triggering of pattern recognition receptors on the surface of immune cells. Toll-like receptors, NOD-like receptors, and melanoma-like receptors are not triggered. It activates the proinflammatory cytokines interleukin (IL)-1β and IL-18 and is involved in different biological processes that exert their effects. The Nod-Like Receptor Protein 3 (NLRP3) inflammasome regulates inflammation by mediating the secretion of proinflammatory cytokines and interacting with other cellular compartments through the inflammasome's central role in innate immunity. NLRP3 inflammasome activation mechanisms have received much attention in recent years. Inflammatory diseases including enteritis, tumors, gout, neurodegenerative diseases, diabetes, and obesity are associated with abnormal activation of the NLRP3 inflammasome. Different cancer diseases have been linked to NLRP3 and its role in tumorigenesis may be the opposite. Tumors can be suppressed by it, as has been seen primarily in the context of colorectal cancer associated with colitis. However, cancers such as gastric and skin can also be promoted by it. The inflammasome NLRP3 is associated with breast cancer, but there are few specific reviews. This review focuses on the structure, biological characteristics and mechanism of inflammasome, the relationship between NLRP3 in breast cancer Non-Coding RNAs, MicroRNAs and breast cancer microenvironment, especially the role of NLRP3 in triple-negative breast cancer (TNBC). And the potential strategies of using NLRP3 inflammasome to target breast cancer, such as NLRP3-based nanoparticle technology and gene target therapy, are reviewed.
Collapse
Affiliation(s)
- Xixi Wang
- Department of General Surgery, Taihe Hospital, Hubei University of Medicine, Shiyan, 442000, China
| | - Junyi Lin
- Sinopharm Dongfeng General Hospital, Hubei University of Medicine, Shiyan, 442000, China
- Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei University of Medicine, Shiyan, China
| | - Zhe Wang
- Department of General Surgery, Taihe Hospital, Hubei University of Medicine, Shiyan, 442000, China
| | - Zhi Li
- Department of General Surgery, Taihe Hospital, Hubei University of Medicine, Shiyan, 442000, China.
- Interventional Cancer Institute of Chinese Integrative Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200333, China.
- Hubei Clinical Research Center for Precise Diagnosis and Treatment of Liver Cancer, Taihe Hospital, Hubei University of Medicine, Shiyan, China.
| | - Minghua Wang
- Department of General Surgery, Taihe Hospital, Hubei University of Medicine, Shiyan, 442000, China.
| |
Collapse
|
3
|
Mehta S, Suresh A, Nayak Y, Narayan R, Nayak UY. Hybrid nanostructures: Versatile systems for biomedical applications. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214482] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
4
|
|
5
|
Tong X, Ga L, Ai J, Wang Y. Progress in cancer drug delivery based on AS1411 oriented nanomaterials. J Nanobiotechnology 2022; 20:57. [PMID: 35101048 PMCID: PMC8805415 DOI: 10.1186/s12951-022-01240-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 01/02/2022] [Indexed: 02/07/2023] Open
Abstract
Targeted cancer therapy has become one of the most important medical methods because of the spreading and metastatic nature of cancer. Based on the introduction of AS1411 and its four-chain structure, this paper reviews the research progress in cancer detection and drug delivery systems by modifying AS1411 aptamers based on graphene, mesoporous silica, silver and gold. The application of AS1411 in cancer treatment and drug delivery and the use of AS1411 as a targeting agent for the detection of cancer markers such as nucleoli were summarized from three aspects of active targeting, passive targeting and targeted nucleic acid apharmers. Although AS1411 has been withdrawn from clinical trials, the research surrounding its structural optimization is still very popular. Further progress has been made in the modification of nanoparticles loaded with TCM extracts by AS1411.
Collapse
Affiliation(s)
- Xin Tong
- College of Chemistry and Environmental Science, College of Geographical Science, Inner Mongolia Key Laboratory of Environmental Chemistry, Inner Mongolia Normal University, 81 Zhaowudalu, Hohhot, 010022, China
| | - Lu Ga
- College of Pharmacy, Inner Mongolia Medical University, Jinchuankaifaqu, Hohhot, 010110, China
| | - Jun Ai
- College of Chemistry and Environmental Science, College of Geographical Science, Inner Mongolia Key Laboratory of Environmental Chemistry, Inner Mongolia Normal University, 81 Zhaowudalu, Hohhot, 010022, China.
| | - Yong Wang
- College of Chemistry and Environmental Science, College of Geographical Science, Inner Mongolia Key Laboratory of Environmental Chemistry, Inner Mongolia Normal University, 81 Zhaowudalu, Hohhot, 010022, China.
| |
Collapse
|
6
|
Mendonça-Gomes JM, Valverde TM, Martins TMDM, Charlie-Silva I, Padovani BN, Fénero CM, da Silva EM, Domingues RZ, Melo-Hoyos DC, Corrêa-Junior JD, Câmara NOS, Góes AM, Gomes DA. Long-term dexamethasone treatment increases the engraftment efficiency of human breast cancer cells in adult zebrafish. FISH AND SHELLFISH IMMUNOLOGY REPORTS 2021; 2:100007. [DOI: 10.1016/j.fsirep.2021.100007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 03/03/2021] [Accepted: 03/03/2021] [Indexed: 01/03/2023] Open
|
7
|
Progress in the study of D-α-tocopherol polyethylene glycol 1000 succinate (TPGS) reversing multidrug resistance. Colloids Surf B Biointerfaces 2021; 205:111914. [PMID: 34130211 DOI: 10.1016/j.colsurfb.2021.111914] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 05/28/2021] [Accepted: 06/06/2021] [Indexed: 12/13/2022]
Abstract
Currently, multidrug resistance (MDR) is one of the major reasons for failure in clinical cancer chemotherapy. Overexpression of the ATP binding cassette (ABC) transporter P-glycoprotein (P-gp), which significantly increases the efflux of anticancer drugs from tumor cells, enhances MDR. In the past few decades, four generations of P-gp inhibitors have appeared. However, they are limited in clinical application due to their severe toxic side effects. As a P-gp inhibitor and carrier for loading chemotherapy agents, TPGS has received increasing attention due to its advantages and unique properties of reversing MDR. TPGS is an amphipathic agent that increases the solubility of most chemotherapy drugs and decreases severe side effects. In addition, TPGS is an excellent carrier with P-gp-inhibiting ability. In this review, we summarize the latest articles on TPGS-based nanodelivery systems to prevent MDR.
Collapse
|
8
|
Weng XL, Liu JY. Strategies for maximizing photothermal conversion efficiency based on organic dyes. Drug Discov Today 2021; 26:2045-2052. [PMID: 33741495 DOI: 10.1016/j.drudis.2021.03.009] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 02/16/2021] [Accepted: 03/09/2021] [Indexed: 01/15/2023]
Abstract
Photothermal therapy (PTT) has emerged as a promising therapeutic approach for tumor control and ablation. Attention has focused on exploring advanced organic photothermal agents (OPTAs), with advantages of easy modification, adjustable photophysical and photochemical properties, good compatibility, and inherent biodegradability. However, few detailed studies on how to maximally channelize nonradiative heat generation from the viewpoint of the photothermal conversion mechanism have been reported. Thus, here we assimilate and elaborate on several available action mechanisms to maximize the photothermal conversion efficiency (PCE) of organic dyes. Moreover, we also propose several potential challenges that require substantial future work to address.
Collapse
Affiliation(s)
- Xiao-Lu Weng
- National & Local Joint Biomedical Engineering Research Center on Photodynamic Technologies, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Jian-Yong Liu
- National & Local Joint Biomedical Engineering Research Center on Photodynamic Technologies, College of Chemistry, Fuzhou University, Fuzhou 350108, China; Key Laboratory of Molecule Synthesis and Function Discovery, Fujian Province University, College of Chemistry, Fuzhou University, Fuzhou 350108, China; State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350108, China.
| |
Collapse
|
9
|
Zhang Q, Zhang P, Jian S, Li J, Li F, Sun X, Li H, Zeng Y, Zeng Y, Liang S, Chen P, Liu Z. Drug-Bearing Peptide-Based Nanospheres for the Inhibition of Metastasis and Growth of Cancer. Mol Pharm 2020; 17:3165-3176. [DOI: 10.1021/acs.molpharmaceut.0c00118] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Qianqian Zhang
- The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha Hunan 410081, China
| | - Peng Zhang
- The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha Hunan 410081, China
| | - Shandong Jian
- The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha Hunan 410081, China
| | - Jinting Li
- The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha Hunan 410081, China
| | - Fengjiao Li
- The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha Hunan 410081, China
| | - Xiaoliang Sun
- The National and Local Joint Engineering Laboratory for New Petrochemical Materials and Fine Utilization of Resources, Hunan Normal University, Changsha Hunan 410081, China
| | - Hongrui Li
- The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha Hunan 410081, China
| | - Yang Zeng
- The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha Hunan 410081, China
| | - Youlin Zeng
- The National and Local Joint Engineering Laboratory for New Petrochemical Materials and Fine Utilization of Resources, Hunan Normal University, Changsha Hunan 410081, China
| | - Songping Liang
- The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha Hunan 410081, China
| | - Ping Chen
- The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha Hunan 410081, China
| | - Zhonghua Liu
- The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha Hunan 410081, China
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha Hunan 410081, China
| |
Collapse
|
10
|
Barzegari Firouzabadi F, Oryan SH, Sheikhha MH, Kalantar SM, Javed A. Preparation and Evaluation of A Novel Liposomal Nano-Formulation in Metastatic Cancer Treatment Studies. CELL JOURNAL 2019; 21:135-142. [PMID: 30825286 PMCID: PMC6397608 DOI: 10.22074/cellj.2019.6008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2018] [Accepted: 08/15/2018] [Indexed: 11/17/2022]
Abstract
Objective Today, in clinical trials, we suffer from the lack of effective methods with minimal side effects to deliver medication.
Thus, efforts to identify better conditions for delivery of biomedical drugs seem necessary. The purpose of this study was to
design a new liposomal formula for transportation of microRNA in osteosarcoma.
Materials and Methods In this experimental study, several liposomal formulations were synthesized. Physical and chemical
parameters, including size, zeta potential, polydispersity index, long-term stability of the liposomal-microRNA complex and the
amount of miR-143 loading in liposome based nano-vesicles were optimized using different techniques. Similarly, the effect of
free and encapsulated microRNA toxicity were investigated and compared in a human bone osteosarcoma cell line, named
SaOs-2.
Results In this study, we could produce a novel and optimized formulation of cationic PEGylated liposomal microRNA
for gene delivery. The present synthesized microRNA lipoplex system was non-agglomerated. The system remained
stable after four months and miR-143 leakage was not observed by performing gel electrophoresis. The microRNA
lipoplex could enhance conduction of the loaded miR-143, and it also showed good biocompatibility to the healthy cells.
Conclusion The PEGylated microRNA lipoplex system had a high potential for the systematic migration of miR-143 and it
could improve intracellular stability of the released microRNA.
Collapse
Affiliation(s)
- Fatemeh Barzegari Firouzabadi
- Department of Animal Biology, Faculty of Biological Science, Kharazmi University, Tehran, Iran. Elevtronic Address: .,Departeman of Biology, College of Science, Payame Noor University, Yazd, Iran
| | - S Hahrbanoo Oryan
- Department of Animal Biology, Faculty of Biological Science, Kharazmi University, Tehran, Iran
| | - Mohammad Hasan Sheikhha
- School of Biology, College of Science, University of Tehran, Tehran, Iran. Electronic Adress:
| | - Seyed Mehdi Kalantar
- Reproductive and Genetic Unit, Research and Clinical Center for Infertility, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Ameneh Javed
- Department of Biology, Faculty of Science, Science and Art University, Yazd, Iran
| |
Collapse
|
11
|
Kesharwani SS, Kaur S, Tummala H, Sangamwar AT. Overcoming multiple drug resistance in cancer using polymeric micelles. Expert Opin Drug Deliv 2018; 15:1127-1142. [DOI: 10.1080/17425247.2018.1537261] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Siddharth S. Kesharwani
- Department of Pharmaceutical Sciences, College of Pharmacy & Allied Health Professions, South Dakota State University, Brookings, USA
| | - Shamandeep Kaur
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Mohali, India
| | - Hemachand Tummala
- Department of Pharmaceutical Sciences, College of Pharmacy & Allied Health Professions, South Dakota State University, Brookings, USA
| | - Abhay T. Sangamwar
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Mohali, India
| |
Collapse
|
12
|
Ferreira NH, Furtado RA, Ribeiro AB, de Oliveira PF, Ozelin SD, de Souza LDR, Neto FR, Miura BA, Magalhães GM, Nassar EJ, Tavares DC. Europium(III)-doped yttrium vanadate nanoparticles reduce the toxicity of cisplatin. J Inorg Biochem 2018; 182:9-17. [DOI: 10.1016/j.jinorgbio.2018.01.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 12/29/2017] [Accepted: 01/22/2018] [Indexed: 12/29/2022]
|
13
|
Wu JY, Wang ZX, Zhang G, Lu X, Qiang GH, Hu W, Ji AL, Wu JH, Jiang CP. Targeted co-delivery of Beclin 1 siRNA and FTY720 to hepatocellular carcinoma by calcium phosphate nanoparticles for enhanced anticancer efficacy. Int J Nanomedicine 2018; 13:1265-1280. [PMID: 29551896 PMCID: PMC5842779 DOI: 10.2147/ijn.s156328] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Purpose FTY720, known as fingolimod, is a new immunosuppressive agent with effective anticancer properties. Although it was recently confirmed that FTY720 inhibits cancer cell proliferation, FTY720 can also induce protective autophagy and reduce cytotoxicity. Blocking autophagy with Beclin 1 siRNA after treatment with FTY720 promotes apoptosis. The objective of this study was to enhance the anticancer effect of FTY720 in hepatocellular carcinoma (HCC) by targeted co-delivery of FTY720 and Beclin 1 siRNA using calcium phosphate (CaP) nanoparticles (NPs). Materials and methods First, the siRNA was encapsulated within the CaP core. To form an asymmetric lipid bilayer structure, we then used an anionic lipid for the inner leaflet and a cationic lipid for the outer leaflet; after removing chloroform by rotary evaporation, these lipids were dispersed in a saline solution with FTY720. The NPs were analyzed by transmission electron microscopy, dynamic light scattering and ultraviolet–visible spectrophotometry. Cancer cell viability and cell death were analyzed by MTT assays, fluorescence-activated cell sorting analysis and Western blotting. In addition, the in vivo effects of the NPs were investigated using an athymic nude mouse subcutaneous transplantation tumor model. Results When the CaP NPs, called LCP-II NPs, were loaded with FTY720 and siRNA, they exhibited the expected size and were internalized by cells. These NPs were stable in systemic circulation. Furthermore, co-delivery of FTY720 and Beclin 1 siRNA significantly increased cytotoxicity in vitro and in vivo compared with that caused by treatment with the free drug alone. Conclusion The CaP NP system can be further developed for co-delivery of FTY720 and Beclin 1 siRNA to treat HCC, enhancing the anticancer efficacy of FTY720. Our findings provide a new insight into HCC treatment with co-delivered small molecules and siRNA, and these results can be readily translated into cancer clinical trials.
Collapse
Affiliation(s)
- Jun-Yi Wu
- Department of Hepatobiliary Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China
| | - Zhong-Xia Wang
- Department of Hepatobiliary Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China
| | - Guang Zhang
- Department of Hepatobiliary Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China
| | - Xian Lu
- Department of Hepatobiliary Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China
| | - Guang-Hui Qiang
- Department of Hepatobiliary Surgery, Drum Tower Clinical College of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Wei Hu
- Department of Hepatobiliary Surgery, Drum Tower Clinical College of Nanjing Medical University, Nanjing, Jiangsu, China
| | - An-Lai Ji
- Department of General Surgery, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu, China
| | - Jun-Hua Wu
- Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing, Jiangsu, China
| | - Chun-Ping Jiang
- Department of Hepatobiliary Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China
| |
Collapse
|
14
|
Zeinizade E, Tabei M, Shakeri-Zadeh A, Ghaznavi H, Attaran N, Komeili A, Ghalandari B, Maleki S, Kamrava SK. Selective apoptosis induction in cancer cells using folate-conjugated gold nanoparticles and controlling the laser irradiation conditions. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2018; 46:1026-1038. [PMID: 29486617 DOI: 10.1080/21691401.2018.1443116] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
In this study, we explained in detail a targeted nano-photo-thermal therapy (NPTT) method to induce selective apoptosis in cancer cells. Folate-conjugated gold nanoparticles (F-AuNPs) were synthesized by tailoring the surface of AuNPs with folic acid to enhance the specificity of NPTT. KB cancer cells, as a folate receptor over-expressing cell line, and L929 normal cells with low level of folate receptors were incubated with the synthesized F-AuNPs and then irradiated with various laser intensities and exposure durations. Following various regimes of NPTT, we assessed the level of cell viability and the ratio of apoptosis/necrosis. No significant cytotoxicity was observed for both cell lines at concentrations up to 40 μM of F-AuNPs. Moreover, no significant cell lethality occurred for various laser irradiation conditions. The viability of KB and L929 cells incubated with F-AuNPs (40 μM; 6 h) and then irradiated by laser (1 W/cm2; 2 min) was 57 and 83%, respectively. It was also demonstrated that the majority of cancer cell death is related to apoptosis (41% apoptosis of 43% overall cell death). In this process of F-AuNPs based NPTT, it may be concluded that the main factor determining whether a cell dies due to apoptosis or necrosis depends on laser irradiation conditions. In this study, we explained in detail a targeted nano-photo-thermal therapy (NPTT) method to induce selective apoptosis in cancer cells.
Collapse
Affiliation(s)
- Elham Zeinizade
- a Medical Physics Department, School of Medicine , Iran University of Medical Sciences (IUMS) , Tehran , Iran
| | - Mousa Tabei
- a Medical Physics Department, School of Medicine , Iran University of Medical Sciences (IUMS) , Tehran , Iran
| | - Ali Shakeri-Zadeh
- a Medical Physics Department, School of Medicine , Iran University of Medical Sciences (IUMS) , Tehran , Iran
| | - Habib Ghaznavi
- b Cellular and Molecular Research Center , Zahedan University of Medical Sciences (ZaUMS) , Zahedan , Iran
| | - Neda Attaran
- c Applied Biophotonics Research Center, Science and Research Branch , Islamic Azad University , Tehran , Iran
| | - Ali Komeili
- c Applied Biophotonics Research Center, Science and Research Branch , Islamic Azad University , Tehran , Iran
| | - Behafarid Ghalandari
- c Applied Biophotonics Research Center, Science and Research Branch , Islamic Azad University , Tehran , Iran
| | - Shayan Maleki
- d ENT and Head & Neck Research Center and Department , Iran University of Medical Sciences (IUMS) , Tehran , Iran
| | - S Kamran Kamrava
- c Applied Biophotonics Research Center, Science and Research Branch , Islamic Azad University , Tehran , Iran
| |
Collapse
|
15
|
Nikoonahad Lotfabadi N, Mohseni Kouchesfahani H, Sheikhha MH, Kalantar SM. In vitro transfection of anti-tumor miR-101 induces BIM, a pro-apoptotic protein, expression in acute myeloid leukemia (AML). EXCLI JOURNAL 2017; 16:1257-1267. [PMID: 29333128 PMCID: PMC5763080 DOI: 10.17179/excli2017-721] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2017] [Accepted: 11/11/2017] [Indexed: 12/14/2022]
Abstract
Acute myeloid leukemia (AML) frequently relapses after initial treatment, though it is possible that drug resistance occurs. Hence, it seems necessary to develop novel therapies such as gene therapy specifically via miRNA transfection. MicroRNA-101 has been considered as a tumor suppressor in different types of cancer. It is demonstrated that exogenous miR-101 transfection is associated with decreased viability in AML in this paper. Besides, the increase of pro-apoptotic protein BIM expression in both mRNA and protein level has been illustrated. The recent findings provide an insight into the novel function of miR-101 in AML by activating BIM as an important mediator in intrinsic apoptosis pathways. Generally, miR-101 has been considered as a therapeutic target in our data and might have a valuable role in AML.
Collapse
Affiliation(s)
- Narges Nikoonahad Lotfabadi
- Department of Animal Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran.,Biology Department, Faculty of Sciences, Science and Arts University, Yazd, Iran
| | | | - Mohammad Hasan Sheikhha
- Reproductive & Genetic Unit, Research and Clinical Center for Infertility, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.,Biotechnology Research Center, International Campus, Shahid Sadoughi University of Medical Science, Yazd, Iran
| | - Seyed Mehdi Kalantar
- Reproductive & Genetic Unit, Research and Clinical Center for Infertility, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| |
Collapse
|
16
|
Hu Q, Zhao F, Guo F, Wang C, Fu Z. Polymeric Nanoparticles Induce NLRP3 Inflammasome Activation and Promote Breast Cancer Metastasis. Macromol Biosci 2017; 17. [PMID: 29131546 DOI: 10.1002/mabi.201700273] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Revised: 09/20/2017] [Indexed: 12/15/2022]
Abstract
Polymeric nanoparticles gain enormous interests in cancer therapy. Polyethylenimine (PEI) 25 kD is well known for its high transfection efficiency and cytotoxicity. PEI-CyD (PC) was previously synthesized by conjugating low molecular PEI (M w 600) with β-cyclodextrin (β-CyD), which is shown to induce lower cytotoxicity than PEI 25 kD. In the current study, the in vivo immune response of branched PEI 25 kD and PC is investigated. Compared to PC/pDNA, exposure of PEI 25kD/pDNA induces higher level of immune-stimulation evidenced by the increased spleen weight, phagocytic capacity of peritoneal macrophage, and proinflammatory cytokines in serum and liver. Importantly, administration of PEI 25 kD can greatly promote breast cancer metastasis in liver and lung tissues, which correlates with its ability to induce high oxidative stress and NLRP3-inflammasome activation. These results suggest that polymeric nanocarriers have the potential to induce immune-stimulation and cancer metastasis, which may affect their efficiency for cancer therapy.
Collapse
Affiliation(s)
- Qinglian Hu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, 310032, Hangzhou, China
| | - Fenghui Zhao
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, 310032, Hangzhou, China
| | - Fengliang Guo
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, 310032, Hangzhou, China
| | - Chengcheng Wang
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, 310032, Hangzhou, China
| | - Zhengwei Fu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, 310032, Hangzhou, China
| |
Collapse
|
17
|
de Paula LB, Primo FL, Tedesco AC. Nanomedicine associated with photodynamic therapy for glioblastoma treatment. Biophys Rev 2017; 9:761-773. [PMID: 28823025 DOI: 10.1007/s12551-017-0293-3] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Accepted: 07/27/2017] [Indexed: 12/11/2022] Open
Abstract
Glioblastoma, also known as glioblastoma multiforme (GBM), is the most recurrent and malignant astrocytic glioma found in adults. Biologically, GBMs are highly aggressive tumors that often show diffuse infiltration of the brain parenchyma, making complete surgical resection difficult. GBM is not curable with surgery alone because tumor cells typically invade the surrounding brain, rendering complete resection unsafe. Consequently, present-day therapy for malignant glioma remains a great challenge. The location of the invasive tumor cells presents several barriers to therapeutic delivery. The blood-brain barrier regulates the trafficking of molecules to and from the brain. While high-grade brain tumors contain some "leakiness" in their neovasculature, the mechanisms of GBM onset and progression remain largely unknown. Recent advances in the understanding of the signaling pathways that underlie GBM pathogenesis have led to the development of new therapeutic approaches targeting multiple oncogenic signaling aberrations associated with the GBM. Among these, drug delivery nanosystems have been produced to target therapeutic agents and improve their biodistribution and therapeutic index in the tumor. These systems mainly include polymer or lipid-based carriers such as liposomes, metal nanoparticles, polymeric nanospheres and nanocapsules, micelles, dendrimers, nanocrystals, and nanogold. Photodynamic therapy (PDT) is a promising treatment for a variety of oncological diseases. PDT is an efficient, simple, and versatile method that is based on a combination of a photosensitive drug and light (generally laser-diode or laser); these factors are separately relatively harmless but when used together in the presence of oxygen molecules, free radicals are produced that initiate a sequence of biological events, including phototoxicity, vascular damage, and immune responses. Photodynamic pathways activate a cascade of activities, including apoptotic and necrotic cell death in both the tumor and the neovasculature, leading to a permanent lesion and destruction of GBM cells that remain in the healthy tissue. Glioblastoma tumors differ at the molecular level. For example, gene amplification epidermal growth factor receptor and its receptor are more highly expressed in primary GBM than in secondary GBM. Despite these distinguishing features, both types of tumors (primary and secondary) arise as a result dysregulation of numerous intracellular signaling pathways and have standard features, such as increased cell proliferation, survival and resistance to apoptosis, and loss of adhesion and migration, and may show a high degree of invasiveness. PDT may promote significant tumor regression and extend the lifetime of patients who experience glioma progression.
Collapse
Affiliation(s)
- Leonardo B de Paula
- Department of Chemistry, Center of Nanotechnology and Tissue Engineering - Photobiology and Photomedicine Research Group, Faculty of Philosophy, Science and Letters of Ribeirão Preto, University of São Paulo (USP), Ribeirão Preto, 14040-901, São Paulo, Brazil
| | - Fernando L Primo
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, 14801-903, São Paulo, Brazil
| | - Antonio C Tedesco
- Department of Chemistry, Center of Nanotechnology and Tissue Engineering - Photobiology and Photomedicine Research Group, Faculty of Philosophy, Science and Letters of Ribeirão Preto, University of São Paulo (USP), Ribeirão Preto, 14040-901, São Paulo, Brazil.
| |
Collapse
|
18
|
Liang Y, Li S, Wang X, He B, He B, Dai W, Zhang H, Wang X, Wang Y, Zhou D, Zhang Q. A Nanosystem of Amphiphilic Oligopeptide-Drug Conjugate Actualizing Both αvβ3 Targeting and Reduction-Triggered Release for Maytansinoid. Theranostics 2017; 7:3306-3318. [PMID: 28900511 PMCID: PMC5595133 DOI: 10.7150/thno.20242] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Accepted: 06/16/2017] [Indexed: 02/07/2023] Open
Abstract
To design a prodrug-based self-assembling nanosystem with both ligand targeting and stimuli-responsive features, and elucidate the superiority of each targeting strategy and the synergistic effect between them, we synthesized four small molecule amphiphilic peptide-drug conjugates (APDCs) using maytansinoid (DM1) as a cytotoxic agent, cRGDfK as a homing peptide, and disulfide (SS) or thioether (SMCC) as linker. Owing to their amphiphilicity, the APDCs could self-assemble into nanoparticles (APDC@NPs) which were evaluated in vitro in three different cell lines and in vivo in tumor-bearing C57BL/6 mice. The RSSD@NPs showed the strongest interaction with αvβ3 integrin, highest cell uptake and intracellular free drug level, and best antitumor efficacy in vitro and in vivo, while it shared the same goodness with other test nanosystems in terms of high drug loading, EPR effect and free of potentially toxic polymers. Especially, the in vivo efficacy of RSSD@NPs was 2 fold of free DM1 which is too cytotoxic to be a drug, while the active targeted APDC@NPs demonstrated acceptable system, tissue and blood compatibility. In αvβ3-positive cells or tumors, the RGD targeting contributed much more than disulfide in anticancer effect. The maximum synergism of the two strategies reached to 22 fold in vitro and 3 fold in vivo. Generally, the active targeting, prodrug and nanosystem could significantly decrease the toxicity of free DM1 and improve its therapy outcome via combining active targeting, prodrug and nanopreparation, especially the dual targeting strategies and their synergism.
Collapse
|
19
|
Haghiralsadat F, Amoabediny G, Sheikhha MH, Forouzanfar T, Helder MN, Zandieh-Doulabi B. A Novel Approach on Drug Delivery: Investigation of A New Nano-Formulation of Liposomal Doxorubicin and Biological Evaluation of Entrapped Doxorubicin on Various Osteosarcoma Cell Lines. CELL JOURNAL 2017; 19:55-65. [PMID: 28580308 PMCID: PMC5448319 DOI: 10.22074/cellj.2017.4502] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Accepted: 09/06/2016] [Indexed: 11/04/2022]
Abstract
OBJECTIVE In this study we prepared a novel formulation of liposomal doxorubicin (L- DOX). The drug dose was optimized by analyses of cellular uptake and cell viability of osteosarcoma (OS) cell lines upon exposure to nanoliposomes that contained varying DOX concentrations. We intended to reduce the cytotoxicity of DOX and improve characteristics of the nanosystems. MATERIALS AND METHODS In this experimental study, we prepared liposomes by the pH gradient hydration method. Various characterization tests that included dynamic light scattering (DLS), cryogenic transmission electron microscopy (Cryo-TEM) imaging, and UV- Vis spectrophotometry were employed to evaluate the quality of the nanocarriers. In addition, the CyQUANT® assay and fluorescence microscope imaging were used on various OS cell lines (MG-63, U2-OS, SaOS-2, SaOS-LM7) and Human primary osteoblasts cells, as novel methods to determine cell viability and in vitro transfection efficacy. RESULTS We observed an entrapment efficiency of 84% for DOX within the optimized liposomal formulation (L-DOX) that had a liposomal diameter of 96 nm. Less than 37% of DOX released after 48 hours and L-DOX could be stored stably for 14 days. L-DOX increased DOX toxicity by 1.8-4.6 times for the OS cell lines and only 1.3 times for Human primary osteoblasts cells compared to free DOX, which confirmed a higher sensitivity of the OS cell lines versus Human primary osteoblasts cells for L-DOX. We deduced that L- DOX passed more freely through the cell membrane compared to free DOX. CONCLUSION We successfully synthesized a stealth L-DOX that contained natural phospholipid by the pH gradient method, which could encapsulate DOX with 84% efficiency. The resulting nanoparticles were round, with a suitable particle size, and stable for 14 days. These nanoparticles allowed for adequately controlled DOX release, increased cell permeability compared to free DOX, and increased tumor cell death. L-DOX provided a novel, more effective therapy for OS treatment.
Collapse
Affiliation(s)
- Fateme Haghiralsadat
- Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran, Iran.,Department of Nano Biotechnology, Research Center for New Technologies in Life Science Engineering, University of Tehran, Tehran, Iran
| | - Ghasem Amoabediny
- Department of Nano Biotechnology, Research Center for New Technologies in Life Science Engineering, University of Tehran, Tehran, Iran.,Department of Biotechnology and Pharmaceutical Engineering, School of Chemical Engineering, College of Engineering, University of Tehran, Tehran, Iran.,Department of Oral and Maxillofacial Surgery, VU University Medical Center, MOVE Research Institute Amsterdam, Amsterdam, The Netherlands
| | - Mohammad Hasan Sheikhha
- Research and Clinical Center for Infertility, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.,Biotechnology Research Center, International Campus, Shahid Sadoughi University of Medical Science, Yazd, Iran
| | - Tymour Forouzanfar
- Department of Oral and Maxillofacial Surgery, VU University Medical Center, MOVE Research Institute Amsterdam, Amsterdam, The Netherlands
| | - Marco N Helder
- Department of Oral and Maxillofacial Surgery, VU University Medical Center, MOVE Research Institute Amsterdam, Amsterdam, The Netherlands.,Oral Cell Biology and Functional Anatomy, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Behrouz Zandieh-Doulabi
- Oral Cell Biology and Functional Anatomy, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
20
|
Yang X, Cai X, Yu A, Xi Y, Zhai G. Redox-sensitive self-assembled nanoparticles based on alpha-tocopherol succinate-modified heparin for intracellular delivery of paclitaxel. J Colloid Interface Sci 2017; 496:311-326. [PMID: 28237749 DOI: 10.1016/j.jcis.2017.02.033] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Revised: 02/12/2017] [Accepted: 02/13/2017] [Indexed: 01/17/2023]
Abstract
To remedy the problems riddled in cancer chemotherapy, such as poor solubility, low selectivity, and insufficient intra-cellular release of drugs, novel heparin-based redox-sensitive polymeric nanoparticles were developed. The amphiphilic polymer, heparin-alpha-tocopherol succinate (Hep-cys-TOS) was synthesized by grafting hydrophobic TOS to heparin using cystamine as the redox-sensitive linker, which could self-assemble into nanoparticles in phosphate buffer saline (PBS) with low critical aggregation concentration (CAC) values ranging from 0.026 to 0.093mg/mL. Paclitaxel (PTX)-loaded Hep-cys-TOS nanoparticles were prepared via a dialysis method, exhibiting a high drug-loading efficiency of 18.99%. Physicochemical properties of the optimized formulation were characterized by dynamic light scattering (DLS), transmission electron microscope (TEM) and differential scanning calorimetry (DSC). Subsequently, the redox-sensitivity of Hep-cys-TOS nanoparticles was confirmed by the changes in size distribution, morphology and appearance after dithiothreitol (DTT) treatment. Besides, the in vitro release of PTX from Hep-cys-TOS nanoparticles also exhibited a redox-triggered profile. Also, the uptake behavior and pathways of coumarin 6-loaded Hep-cys-TOS nanoparticles were investigated, suggesting the nanoparticles could be taken into MCF-7 cells in energy-dependent, caveolae-mediated and cholesterol-dependent endocytosis manners. Later, MTT assays of different PTX-free and PTX-loaded formulations revealed the desirable safety of PTX-free nanoparticles and the enhanced anti-cancer activity of PTX-loaded Hep-cys-TOS nanoparticles (IC50=0.79μg/mL). Apoptosis study indicated the redox-sensitive formulation could induce more apoptosis of MCF-7 cells than insensitive one (55.2% vs. 41.7%), showing the importance of intracellular burst release of PTX. Subsequently, the hemolytic toxicity confirmed the safety of the nanoparticles for intravenous administration. The results indicated the developed redox-sensitive nanoparticles were promising as intracellular drug delivery vehicles for cancer treatment.
Collapse
Affiliation(s)
- Xiaoye Yang
- Department of Pharmaceutics, College of Pharmacy, Shandong University, Jinan 250012, China
| | - Xiaoqing Cai
- Department of Pharmaceutics, College of Pharmacy, Shandong University, Jinan 250012, China
| | - Aihua Yu
- Department of Pharmaceutics, College of Pharmacy, Shandong University, Jinan 250012, China
| | - Yanwei Xi
- Department of Pharmaceutics, College of Pharmacy, Shandong University, Jinan 250012, China
| | - Guangxi Zhai
- Department of Pharmaceutics, College of Pharmacy, Shandong University, Jinan 250012, China.
| |
Collapse
|
21
|
Molina M, Wedepohl S, Miceli E, Calderón M. Overcoming drug resistance with on-demand charged thermoresponsive dendritic nanogels. Nanomedicine (Lond) 2016; 12:117-129. [PMID: 27879151 DOI: 10.2217/nnm-2016-0308] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
AIM To develop nanogels (NG) able to modulate the encapsulation and release of drugs, in order to circumvent drug resistance mechanisms in cancer cells. MATERIALS & METHODS Poly-N-isopropylacrylamide-dendritic polyglycerol NG were semi-interpenetrated with 2-acrylamido-2-methylpropane sulfonic acid or (2-dimethylamino) ethyl methacrylate. Physico-chemical properties of the NGs as well as doxorubicin (DOXO) loading and release were characterized. Drug delivery performance was investigated in vitro and in vivo in a multidrug-resistant tumor model. RESULTS Both the DOXO loaded semi-interpenetrating polymer network NGs were more efficient in multidrug resistant cancer cell proliferation inhibition studies. In vivo, the DOXO loaded NG semi-interpenetrated with 2-acrylamido-2-methylpropane sulfonic acid was able to overcome drug resistance and reduce the tumor volume to about 25%. CONCLUSION The innovative semi-interpenetrating polymer network NGs appear to be promising drug carriers for drug resistant cancer therapy.
Collapse
Affiliation(s)
- Maria Molina
- Institute for Chemistry & Biochemistry, Freie Universität Berlin, Takustr. 3, 14195 Berlin, Germany
| | - Stefanie Wedepohl
- Institute for Chemistry & Biochemistry, Freie Universität Berlin, Takustr. 3, 14195 Berlin, Germany
| | - Enrico Miceli
- Institute for Chemistry & Biochemistry, Freie Universität Berlin, Takustr. 3, 14195 Berlin, Germany.,Helmholtz Virtual Institute "Multifunctional Biomaterials for Medicine", Kantstr. 55, 14513 Teltow, Germany
| | - Marcelo Calderón
- Institute for Chemistry & Biochemistry, Freie Universität Berlin, Takustr. 3, 14195 Berlin, Germany.,Helmholtz Virtual Institute "Multifunctional Biomaterials for Medicine", Kantstr. 55, 14513 Teltow, Germany
| |
Collapse
|
22
|
Samadian H, Hosseini-Nami S, Kamrava SK, Ghaznavi H, Shakeri-Zadeh A. Folate-conjugated gold nanoparticle as a new nanoplatform for targeted cancer therapy. J Cancer Res Clin Oncol 2016; 142:2217-29. [DOI: 10.1007/s00432-016-2179-3] [Citation(s) in RCA: 89] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Accepted: 05/09/2016] [Indexed: 01/17/2023]
|
23
|
|
24
|
Mamaeva V, Niemi R, Beck M, Özliseli E, Desai D, Landor S, Gronroos T, Kronqvist P, Pettersen IKN, McCormack E, Rosenholm JM, Linden M, Sahlgren C. Inhibiting Notch Activity in Breast Cancer Stem Cells by Glucose Functionalized Nanoparticles Carrying γ-secretase Inhibitors. Mol Ther 2016; 24:926-36. [PMID: 26916284 PMCID: PMC4881775 DOI: 10.1038/mt.2016.42] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Accepted: 02/12/2016] [Indexed: 12/11/2022] Open
Abstract
Cancer stem cells (CSCs) are a challenge in cancer treatment due to their therapy resistance. We demonstrated that enhanced Notch signaling in breast cancer promotes self-renewal of CSCs that display high glycolytic activity and aggressive hormone-independent tumor growth in vivo. We took advantage of the glycolytic phenotype and the dependence on Notch activity of the CSCs and designed nanoparticles to target the CSCs. Mesoporous silica nanoparticles were functionalized with glucose moieties and loaded with a γ-secretase inhibitor, a potent interceptor of Notch signaling. Cancer cells and CSCs in vitro and in vivo efficiently internalized these particles, and particle uptake correlated with the glycolytic profile of the cells. Nanoparticle treatment of breast cancer transplants on chick embryo chorioallantoic membranes efficiently reduced the cancer stem cell population of the tumor. Our data reveal that specific CSC characteristics can be utilized in nanoparticle design to improve CSC-targeted drug delivery and therapy.
Collapse
Affiliation(s)
- Veronika Mamaeva
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, Turku, Finland.,Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland.,Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Rasmus Niemi
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, Turku, Finland.,Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland
| | - Michaela Beck
- Inorganic Chemistry II, Ulm University, Ulm, Germany
| | - Ezgi Özliseli
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, Turku, Finland.,Pharmaceutical Sciences Laboratory, Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland
| | - Diti Desai
- Pharmaceutical Sciences Laboratory, Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland
| | - Sebastian Landor
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, Turku, Finland.,Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland.,Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Tove Gronroos
- Turku PET Centre, University of Turku, Turku, Finland.,Medicity Research Laboratories, University of Turku, Turku, Finland
| | | | | | - Emmet McCormack
- Department of Clinical Science, University of Bergen, Bergen, Norway.,Department of Medicine, Haematology Section, Haukeland University Hospital, Bergen, Norway
| | - Jessica M Rosenholm
- Pharmaceutical Sciences Laboratory, Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland
| | - Mika Linden
- Inorganic Chemistry II, Ulm University, Ulm, Germany
| | - Cecilia Sahlgren
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, Turku, Finland.,Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland.,Department of Biomedical Engineering, Technical University of Eindhoven, Institute for Complex Molecular Systems, Eindhoven, the Netherlands
| |
Collapse
|
25
|
The Extraordinary Progress in Very Early Cancer Diagnosis and Personalized Therapy: The Role of Oncomarkers and Nanotechnology. JOURNAL OF NANOTECHNOLOGY 2016. [DOI: 10.1155/2016/3020361] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The impact of nanotechnology on oncology is revolutionizing cancer diagnosis and therapy and largely improving prognosis. This is mainly due to clinical translation of the most recent findings in cancer research, that is, the application of bio- and nanotechnologies. Cancer genomics and early diagnostics are increasingly playing a key role in developing more precise targeted therapies for most human tumors. In the last decade, accumulation of basic knowledge has resulted in a tremendous breakthrough in this field. Nanooncology, through the discovery of new genetic and epigenetic biomarkers, has facilitated the development of more sensitive biosensors for early cancer detection and cutting-edge multifunctionalized nanoparticles for tumor imaging and targeting. In the near future, nanooncology is expected to enable a very early tumor diagnosis, combined with personalized therapeutic approaches.
Collapse
|
26
|
Chen L, Sun J, Yang X. Radiofrequency ablation-combined multimodel therapies for hepatocellular carcinoma: Current status. Cancer Lett 2015; 370:78-84. [PMID: 26472630 DOI: 10.1016/j.canlet.2015.09.020] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Revised: 09/13/2015] [Accepted: 09/23/2015] [Indexed: 12/21/2022]
Abstract
Radiofrequency ablation (RFA) is widely accepted as a first-line interventional oncology approach for hepatocellular carcinoma (HCC) and has the advantages of high treatment efficacy and low complication risk. Local control rates equivalent to hepatic resection can be reached by RFA alone when treating small HCCs (<2 cm) in favorable locations. However, local tumor progression and recurrence rates with RFA monotherapy increase sharply when treating larger lesions (>3 cm). To address this clinical problem, recent efforts have focused on multimodel management of HCC by combining RFA with different techniques, including percutaneous ethanol injection, transarterial chemo-embolization, targeted molecular therapy, nanoparticle-mediated therapy, and immunotherapy. The combination strategy indeed leads to better outcomes in comparison to RFA alone. In this article, we review the current status of RFA-combined multimodal therapies in the management of HCC.
Collapse
Affiliation(s)
- Lumin Chen
- Department of Radiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jihong Sun
- Department of Radiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaoming Yang
- Department of Radiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China; Image-Guided Bio-Molecular Interventions Research, Department of Radiology, University of Washington School of Medicine, Seattle, WA, USA.
| |
Collapse
|
27
|
Grillone A, Riva ER, Mondini A, Forte C, Calucci L, Innocenti C, de Julian Fernandez C, Cappello V, Gemmi M, Moscato S, Ronca F, Sacco R, Mattoli V, Ciofani G. Active Targeting of Sorafenib: Preparation, Characterization, and In Vitro Testing of Drug-Loaded Magnetic Solid Lipid Nanoparticles. Adv Healthc Mater 2015; 4:1681-90. [PMID: 26039933 DOI: 10.1002/adhm.201500235] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Revised: 05/13/2015] [Indexed: 01/02/2023]
Abstract
Sorafenib is an anticancer drug approved by the Food and Drug Administration for the treatment of hepatocellular and advanced renal carcinoma. The clinical application of sorafenib is promising, yet limited by its severe toxic side effects. The aim of this study is to develop sorafenib-loaded magnetic nanovectors able to enhance the drug delivery to the disease site with the help of a remote magnetic field, thus enabling cancer treatment while limiting negative effects on healthy tissues. Sorafenib and superparamagnetic iron oxide nanoparticles are encapsulated in solid lipid nanoparticles by a hot homogenization technique using cetyl palmitate as lipid matrix. The obtained nanoparticles (Sor-Mag-SLNs) have a sorafenib loading efficiency of about 90% and are found to be very stable in an aqueous environment. Plain Mag-SLNs exhibit good cytocompatibility, whereas an antiproliferative effect against tumor cells (human hepatocarcinoma HepG2) is observed for drug-loaded Sor-Mag-SLNs. The obtained results show that it is possible to prepare stable Sor-Mag-SLNs able to inhibit cancer cell proliferation through the sorafenib cytotoxic action, and to enhance/localize this effect in a desired area thanks to a magnetically driven accumulation of the drug. Moreover, the relaxivity properties observed in water suspensions hold promise for Sor-Mag-SLN tracking through clinical magnetic resonance imaging.
Collapse
Affiliation(s)
- Agostina Grillone
- Istituto Italiano di Tecnologia; Center for Micro-BioRobotics @SSSA; Viale Rinaldo Piaggio 34 56025 Pontedera Pisa Italy
- Scuola Superiore Sant'Anna; The BioRobotics Institute; Viale Rinaldo Piaggio 34 56025 Pontedera Pisa Italy
| | - Eugenio Redolfi Riva
- Istituto Italiano di Tecnologia; Center for Micro-BioRobotics @SSSA; Viale Rinaldo Piaggio 34 56025 Pontedera Pisa Italy
- Scuola Superiore Sant'Anna; The BioRobotics Institute; Viale Rinaldo Piaggio 34 56025 Pontedera Pisa Italy
| | - Alessio Mondini
- Istituto Italiano di Tecnologia; Center for Micro-BioRobotics @SSSA; Viale Rinaldo Piaggio 34 56025 Pontedera Pisa Italy
| | - Claudia Forte
- Istituto di Chimica dei Composti OrganoMetallici; Consiglio Nazionale delle Ricerche - CNR; Via Giuseppe Moruzzi 1 56124 Pisa Italy
| | - Lucia Calucci
- Istituto di Chimica dei Composti OrganoMetallici; Consiglio Nazionale delle Ricerche - CNR; Via Giuseppe Moruzzi 1 56124 Pisa Italy
| | - Claudia Innocenti
- INSTM and Department of Chemistry “Ugo Shiff”; University of Florence; Via della Lastruccia 3-13 50019 Sesto Fiorentino Firenze Italy
| | - Cesar de Julian Fernandez
- Istituto dei Materiali per l'Elettronica e il Magnetismo; Consiglio Nazionale delle Ricerche - CNR; Parco Area delle Scienze 37/A 43124 Parma Italy
| | - Valentina Cappello
- Istituto Italiano di Tecnologia; Center for Nanotechnology Innovation @NEST; Piazza San Silvestro 12 56127 Pisa Italy
| | - Mauro Gemmi
- Istituto Italiano di Tecnologia; Center for Nanotechnology Innovation @NEST; Piazza San Silvestro 12 56127 Pisa Italy
| | - Stefania Moscato
- Dipartimento di Medicina Clinica e Sperimentale; Università di Pisa; Via Savi 10 56126 Pisa Italy
| | - Francesca Ronca
- Università di Pisa; Dipartimento di Patologia Chirurgica; Medica, Molecolare e dell'Area Critica; Via Savi 10 56126 Pisa Italy
| | - Rodolfo Sacco
- Unità Operativa di Gastroenterologia e Malattie del Ricambio; Azienda Ospedaliera-Universitaria Pisana; Via Paradisa 2 56124 Pisa Italy
| | - Virgilio Mattoli
- Istituto Italiano di Tecnologia; Center for Micro-BioRobotics @SSSA; Viale Rinaldo Piaggio 34 56025 Pontedera Pisa Italy
| | - Gianni Ciofani
- Istituto Italiano di Tecnologia; Center for Micro-BioRobotics @SSSA; Viale Rinaldo Piaggio 34 56025 Pontedera Pisa Italy
| |
Collapse
|
28
|
Pereira L, Horta S, Mateus R, Videira MA. Implications of Akt2/Twist crosstalk on breast cancer metastatic outcome. Drug Discov Today 2015; 20:1152-8. [PMID: 26136161 DOI: 10.1016/j.drudis.2015.06.010] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Revised: 06/01/2015] [Accepted: 06/17/2015] [Indexed: 12/19/2022]
Abstract
Akt2 is a pivotal player in a complex web of signaling pathways controlling cell growth, proliferation, and survival. The deregulation or aberrations of Akt2 have been associated with tumor progression, metastatic spread, and, lastly, chemoresistance. The impairment of its activity has gained more attention because Akt2 is intertwined with a range of signaling paths, including the Phosphatidylinositol 3 kinase/Akt/Mammalian target of rapamycin (PI3K/mTOR) signaling axis, which are involved in macromolecules synthesis and metabolism. Here, we focus on Akt2 because of its involvement in the acquisition of stem cell-like properties, responsible for invasiveness and chemoresistance, also promoted by Twist. We also suggest therapeutic strategies targeting Akt2 to overcome the drawbacks of current cancer therapies.
Collapse
Affiliation(s)
- Lucília Pereira
- Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Caparica, Portugal
| | - Sara Horta
- iMed.UL, Research Institute for Medicines and Pharmaceutical Sciences, Faculdade de Farmácia, Universidade de Lisboa, Lisbon, Portugal
| | - Rita Mateus
- iMed.UL, Research Institute for Medicines and Pharmaceutical Sciences, Faculdade de Farmácia, Universidade de Lisboa, Lisbon, Portugal
| | - Mafalda A Videira
- iMed.UL, Research Institute for Medicines and Pharmaceutical Sciences, Faculdade de Farmácia, Universidade de Lisboa, Lisbon, Portugal.
| |
Collapse
|
29
|
Sabnis N, Bowman WP, Lacko AG. Lipoprotein based drug delivery: Potential for pediatric cancer applications. World J Pharmacol 2015; 4:172-179. [DOI: 10.5497/wjp.v4.i2.172] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Revised: 12/22/2014] [Accepted: 03/05/2015] [Indexed: 02/06/2023] Open
Abstract
While survival rates for patients with childhood cancers have substantially improved, the quality of life of the survivors is often adversely impacted by the residual effects of chemo and radiation therapy. Because of the existing metabolic and physiological disparities between pediatric and adult patients, the treatment of pediatric cancer patients poses special challenges to oncologists. While numerous clinical trials being conducted, to improve treatment outcomes for pediatric cancer patients, new approaches are required to increase the efficacy and to minimize the drug related toxic side effects. Nanotechnology is a potentially effective tool to overcome barriers to effective cancer therapeutics including poor bioavailability and non-specific targeting. Among the nano-delivery approaches, lipoprotein based formulations have shown particularly strong promise to improve cancer therapeutics. The present article describes the challenges faced in the treatment of pediatric cancers and reviews the potential of lipoprotein-based therapeutics for these malignancies.
Collapse
|
30
|
Gong MQ, Wu JL, Chen B, Zhuo RX, Cheng SX. Self-assembled polymer/inorganic hybrid nanovesicles for multiple drug delivery to overcome drug resistance in cancer chemotherapy. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2015; 31:5115-22. [PMID: 25927163 DOI: 10.1021/acs.langmuir.5b00542] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
With the aim to develop a facile strategy to prepare functional drug carriers to overcome multidrug resistance (MDR), we prepared heparin/protamine/calcium carbonate (HP/PS/CaCO3) hybrid nanovesicles with enhanced cell internalization, good serum stability, and pH sensitivity for drug delivery. All the functional components including protamine to improve the cell uptake, heparin to enhance the stability, and CaCO3 to improve drug loading and endow the system with pH sensitivity were introduced to the nanovesicles by self-assembly in an aqueous medium. An antitumor drug (doxorubicin, DOX) and a drug resistance inhibitor (tariquidar, TQR) were coloaded in the nanovesicles during self-assembly preparation of the nanovesicles. The drug loaded nanovesicles, which had a mean size less than 200 nm, exhibited a pH-sensitive drug release behavior. In vitro study was carried out in both nonresistant cells (HeLa and MCF-7) and drug-resistant cancer cells (MCF-7/ADR). Because of the enhanced intracellular and nuclear drug accumulation through effective inhibition of the P-gp efflux transporter, DOX/TQR coloaded nanovesicles showed significantly improved tumor cell inhibitory efficiency, especially for drug-resistant cells. These results suggest the self-assembled nanovesicles have promising applications in multidrug delivery to overcome drug resistance in tumor treatments.
Collapse
Affiliation(s)
- Meng-Qing Gong
- Key Laboratory of Biomedical Polymers of Ministry of Education, Department of Chemistry, Wuhan University, Wuhan 430072, People's Republic of China
| | - Jin-Long Wu
- Key Laboratory of Biomedical Polymers of Ministry of Education, Department of Chemistry, Wuhan University, Wuhan 430072, People's Republic of China
| | - Bin Chen
- Key Laboratory of Biomedical Polymers of Ministry of Education, Department of Chemistry, Wuhan University, Wuhan 430072, People's Republic of China
| | - Ren-Xi Zhuo
- Key Laboratory of Biomedical Polymers of Ministry of Education, Department of Chemistry, Wuhan University, Wuhan 430072, People's Republic of China
| | - Si-Xue Cheng
- Key Laboratory of Biomedical Polymers of Ministry of Education, Department of Chemistry, Wuhan University, Wuhan 430072, People's Republic of China
| |
Collapse
|
31
|
Zhang D, Tao L, Zhao H, Yuan H, Lan M. A functional drug delivery platform for targeting and imaging cancer cells based on Pluronic F127. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2015; 26:468-82. [DOI: 10.1080/09205063.2015.1030136] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
32
|
Liposome–protein corona in a physiological environment: Challenges and opportunities for targeted delivery of nanomedicines. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2015; 11:543-57. [DOI: 10.1016/j.nano.2014.11.003] [Citation(s) in RCA: 174] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Revised: 11/04/2014] [Accepted: 11/16/2014] [Indexed: 11/22/2022]
|
33
|
De Sio L, Caracciolo G, Placido T, Pozzi D, Comparelli R, Annesi F, Curri ML, Agostiano A, Bartolino R. Applications of nanomaterials in modern medicine. RENDICONTI LINCEI-SCIENZE FISICHE E NATURALI 2015. [DOI: 10.1007/s12210-015-0400-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
34
|
Yang X, Du H, Liu J, Zhai G. Advanced Nanocarriers Based on Heparin and Its Derivatives for Cancer Management. Biomacromolecules 2015; 16:423-36. [DOI: 10.1021/bm501532e] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Xiaoye Yang
- Department
of Pharmaceutics, College of Pharmacy, Shandong University, Jinan 250012, China
| | - Hongliang Du
- Department
of Pharmaceutics, College of Pharmacy, Shandong University, Jinan 250012, China
| | - Jiyong Liu
- Department
of Pharmacy, Changhai Hospital, Second Military Medical University, Shanghai 200433, China
| | - Guangxi Zhai
- Department
of Pharmaceutics, College of Pharmacy, Shandong University, Jinan 250012, China
| |
Collapse
|
35
|
Tomuleasa C, Braicu C, Irimie A, Craciun L, Berindan-Neagoe I. Nanopharmacology in translational hematology and oncology. Int J Nanomedicine 2014; 9:3465-79. [PMID: 25092977 PMCID: PMC4113407 DOI: 10.2147/ijn.s60488] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Nanoparticles have displayed considerable promise for safely delivering therapeutic agents with miscellaneous therapeutic properties. Current progress in nanotechnology has put forward, in the last few years, several therapeutic strategies that could be integrated into clinical use by using constructs for molecular diagnosis, disease detection, cytostatic drug delivery, and nanoscale immunotherapy. In the hope of bringing the concept of nanopharmacology toward a viable and feasible clinical reality in a cancer center, the present report attempts to present the grounds for the use of cell-free nanoscale structures for molecular therapy in experimental hematology and oncology.
Collapse
Affiliation(s)
- Ciprian Tomuleasa
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania ; Department of Hematology, Ion Chiricuta Cancer Center, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Cornelia Braicu
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Alexandra Irimie
- Department of Prosthetic Dentistry and Dental Materials, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Lucian Craciun
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Ioana Berindan-Neagoe
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania ; Department of Immunology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania ; Department of Functional Genomics and Experimental Pathology, the Oncological Institute "Prof Dr Ion Chiricuta", Cluj-Napoca, Romania
| |
Collapse
|