1
|
Zeng X, Lin GX, Zeng X, Zheng J, Ren C, Luo Z, Xiao K, Sun N, Zhang L, Rui G, Chen X. Penfluridol regulates p62 / Keap1 / Nrf2 signaling pathway to induce ferroptosis in osteosarcoma cells. Biomed Pharmacother 2024; 177:117094. [PMID: 38996707 DOI: 10.1016/j.biopha.2024.117094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 06/24/2024] [Accepted: 07/02/2024] [Indexed: 07/14/2024] Open
Abstract
The cure rate for patients with osteosarcoma (OS) has stagnated over the past few decades. Penfluridol, a first-generation antipsychotic, has demonstrated to prevent lung and esophageal malignancies from proliferation and metastasis. However, the effect of penfluridol on OS and its underlying molecular mechanism remains unclear. This study revealed that penfluridol effectively inhibited cell proliferation and migration, and induced G2/M phase arrest in OS cells. In addition, penfluridol treatment was found to increased reactive oxygen species (ROS) levels in OS cells. Combined with the RNA-Seq results, the anti-OS effect of penfluridol was hypothesized to be attributed to the induction of ferroptosis. Western blot results showed that penfluridol promoted intracellular Fe2+ concentration, membrane lipid peroxidation, and decreased intracellular GSH level to induce ferroptosis. Further studies showed that p62/Keap1/Nrf2 signaling pathway was implicated in penfluridol-induced ferroptosis in OS cells. Overexpression of p62 effectively reversed penfluridol-induced ferroptosis. In vivo, penfluridol effectively inhibited proliferation and prolonged survival in xenograft tumor model. Therefore, penfluridol is a promising drug targeting OS in the future.
Collapse
Affiliation(s)
- Xiangchen Zeng
- Department of Orthopedic Surgery, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361001, China; School of Medicine, Xiamen University, Xiamen 361102, China
| | - Guang-Xun Lin
- Department of Orthopedic Surgery, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361001, China; School of Medicine, Xiamen University, Xiamen 361102, China
| | - Xianhui Zeng
- Department of Infectious Diseases, Hainan Women and Children's Medical Center, Hainan Medical University, Haikou 570206, China
| | - Jiyuan Zheng
- The First Affiliated Hospital of Hainan Medical University, Haikou 570102, China
| | - Chong Ren
- School of Medicine, Xiamen University, Xiamen 361102, China
| | - Zhong Luo
- School of Medicine, Xiamen University, Xiamen 361102, China
| | - Keyi Xiao
- Department of Orthopedic Surgery, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361001, China; School of Medicine, Xiamen University, Xiamen 361102, China
| | - Naikun Sun
- Department of Orthopedic Surgery, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361001, China; School of Medicine, Xiamen University, Xiamen 361102, China
| | - Long Zhang
- Department of Pain, Zhejiang Provincial People's Hospital, Affiliated People's Hospital of Hangzhou Medical College, Hangzhou 310014, China.
| | - Gang Rui
- Department of Orthopedic Surgery, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361001, China; School of Medicine, Xiamen University, Xiamen 361102, China.
| | - Xiaohui Chen
- Department of Orthopedic Surgery, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361001, China; School of Medicine, Xiamen University, Xiamen 361102, China.
| |
Collapse
|
2
|
Lin HC, Hsu KH, Wang JY, Chen WM, Tung YC, Su YP. Malignancy progression and treatment efficacy estimation of osteosarcoma patients based on in vitro cell culture model and analysis. J Formos Med Assoc 2024:S0929-6646(24)00307-3. [PMID: 39060210 DOI: 10.1016/j.jfma.2024.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 02/22/2024] [Accepted: 07/02/2024] [Indexed: 07/28/2024] Open
Abstract
BACKGROUND Osteosarcoma (OS) usually happens in patients under 20 years old and is notorious for its low survivorship and limb loss. Personalized medicine is a viable approach to increase the efficiency of chemotherapy which is the main prognostic factor for survivorship after surgical treatment. METHODS In this five-year prospective observational study, we collected primary cells of osteosarcoma from 15 patients, and examined the correlation between clinical characters of patients and cell properties characterized using various in vitro assays. The properties including genes expression, pro-angiogenic capability and anti-cancer drug response are characterized respectively by using RT-PCR, tube formation assay, osteogenesis assay and drug testing on 3D tumor spheroid model. RESULT The results suggest that OS patients with higher MMP9 expression levels have higher probability to develop skip metastasis (p = 0.041). The 3D tumor spheroid test based on the median lethal dose from 2D culture provides some prognostic value. Patients do not response well to methotrexate (MTX) show higher percentage of high pathology grade (p = 0.009) and lung metastasis (p = 0.044). Also, patients respond well to ifosfamide (IFO) have higher probability to achieve high tumor necrosis rate (p = 0.007). CONCLUSION The association between cell properties and clinical characters of patients provided by our data can act as potential prognostic factors to help physicians to develop effective personalized chemotherapy for osteosarcoma treatments.
Collapse
Affiliation(s)
- Hsi-Chieh Lin
- Research Center for Applied Sciences, Academia Sinica, Taipei, 11529, Taiwan
| | - Kuei-Hsiang Hsu
- Department of Orthopedic and Traumatology, Taipei Veterans General Hospital, Taipei, 11217, Taiwan; Department of Medicine, National Yang Ming Chiao Tung University, Taipei, 11221, Taiwan
| | - Jir-You Wang
- Department of Orthopedic and Traumatology, Taipei Veterans General Hospital, Taipei, 11217, Taiwan
| | - Wei-Ming Chen
- Department of Orthopedic and Traumatology, Taipei Veterans General Hospital, Taipei, 11217, Taiwan; Department of Medicine, National Yang Ming Chiao Tung University, Taipei, 11221, Taiwan
| | - Yi-Chung Tung
- Research Center for Applied Sciences, Academia Sinica, Taipei, 11529, Taiwan
| | - Yu-Ping Su
- Department of Orthopedic and Traumatology, Taipei Veterans General Hospital, Taipei, 11217, Taiwan; Department of Medicine, National Yang Ming Chiao Tung University, Taipei, 11221, Taiwan.
| |
Collapse
|
3
|
Chen Z, Wu FF, Li J, Dong JB, He HY, Li XF, Lu Q, Zhang WX, Shao CM, Yao ZN, Lin N, Ye ZM, Xu JT, Li HY. Investigating the synergy of Shikonin and Valproic acid in inducing apoptosis of osteosarcoma cells via ROS-mediated EGR1 expression. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 126:155459. [PMID: 38417243 DOI: 10.1016/j.phymed.2024.155459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 01/15/2024] [Accepted: 02/15/2024] [Indexed: 03/01/2024]
Abstract
BACKGROUND Osteosarcoma is the most prevalent malignant bone tumour with a poor prognosis. Shikonin (SHK) is derived from the traditional Chinese medicine Lithospermum that has been extensively studied for its notable anti-tumour effects, including for osteosarcoma. However, its application has certain limitations. Valproic acid (VPA) is a histone deacetylase inhibitor (HDACI) that has recently been employed as an adjunctive therapeutic agent that allows chromatin to assume a more relaxed state, thereby enhancing anti-tumour efficacy. PURPOSE This study was aimed to investigate the synergistic anti-tumour efficacy of SHK in combination with VPA and elucidate its underlying mechanism. METHODS/STUDY DESIGN CCK-8 assays were utilized to calculate the combination index. Additional assays, including colony formation, acridine orange/ethidium bromide double fluorescent staining, and flow cytometry, were employed to evaluate the effects on osteosarcoma cells. Wound healing and transwell assays were utilized to assess cell mobility. RNA sequencing, PCR, and Western blot analyses were conducted to uncover the underlying mechanism. Rescue experiments were performed to validate the mechanism of apoptotic induction. The impact of SHK and VPA combination treatment on primary osteosarcoma cells was also assessed. Finally, in vivo experiments were conducted to validate its anti-tumour effects and mechanism. RESULTS The combination of SHK and VPA synergistically inhibited the proliferation and migration of osteosarcoma cells in vitro and induced apoptosis in these cells. Through a comprehensive analysis involving RNA sequencing, PCR, Western blot, and rescue experiments, we have substantiated our hypothesis that the combination of SHK and VPA induced apoptosis via the ROS-EGR1-Bax axis. Importantly, our in vivo experiments corroborated these findings, demonstrating the potential of the SHK and VPA combination as a promising therapeutic approach for osteosarcoma. CONCLUSION The combination of SHK and VPA exerted an anti-tumour effect by inducing apoptosis through the ROS-EGR1-Bax pathway. Repurposing the old drug VPA demonstrated its effectiveness as an adjunctive therapeutic agent for SHK, enhancing its anti-tumour efficacy and revealing its potential value. Furthermore, our study expanded the application of natural compounds in the anti-tumour field and overcame some of their limitations through combination therapy. Finally, we enhanced the understanding of the mechanistic pathways linking reactive oxygen species (ROS) accumulation and apoptosis in osteosarcoma cells. Additionally, we elucidated the role of EGR1 in osteosarcoma cells, offering novel strategies and concepts for the treatment of osteosarcoma.
Collapse
Affiliation(s)
- Zhuo Chen
- The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, PR China; Huzhou Central Hospital, Affiliated Huzhou Hospital, Zhejiang University School of Medicine, Huzhou, Zhejiang, PR China
| | - Feng-Feng Wu
- Huzhou Central Hospital, Affiliated Huzhou Hospital, Zhejiang University School of Medicine, Huzhou, Zhejiang, PR China; The Fifth School of Clinical Medicine of Zhejiang Chinese Medical University, Huzhou, Zhejiang, PR China; The Affiliated Central Hospital, Huzhou University, Huzhou, Zhejiang, PR China; Huzhou Basic and Clinical Translation of Orthopaedics Key Laboratory, Huzhou, Zhejiang, PR China
| | - Jing Li
- School of Medicine, Huzhou University, Huzhou, Zhejiang, PR China
| | - Jia-Bao Dong
- The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, PR China; Huzhou Central Hospital, Affiliated Huzhou Hospital, Zhejiang University School of Medicine, Huzhou, Zhejiang, PR China
| | - Hong-Yi He
- School of Pharmacy, Hubei University of Science and Technology, Xianning, Hubei, PR China
| | - Xiong-Feng Li
- Huzhou Central Hospital, Affiliated Huzhou Hospital, Zhejiang University School of Medicine, Huzhou, Zhejiang, PR China; The Fifth School of Clinical Medicine of Zhejiang Chinese Medical University, Huzhou, Zhejiang, PR China; The Affiliated Central Hospital, Huzhou University, Huzhou, Zhejiang, PR China; Huzhou Basic and Clinical Translation of Orthopaedics Key Laboratory, Huzhou, Zhejiang, PR China
| | - Qian Lu
- Huzhou Central Hospital, Affiliated Huzhou Hospital, Zhejiang University School of Medicine, Huzhou, Zhejiang, PR China; The Fifth School of Clinical Medicine of Zhejiang Chinese Medical University, Huzhou, Zhejiang, PR China; The Affiliated Central Hospital, Huzhou University, Huzhou, Zhejiang, PR China; Huzhou Basic and Clinical Translation of Orthopaedics Key Laboratory, Huzhou, Zhejiang, PR China
| | - Wen-Xuan Zhang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Chang-Ming Shao
- The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, PR China
| | - Zhao-Nong Yao
- The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, PR China; Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, PR China; Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, PR China
| | - Nong Lin
- The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, PR China; Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, PR China; Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, PR China
| | - Zhao-Ming Ye
- The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, PR China; Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, PR China; Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, PR China
| | - Jun-Tao Xu
- Huzhou Traditional Chinese Medicine Hospital Affiliated to Zhejiang Chinese Medical University, Zhejiang, PR China.
| | - Heng-Yuan Li
- The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, PR China; Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, PR China; Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, PR China.
| |
Collapse
|
4
|
Antoniadi K, Thomaidis N, Nihoyannopoulos P, Toutouzas K, Gikas E, Kelaidi C, Polychronopoulou S. Prognostic Factors for Cardiotoxicity among Children with Cancer: Definition, Causes, and Diagnosis with Omics Technologies. Diagnostics (Basel) 2023; 13:1864. [PMID: 37296716 PMCID: PMC10252297 DOI: 10.3390/diagnostics13111864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 05/03/2023] [Accepted: 05/23/2023] [Indexed: 06/12/2023] Open
Abstract
Improvements in the treatment of childhood cancer have considerably enhanced survival rates over the last decades to over 80% as of today. However, this great achievement has been accompanied by the occurrence of several early and long-term treatment-related complications major of which is cardiotoxicity. This article reviews the contemporary definition of cardiotoxicity, older and newer chemotherapeutic agents that are mainly involved in cardiotoxicity, routine process diagnoses, and methods using omics technology for early and preventive diagnosis. Chemotherapeutic agents and radiation therapies have been implicated as a cause of cardiotoxicity. In response, the area of cardio-oncology has developed into a crucial element of oncologic patient care, committed to the early diagnosis and treatment of adverse cardiac events. However, routine diagnosis and the monitoring of cardiotoxicity rely on electrocardiography and echocardiography. For the early detection of cardiotoxicity, in recent years, major studies have been conducted using biomarkers such as troponin, N-terminal pro b-natriuretic peptide, etc. Despite the refinements in diagnostics, severe limitations still exist due to the increase in the above-mentioned biomarkers only after significant cardiac damage has occurred. Lately, the research has expanded by introducing new technologies and finding new markers using the omics approach. These new markers could be used not only for early detection but also for the early prevention of cardiotoxicity. Omics science, which includes genomics, transcriptomics, proteomics, and metabolomics, offers new opportunities for biomarker discovery in cardiotoxicity and may provide an understanding of the mechanisms of cardiotoxicity beyond traditional technologies.
Collapse
Affiliation(s)
- Kondylia Antoniadi
- Department of Pediatric Hematology-Oncology (T.A.O.), “Aghia Sophia” Children’s Hospital, Goudi, 11527 Athens, Greece
| | - Nikolaos Thomaidis
- Department of Chemistry, National and Kapodistrian University of Athens, 15772 Athens, Greece
| | - Petros Nihoyannopoulos
- First Department of Cardiology, University of Athens, Hippokration Hospital, 11527 Athens, Greece
| | - Konstantinos Toutouzas
- First Department of Cardiology, University of Athens, Hippokration Hospital, 11527 Athens, Greece
| | - Evangelos Gikas
- Department of Chemistry, National and Kapodistrian University of Athens, 15772 Athens, Greece
| | - Charikleia Kelaidi
- Department of Pediatric Hematology-Oncology (T.A.O.), “Aghia Sophia” Children’s Hospital, Goudi, 11527 Athens, Greece
| | - Sophia Polychronopoulou
- Department of Pediatric Hematology-Oncology (T.A.O.), “Aghia Sophia” Children’s Hospital, Goudi, 11527 Athens, Greece
| |
Collapse
|
5
|
Pharmacogenetics of the Primary and Metastatic Osteosarcoma: Gene Expression Profile Associated with Outcome. Int J Mol Sci 2023; 24:ijms24065607. [PMID: 36982681 PMCID: PMC10059037 DOI: 10.3390/ijms24065607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 03/08/2023] [Accepted: 03/08/2023] [Indexed: 03/17/2023] Open
Abstract
Osteosarcoma (OS) is the most common malignant bone tumor in children and adolescents. In recent decades, OS treatment has reached a plateau and drug resistance is still a major challenge. Therefore, the present study aimed to analyze the expression of the genes related to pharmacogenetics in OS. The expression of 32 target genes in 80 paired specimens (pre-chemotherapeutic primary tumor, post-chemotherapeutic primary tumor and pulmonary metastasis) obtained from 33 patients diagnosed with OS were analyzed by the real-time PCR methodology. As the calibrators (control), five normal bone specimens were used. The present study identified associations between the OS outcome and the expression of the genes TOP2A, DHFR, MTHFR, BCL2L1, CASP3, FASLG, GSTM3, SOD1, ABCC1, ABCC2, ABCC3, ABCC5, ABCC6, ABCC10, ABCC11, ABCG2, RALBP1, SLC19A1, SLC22A1, ERCC1 and MSH2. In addition, the expression of the ABCC10, GGH, GSTM3 and SLC22A1 genes were associated with the disease event, and the metastasis specimens showed a high expression profile of ABCC1, ABCC3 and ABCC4 genes and a low expression of SLC22A1 and ABCC10 genes, which is possibly an important factor for resistance in OS metastasis. Therefore, our findings may, in the future, contribute to clinical management as prognostic factors as well as possible therapeutic targets.
Collapse
|
6
|
Hurkmans EGE, Brand ACAM, Verdonschot JAJ, te Loo DMWM, Coenen MJH. Pharmacogenetics of chemotherapy treatment response and -toxicities in patients with osteosarcoma: a systematic review. BMC Cancer 2022; 22:1326. [PMID: 36536332 PMCID: PMC9761983 DOI: 10.1186/s12885-022-10434-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 12/09/2022] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Osteosarcoma is the most common bone tumor in children and adolescents. Despite multiagent chemotherapy, only 71% of patients survives and these survivors often experience long-term toxicities. The main objective of this systematic review is to provide an overview of the discovery of novel associations of germline polymorphisms with treatment response and/or chemotherapy-induced toxicities in osteosarcoma. METHODS: MEDLINE and Embase were systematically searched (2010-July 2022). Genetic association studies were included if they assessed > 10 germline genetic variants in > 5 genes in relevant drug pathways or if they used a genotyping array or other large-scale genetic analysis. Quality was assessed using adjusted STrengthening the REporting of Genetic Association studies (STREGA)-guidelines. To find additional evidence for the identified associations, literature was searched to identify replication studies. RESULTS After screening 1999 articles, twenty articles met our inclusion criteria. These range from studies focusing on genes in relevant pharmacokinetic pathways to whole genome sequencing. Eleven articles reported on doxorubicin-induced cardiomyopathy. For seven genetic variants in CELF4, GPR35, HAS3, RARG, SLC22A17, SLC22A7 and SLC28A3, replication studies were performed, however without consistent results. Ototoxicity was investigated in one study. Five small studies reported on mucosistis or bone marrow, nephro- and/or hepatotoxicity. Six studies included analysis for treatment efficacy. Genetic variants in ABCC3, ABCC5, FasL, GLDC, GSTP1 were replicated in studies using heterogeneous efficacy outcomes. CONCLUSIONS Despite that results are promising, the majority of associations were poorly reproducible due to small patient cohorts. For the future, hypothesis-generating studies in large patient cohorts will be necessary, especially for cisplatin-induced ototoxicity as these are largely lacking. In order to form large patient cohorts, national and international collaboration will be essential.
Collapse
Affiliation(s)
- Evelien G. E. Hurkmans
- grid.10417.330000 0004 0444 9382Department of Human Genetics, Radboud University Medical Center, Radboud Institute for Health Sciences, Nijmegen, The Netherlands
| | - Annouk C. A. M. Brand
- grid.10417.330000 0004 0444 9382Department of Human Genetics, Radboud University Medical Center, Radboud Institute for Health Sciences, Nijmegen, The Netherlands
| | - Job A. J. Verdonschot
- grid.412966.e0000 0004 0480 1382Department of Clinical Genetics and Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Center, Maastricht, The Netherlands
| | - D. Maroeska W. M. te Loo
- grid.10417.330000 0004 0444 9382Department of Pediatrics, Radboud University Medical Center, Radboud Institute for Health Sciences, Nijmegen, The Netherlands
| | - Marieke J. H. Coenen
- grid.10417.330000 0004 0444 9382Department of Human Genetics, Radboud University Medical Center, Radboud Institute for Health Sciences, Nijmegen, The Netherlands ,grid.5645.2000000040459992XDepartment of Clinical Chemistry, Erasmus University Medical Center, Rotterdam, The Netherlands
| |
Collapse
|
7
|
Jin W, Zhang T, Zhou W, He P, Sun Y, Hu S, Chen H, Ma X, Peng Y, Yi Z, Liu M, Chen Y. Discovery of 2-Amino-3-cyanothiophene Derivatives as Potent STAT3 Inhibitors for the Treatment of Osteosarcoma Growth and Metastasis. J Med Chem 2022; 65:6710-6728. [PMID: 35476936 DOI: 10.1021/acs.jmedchem.2c00004] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Osteosarcoma is one of the most common malignant bone tumors. However, the treatment and clinical outcomes of osteosarcoma have hardly changed over the past three decades due to the comprehensive heterogeneity and higher rate of mutation of osteosarcoma. Recent studies have shown that STAT3 has the potential to suppress the proliferation and metastasis of osteosarcoma. In this study, a novel class of 2-amino-3-cyanothiophene derivatives were designed and synthesized to inhibit osteosarcoma by targeting STAT3. Representative compound 6f showed potent antiproliferative effects against osteosarcoma cells, directly bound to the STAT3 SH2 domain with a KD of 0.46 μM, and inhibited the phosphorylation of STAT3 Y705 in a dose-dependent manner. Furthermore, compound 6f promoted osteosarcoma cell apoptosis in vitro and significantly suppressed the growth and metastasis of osteosarcoma in vivo. These findings demonstrate that targeting STAT3 may be a feasible therapeutic strategy for the treatment of metastatic osteosarcoma.
Collapse
Affiliation(s)
- Wangrui Jin
- Shanghai Key Laboratory of Regulatory Biology, The Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Tao Zhang
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Wenbo Zhou
- Shanghai Key Laboratory of Regulatory Biology, The Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Peng He
- Shanghai Key Laboratory of Regulatory Biology, The Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Yue Sun
- Shanghai Key Laboratory of Regulatory Biology, The Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Shijia Hu
- Shanghai Key Laboratory of Regulatory Biology, The Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Huang Chen
- Shanghai Key Laboratory of Regulatory Biology, The Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Xinglong Ma
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Yangrui Peng
- Shanghai Key Laboratory of Regulatory Biology, The Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Zhengfang Yi
- Shanghai Key Laboratory of Regulatory Biology, The Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Mingyao Liu
- Shanghai Key Laboratory of Regulatory Biology, The Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Yihua Chen
- Shanghai Key Laboratory of Regulatory Biology, The Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| |
Collapse
|
8
|
Mohammadi E, Alemi F, Maleki M, Malakoti F, Farsad-Akhtar N, Yousefi B. Quercetin and Methotrexate in Combination have Anticancer Activity in Osteosarcoma Cells and Repress Oncogenic MicroRNA-223. Drug Res (Stuttg) 2022; 72:226-233. [PMID: 35385884 DOI: 10.1055/a-1709-0658] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
INTRODUCTION Osteosarcoma (OS) is one of the most common bone neoplasms in adolescents. Notable short- and long-term toxic effects of OS chemotherapy regimens have been reported. Hence, new chemotherapeutic agents with the ability to potentiate OS chemotherapy drugs and protect non-tumorous tissues are required. METHODS Saos-2 cells were treated with Methotrexate (MTX) and Quercetin (Que) (a polyphenolic flavonoid with anti-tumor effects) alone and in combination. MTT assay was performed to investigate the cytotoxicity of the drugs. Moreover, apoptosis-involved genes, including miR-223, p53, BCL-2, CBX7, and CYLD expression were analyzed via qRT-PCR. Annexin V-FITC/PI kit was employed to assess the apoptosis rate. RESULTS The MTT results showed that Que increases MTX cytotoxicity on OS cells. The measured IC50s are 142.3 µM for QUE and 13.7 ng/ml for MTX. A decline in MTX IC50 value was observed from 13.7 ng/ml to 8.45 ng/ml in the presence of Que. Moreover, the mRNA expression outcomes indicated that the combination therapy significantly up-regulates the tumor suppressor genes, such as p53, CBX7, and CYLD, and declines anti-apoptotic genes BCL-2 and miR-223, which can lead to proliferation inhibition and apoptosis inducement. Furthermore, the apoptosis rate increased significantly from 6.03% in the control group to 38.35% in Saos-2 cells that were treated with the combination of MTX and Que. CONCLUSION Que, with the potential to boost the anticancer activity of MTX on Saos-2 cancer cells through proliferation inhibition and apoptosis induction, is a good candidate for combination therapy.
Collapse
Affiliation(s)
- Erfan Mohammadi
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Forough Alemi
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Masomeh Maleki
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Faezeh Malakoti
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nader Farsad-Akhtar
- Department of Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Bahman Yousefi
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
9
|
Cyphert EL, Kanagasegar N, Zhang N, Learn GD, von Recum HA. PMMA Bone Cement Composite Functions as an Adjuvant Chemotherapeutic Platform for Localized and Multi-Window Release During Bone Reconstruction. Macromol Biosci 2022; 22:e2100415. [PMID: 35113499 DOI: 10.1002/mabi.202100415] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 01/06/2022] [Indexed: 11/10/2022]
Abstract
Primary bone tumor resections often result in critical size defects, which then necessitate challenging clinical management approaches to reconstruct. One such intervention is the Masquelet technique, in which poly(methyl methacrylate) (PMMA) bone cement is placed as a spacer temporarily while adjuvant chemotherapeutics are administered systemically. The spacer is later removed and replaced with bone autograft. Local recurrence remains an important and devastating problem, therefore, a system capable of locally delivering chemotherapeutics would present unique advantages. In this work, a refillable chemotherapeutic (doxorubicin, DOX) delivery platform comprised of PMMA bone cement and insoluble γ-cyclodextrin (γ-CD) polymeric microparticles is developed and explored towards application as a temporary adjuvant chemotherapeutic spacer. The system is characterized for porosity, mechanical strength, DOX filling and refilling capacity, elution kinetics, and cytotoxicity. Since residual chemotherapeutics could adversely impact bone healing, it is important that virtually all DOX be released from material. Composites containing 15wt% γ-CD microparticles demonstrate 100% DOX release within 100 days, whereas only 6% DOX is liberated from PMMA with free DOX over same period. Refillable properties of PMMA composite system may find utility for customizing dosing regimens. Findings suggest that PMMA composites could have potential as chemotherapeutic delivery platforms to assist in bone reconstruction. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Erika L Cyphert
- Department of Biomedical Engineering, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH, 44106, USA
| | - Nithya Kanagasegar
- School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH, 44106, USA
| | - Ningjing Zhang
- Department of Biomedical Engineering, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH, 44106, USA
| | - Greg D Learn
- Department of Biomedical Engineering, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH, 44106, USA
| | - Horst A von Recum
- Department of Biomedical Engineering, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH, 44106, USA
| |
Collapse
|
10
|
Zhang W, Liu Z, Yang Z, Feng C, Zhou X, Tu C, Li Z. MTHFR Polymorphism Is Associated With Severe Methotrexate-Induced Toxicity in Osteosarcoma Treatment. Front Oncol 2022; 11:781386. [PMID: 34976820 PMCID: PMC8714641 DOI: 10.3389/fonc.2021.781386] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 11/17/2021] [Indexed: 12/16/2022] Open
Abstract
Background Previous studies have revealed the critical role of methylene tetrahydrofolate reductase (MTHFR) polymorphisms in response to high-dose methotrexate (MTX)-induced toxicity in osteosarcoma patients. However, the conclusions remain controversial. In this setting, we performed a meta-analysis to determine their association more precisely. Method Eligible studies were searched and screened in PubMed, Web of Science, Cochrane Library, Clinical-Trials.gov, Embase, and China National Knowledge Infrastructure (CNKI) following specific inclusion and exclusion criteria. The required information was retrieved and collected for subsequent meta-analysis. Association between MTHFR polymorphism and MTX toxicity was evaluated by odds ratios (ORs). Results Seven studies containing 585 patients were enrolled and analyzed in this meta-analysis. Overall, the MTX related grade 3-4 liver toxicity was significantly associated with MTHFR rs1801133 allele (T vs. C: OR=1.61, 95%CI=1.07-2.42, P=0.024), homozygote (TT vs. CC: OR=2.11, 95%CI=1.06-4.21, P=0.011), and dominant genetic model (TT/TC vs. CC: OR=3.15, 95%CI=1.30-7.60, P=0.035) in Asian population. Meanwhile, close associations between MTX mediated grade 3-4 mucositis and MTHFR rs1801133 polymorphism were identified in allele contrast (T vs. C: OR=2.28, 95%CI=1.49-3.50, P<0.001), homozygote comparison (TT vs. CC: OR=4.07, 95%CI=1.76-9.38, P=0.001), heterozygote comparison (TC vs. CC: OR=2.55, 95%CI=1.20-5.42, P=0.015), recessive genetic model (TT vs. TC/CC: OR=2.09, 95%CI=1.19-3.67, P=0.010), and dominant genetic model (TT/TC vs. CC: OR=2.97, 95%CI=1.48-5.96, P=0.002). Additionally, kidney toxicity was corelated with the heterozygote comparison (TC vs. CC: OR=2.63, 95%CI=1.31-5.29, P=0.007) of rs1801133 polymorphism. Conclusion The MTHFR rs1801133 polymorphism was significantly associated with severer liver toxicity induced by high-dose MTX treatment in the Asian population. In the meantime, patients with MTHFR rs1801133 polymorphism were predisposed to MTX- related mucositis.
Collapse
Affiliation(s)
- Wenchao Zhang
- Department of Orthopaedics, The Second Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Zhongyue Liu
- Department of Orthopaedics, The Second Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Zhimin Yang
- Department of Orthopaedics, The Second Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Chengyao Feng
- Department of Orthopaedics, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Xiaowen Zhou
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Chao Tu
- Department of Orthopaedics, The Second Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Zhihong Li
- Department of Orthopaedics, The Second Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
11
|
Gu Y, Wang G, Ran B. Has_circ_0010220 regulates the miR-574-3p/IL-6 axis to increase doxorubicin resistance in osteosarcoma. Hum Exp Toxicol 2022; 41:9603271221131307. [DOI: 10.1177/09603271221131307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Background Osteosarcoma (OS) is the most common primary bone malignancy. It has an aggressive nature and produces drug resistance in diseased patients, which in turn causes obstacles in treating cancer with chemotherapy. The objective of our investigation was to analyze the function and hsa_circ_0010220 mechanism in doxorubicin (DOX) resistance to OS. Methods The hsa_circ_0010220, IL-6, and miR-574-3p levels in OS diseased tissues and cell resistance towards DOX drug were elucidated by qRT-PCR and Elisa assay. The DOX half-inhibitory concentration (IC50) was quantified by Cell Counting Kit-8. For this study, we used RNA pull-down, RNA immunoprecipitation, and a dual-luciferase reporter experiment to identify the proteins that interacted with has_circ_0010220, IL-6, and miR-574-3p in OS cells that have developed resistance towards DOX. Results The results indicated upregulated Hsa_circ_0010220 and IL-6 expression, However, DOX-resistant OS tissues and cells showed a downregulation of miR-574-3p. Reducing DOX resistance in vitro was achieved by silencing Has_circ_0010220. Further, by sponging miR-574-3p, increasing has_circ_0010220 boosted DOX resistance. However, miR-574-3p bound to IL-6 and inhibited DOX resistance. Additionally, it was discovered that hsa_circ_0010220 sponged miR-574-3p for upregulating IL-6 expression. Conclusions Hsa_circ_0010220 encouraged OS resistance to DOX by miR-574-3p/IL-6 axis regulation, suggesting its potency as a promising biomarker for treating OS.
Collapse
Affiliation(s)
- Yanglin Gu
- Department of Orthopedics, The Affiliated Wuxi No. 2 People’s Hospital of Nanjing Medical University, Wuxi, Jiangsu, P.R. China
| | - Guangchang Wang
- Department of Orthopedics, The Affiliated Wuxi No. 2 People’s Hospital of Nanjing Medical University, Wuxi, Jiangsu, P.R. China
| | - Baocai Ran
- Department of Clinical Laboratory, The Affiliated Wuxi No. 2 People’s Hospital of Nanjing Medical University, Wuxi, Jiangsu, P.R. China
| |
Collapse
|
12
|
Du X, Zhang Q, Wang S, Chen X, Wang Y. MCAM is associated with metastasis and poor prognosis in osteosarcoma by modulating tumor cell migration. J Clin Lab Anal 2021; 36:e24214. [PMID: 34961985 PMCID: PMC8841137 DOI: 10.1002/jcla.24214] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 12/16/2021] [Accepted: 12/17/2021] [Indexed: 12/17/2022] Open
Abstract
Background Although there are standard treatment options for osteosarcoma (OS), the prognoses of patients with OS remain varied. Therefore, it is important to profile OS patients at a high risk of mortality to develop focused interventions. Although tumor biomarkers are closely associated with clinical outcomes, data on prognostic biomarkers for OS remain scarce. Methods We collected RNA expression profiles and clinical data of 90 OS patients from the GEO database (dataset GSE21257 and GSE39055) and 96 patients in the TARGET program. The data were analyzed using univariate Kaplan‐Meier survival analysis to screen candidate gene sets that might be associated with OS survival. Results Our analysis demonstrated that melanoma cell adhesion molecule (MCAM) was associated with overall survival of patients with OS in the three cohorts. The data showed that MCAM was upregulated in OS patients who had metastases within 5 years compared to those without metastases. GO analysis revealed that genes correlated with MCAM were mainly involved in cell migration and wound healing processes. In addition, wound healing assays and gene set enrichment analysis results from RNA sequencing data of small interfering (si)‐MCAM‐transfected OS cells demonstrated that MCAM modulated tumor cell migration. Conclusions Our data demonstrate that MCAM may be a novel prognostic biomarker for OS. MCAM is associated with increased cell migration ability and risk of metastasis, thus leading to poor prognoses in OS patients.
Collapse
Affiliation(s)
- Xiaotian Du
- Spine lab, Department of Orthopedic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Department of Pharmacy, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
| | - Qin Zhang
- Department of Pharmacy, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
| | - Siyuan Wang
- Spine lab, Department of Orthopedic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiao Chen
- Key Lab of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
| | - Yue Wang
- Spine lab, Department of Orthopedic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
13
|
Zhou HZ, Chen B, Li XJ, Du JJ, Zhang N, Shao YX, Zhang K, Tong ZC. MicroRNA-545-5p regulates apoptosis, migration and invasion of osteosarcoma by targeting dimethyladenosine transferase 1. Oncol Lett 2021; 22:763. [PMID: 34539867 PMCID: PMC8436355 DOI: 10.3892/ol.2021.13024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 06/08/2021] [Indexed: 11/25/2022] Open
Abstract
The metastasis of osteosarcoma is a major threat to both adolescents and young adults. Identifying novel targets that may prevent osteosarcoma metastasis is critical in developing advanced clinical therapies for treating this cancer. The present study aimed to explore the mechanism of microRNA (miR)-545-5p in the metastasis of osteosarcoma. The present study identified miR-545-5p as a potential target that was downregulated in both osteosarcoma clinical samples and cell lines, and in the latter, ectopically expressed miR-545-5p caused apoptosis. In addition, miR-545-5p exerted inhibitory effects in osteosarcoma migration and invasion. Overexpression of miR-545-5p induced xenograft growth inhibition in vivo. In addition, miR-545-5p targeted dimethyladenosine transferase 1 (DIMT1), an oncogenic protein that facilitates osteosarcoma proliferation, migration and invasion. Taken together, the results of the present study suggest that miR-545-5p functions as a tumor suppressor in osteosarcoma that promotes apoptosis, while inhibiting migration and invasion by targeting DIMT1. Taken together, the results of the present study suggest two potential novel targets for osteosarcoma treatment and metastasis prevention.
Collapse
Affiliation(s)
- Hai-Zhen Zhou
- Department of Osteopathic Oncology, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710054, P.R. China
| | - Bo Chen
- Department of Osteopathic Oncology, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710054, P.R. China
| | - Xiao-Ju Li
- Department of Osteopathic Oncology, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710054, P.R. China
| | - Juan-Juan Du
- Department of Osteopathic Oncology, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710054, P.R. China
| | - Nan Zhang
- Department of Osteopathic Oncology, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710054, P.R. China
| | - Yu-Xiong Shao
- Department of Osteopathic Oncology, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710054, P.R. China
| | - Kun Zhang
- Department of Osteopathic Oncology, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710054, P.R. China
| | - Zhi-Chao Tong
- Department of Osteopathic Oncology, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710054, P.R. China
| |
Collapse
|
14
|
Gao LF, Jia S, Zhang QM, Xia YF, Li CJ, Li YH. MicroRNA-802 promotes the progression of osteosarcoma through targeting p27 and activating PI3K/AKT pathway. Clin Transl Oncol 2021; 24:266-275. [PMID: 34318428 DOI: 10.1007/s12094-021-02683-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 07/08/2021] [Indexed: 11/27/2022]
Abstract
PURPOSE Increasing evidences suggest dysfunctions of microRNAs (miRNAs) are playing important part in tumors. Therefore, the role of miR-802 in osteosarcoma (OS) was exploited. The object was to evaluate the effect of miR-802 and verify its influence on p27 Kip1 (p27) in OS. METHODS RT-qPCR experiment was used to detect miR-802 and p27 expression in OS tissues and cells. We explored the function of miR-802 through Transwell assays. The phosphoinositide 3-kinase (PI3K)/AKT serine/threonine kinase pathway and epithelial-mesenchymal transition (EMT) was detected by Western blot assays. Luciferase assay was used to testify the target of miR-802. RESULTS MiR-802 expression was elevated in OS, which was related to poor clinical outcome in OS patients. MiR-802 overexpression promoted OS migration, invasion and EMT. Further, p27 is a direct target of miR-802. P27 elevation counteracted the promotion effect of OS on EMT, migration and invasion induced by miR-802. In addition, miR-802 overexpression inactivated PI3K/AKT pathway via targeting p27 in OS. CONCLUSION MiR-802 promoted the progress of EMT, migration and invasion in OS via targeting p27. This newly identified miR-802/p27/PI3K/AKT axis may represent potential targets for OS.
Collapse
Affiliation(s)
- L F Gao
- Department of Clinical Laboratory, Weifang Weiyi Tumor Hospital, Affiliated Hospital of Weifang Medical University, Weifang, 261061, China
| | - S Jia
- No.1 Department of Orthopedics, Traditional Chinese Medical Hospital of Huangdao District, Qingdao, 266500, China
| | - Q M Zhang
- Emergency Ward, Qingdao Hospital of Traditional Chinese Medicine, Qingdao Hiser Medical Group, Qingdao, 266033, China
| | - Y F Xia
- Department of Imaging, Zhangqiu District People's Hospital, Jinan, 250200, China
| | - C J Li
- Department of Imaging, Zhangqiu District People's Hospital, Jinan, 250200, China
| | - Y H Li
- Department of Spine Surgery, Qingdao Hospital of Traditional Chinese Medicine, Qingdao Hiser Medical Group, 4 Renmin Road, Shibei District, Qingdao, 266033, China.
| |
Collapse
|
15
|
Guan H, Xu H, Chen J, Wu W, Chen D, Chen Y, Sun J. Circ_0001721 enhances doxorubicin resistance and promotes tumorigenesis in osteosarcoma through miR-758/TCF4 axis. Cancer Cell Int 2021; 21:336. [PMID: 34215252 PMCID: PMC8254259 DOI: 10.1186/s12935-021-02016-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 06/10/2021] [Indexed: 01/22/2023] Open
Abstract
Background Osteosarcoma (OS) is a common type of bone malignancy that often occurs in children and adolescents. Chemoresistance is a huge barrier to cancer therapy. This study aimed to investigate the role and potential mechanism of circ_0001721 in doxorubicin (DXR) resistance and OS development. Methods The levels of circ_0001721, miR-758 and transcription factor 4 (TCF4) were detected by quantitative real-time polymerase chain reaction or western blot assay. Cell Counting Kit-8 (CCK-8) assay was used to calculate the half inhibition concentration (IC50) of DXR and assess cell viability. Cell migration and invasion were evaluated by transwell assay. Cell apoptosis was monitored by flow cytometry. The levels of multidrug resistance-related and Wnt/β-catenin pathway-related proteins were measured by western blot assay. The interaction among circ_0001721, miR-758 and TCF4 were confirmed by dual-luciferase reporter assay, RNA immunoprecipitation assay or RNA pull-down assay. The xenograft model was established to analyze tumor growth in vivo. Results Circ_0001721 and TCF4 were upregulated, whereas miR-758 was down-regulated in DXR-resistant OS tissues and cells. Circ_0001721 silence reduced DXR resistance of KHOS/DXR and MG63/DXR cells. Circ_0001721 regulated DXR resistance via sponging miR-758. Moreover, miR-758 modulated DXR resistance by targeting TCF4. Besides, circ_0001721 knockdown inhibited tumor growth in vivo. Conclusion Circ_0001721 potentiated DXR resistance and facilitated the progression of OS by regulating miR-758/TCF4 axis, which provides promising therapeutic targets for OS treatment.
Collapse
Affiliation(s)
- Huapeng Guan
- Department of Orthopedics, 900Th Hospital of the Joint Logistics Team (Fuzhou General Hospital Affiliated to Fujian Medical University), Fuzhou, 350025, Fujian, China.,Department of Orthopedics, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250000, Shandong, China
| | - Hao Xu
- Department of Orthopedics, 900Th Hospital of the Joint Logistics Team (Fuzhou General Hospital Affiliated to Fujian Medical University), Fuzhou, 350025, Fujian, China
| | - Jinshui Chen
- Department of Orthopedics, 900Th Hospital of the Joint Logistics Team (Fuzhou General Hospital Affiliated to Fujian Medical University), Fuzhou, 350025, Fujian, China
| | - Weishan Wu
- Department of Orthopedics, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250000, Shandong, China
| | - Dongfeng Chen
- Department of Orthopedics, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250000, Shandong, China
| | - Yungang Chen
- Department of Orthopedics, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250000, Shandong, China
| | - Jianzhong Sun
- Department of Orthopedics, Shanghai Baoshan Hospital of Integrated Traditional Chinese and Western Medicine, No.181 Youyi Road, Baoshan District, Shanghai, 201999, P.R. China.
| |
Collapse
|
16
|
Da W, Tao L, Zhu Y. The inhibitory effect of CTAB on human osteosarcoma through the PI3K/AKT signaling pathway. Int J Oncol 2021; 59:42. [PMID: 34013357 PMCID: PMC8131084 DOI: 10.3892/ijo.2021.5222] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Accepted: 04/16/2021] [Indexed: 12/23/2022] Open
Abstract
Osteosarcoma (OS) metastasis and recurrence and multidrug resistance are three major obstacles in the clinic. New highly effective and low toxicity drugs for osteosarcoma are needed. The antitumoral efficacy of cetrimonium bromide (CTAB), a quaternary ammonium compound, is gradually being investigated. The aim of the present study was to investigate the effects of CTAB on OS cells and the underlying mechanisms. CTAB inhibited the proliferation of osteosarcoma cells in a concentration‑ and time‑dependent manner, resulting in cell cycle arrest in G1 phase. CTAB also suppressed the migration and invasion of HOS and MG63 cells at a low concentration without inhibiting the growth of human osteoblasts. Moreover, CTAB promoted caspase‑mediated apoptosis of osteosarcoma cells through the PI3K/AKT cascade, and this effect was accompanied by obvious mitochondrial toxicity. In vivo, CTAB inhibited OS proliferation without inducing organ toxicity. In conclusion, this study reveals that CTAB has an inhibitory effect on OS by suppressing proliferation and metastasis and inducing apoptosis through the PI3K/AKT signaling pathway and identifies CTAB as a potential therapeutic drug.
Collapse
Affiliation(s)
- Wacili Da
- Department of Orthopedics, The First Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Lin Tao
- Department of Orthopedics, The First Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Yue Zhu
- Department of Orthopedics, The First Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| |
Collapse
|
17
|
Liu W, Wang S, Lin B, Zhang W, Ji G. Applications of CRISPR/Cas9 in the research of malignant musculoskeletal tumors. BMC Musculoskelet Disord 2021; 22:149. [PMID: 33546657 PMCID: PMC7866880 DOI: 10.1186/s12891-021-04020-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 01/26/2021] [Indexed: 12/05/2022] Open
Abstract
Background Malignant tumors of the musculoskeletal system, especially osteosarcoma, Ewing sarcoma and rhabdomyosarcoma, pose a major threat to the lives and health of adolescents and children. Current treatments for musculoskeletal tumors mainly include surgery, chemotherapy, and radiotherapy. The problems of chemotherapy resistance, poor long-term outcome of radiotherapy, and the inherent toxicity and side effects of chemical drugs make it extremely urgent to seek new treatment strategies. Main text As a potent gene editing tool, the rapid development of CRISPR/Cas9 technology in recent years has prompted scientists to apply it to the study of musculoskeletal tumors. This review summarizes the application of CRISPR/Cas9 technology for the treatment of malignant musculoskeletal tumors, focusing on its essential role in the field of basic research. Conclusion CRISPR, has demonstrated strong efficacy in targeting tumor-related genes, and its future application in the clinical treatment of musculoskeletal tumors is promising.
Collapse
Affiliation(s)
- Wei Liu
- Department of Orthopaedics, Xiang'an Hospital, School of Medicine, Xiamen University, No. 2000 East Xiang'an Road, Xiang'an District, Xiamen, 361102, China
| | - Shubin Wang
- Department of Orthopaedics, Xiang'an Hospital, School of Medicine, Xiamen University, No. 2000 East Xiang'an Road, Xiang'an District, Xiamen, 361102, China
| | - Binhui Lin
- Department of Orthopaedics, Xiang'an Hospital, School of Medicine, Xiamen University, No. 2000 East Xiang'an Road, Xiang'an District, Xiamen, 361102, China
| | - Wei Zhang
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Guangrong Ji
- Department of Orthopaedics, Xiang'an Hospital, School of Medicine, Xiamen University, No. 2000 East Xiang'an Road, Xiang'an District, Xiamen, 361102, China.
| |
Collapse
|
18
|
Cabrera-Andrade A, López-Cortés A, Jaramillo-Koupermann G, González-Díaz H, Pazos A, Munteanu CR, Pérez-Castillo Y, Tejera E. A Multi-Objective Approach for Anti-Osteosarcoma Cancer Agents Discovery through Drug Repurposing. Pharmaceuticals (Basel) 2020; 13:ph13110409. [PMID: 33266378 PMCID: PMC7700154 DOI: 10.3390/ph13110409] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 11/11/2020] [Accepted: 11/12/2020] [Indexed: 02/08/2023] Open
Abstract
Osteosarcoma is the most common type of primary malignant bone tumor. Although nowadays 5-year survival rates can reach up to 60–70%, acute complications and late effects of osteosarcoma therapy are two of the limiting factors in treatments. We developed a multi-objective algorithm for the repurposing of new anti-osteosarcoma drugs, based on the modeling of molecules with described activity for HOS, MG63, SAOS2, and U2OS cell lines in the ChEMBL database. Several predictive models were obtained for each cell line and those with accuracy greater than 0.8 were integrated into a desirability function for the final multi-objective model. An exhaustive exploration of model combinations was carried out to obtain the best multi-objective model in virtual screening. For the top 1% of the screened list, the final model showed a BEDROC = 0.562, EF = 27.6, and AUC = 0.653. The repositioning was performed on 2218 molecules described in DrugBank. Within the top-ranked drugs, we found: temsirolimus, paclitaxel, sirolimus, everolimus, and cabazitaxel, which are antineoplastic drugs described in clinical trials for cancer in general. Interestingly, we found several broad-spectrum antibiotics and antiretroviral agents. This powerful model predicts several drugs that should be studied in depth to find new chemotherapy regimens and to propose new strategies for osteosarcoma treatment.
Collapse
Affiliation(s)
- Alejandro Cabrera-Andrade
- Grupo de Bio-Quimioinformática, Universidad de Las Américas, Quito 170125, Ecuador;
- Carrera de Enfermería, Facultad de Ciencias de la Salud, Universidad de Las Américas, Quito 170125, Ecuador
- Department of Computer Science and Information Technologies, Faculty of Computer Science, University of A Coruña, CITIC, Campus Elviña s/n, 15071 A Coruña, Spain; (A.L.-C.); (A.P.); (C.R.M.)
- Correspondence: (A.C.-A.); (E.T.)
| | - Andrés López-Cortés
- Department of Computer Science and Information Technologies, Faculty of Computer Science, University of A Coruña, CITIC, Campus Elviña s/n, 15071 A Coruña, Spain; (A.L.-C.); (A.P.); (C.R.M.)
- Centro de Investigación Genética y Genómica, Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito 170129, Ecuador
- Latin American Network for Implementation and Validation of Clinical Pharmacogenomics Guidelines (RELIVAF-CYTED), 28029 Madrid, Spain
| | - Gabriela Jaramillo-Koupermann
- Laboratorio de Biología Molecular, Subproceso de Anatomía Patológica, Hospital de Especialidades Eugenio Espejo, Quito 170403, Ecuador;
| | - Humberto González-Díaz
- Department of Organic and Inorganic Chemistry, and Basque Center for Biophysics CSIC-UPV/EHU, University of the Basque Country UPV/EHU, 48940 Leioa, Spain;
- IKERBASQUE, Basque Foundation for Science, 48011 Bilbao, Spain
| | - Alejandro Pazos
- Department of Computer Science and Information Technologies, Faculty of Computer Science, University of A Coruña, CITIC, Campus Elviña s/n, 15071 A Coruña, Spain; (A.L.-C.); (A.P.); (C.R.M.)
- Biomedical Research Institute of A Coruña (INIBIC), University Hospital Complex of A Coruña (CHUAC), 15006 A Coruña, Spain
| | - Cristian R. Munteanu
- Department of Computer Science and Information Technologies, Faculty of Computer Science, University of A Coruña, CITIC, Campus Elviña s/n, 15071 A Coruña, Spain; (A.L.-C.); (A.P.); (C.R.M.)
- Biomedical Research Institute of A Coruña (INIBIC), University Hospital Complex of A Coruña (CHUAC), 15006 A Coruña, Spain
| | - Yunierkis Pérez-Castillo
- Grupo de Bio-Quimioinformática, Universidad de Las Américas, Quito 170125, Ecuador;
- Escuela de Ciencias Físicas y Matemáticas, Universidad de Las Américas, Quito 170125, Ecuador
| | - Eduardo Tejera
- Grupo de Bio-Quimioinformática, Universidad de Las Américas, Quito 170125, Ecuador;
- Facultad de Ingeniería y Ciencias Agropecuarias, Universidad de Las Américas, Quito 170125, Ecuador
- Correspondence: (A.C.-A.); (E.T.)
| |
Collapse
|
19
|
Cabrera-Andrade A, López-Cortés A, Munteanu CR, Pazos A, Pérez-Castillo Y, Tejera E, Arrasate S, González-Díaz H. Perturbation-Theory Machine Learning (PTML) Multilabel Model of the ChEMBL Dataset of Preclinical Assays for Antisarcoma Compounds. ACS OMEGA 2020; 5:27211-27220. [PMID: 33134682 PMCID: PMC7594149 DOI: 10.1021/acsomega.0c03356] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 10/06/2020] [Indexed: 06/11/2023]
Abstract
Sarcomas are a group of malignant neoplasms of connective tissue with a different etiology than carcinomas. The efforts to discover new drugs with antisarcoma activity have generated large datasets of multiple preclinical assays with different experimental conditions. For instance, the ChEMBL database contains outcomes of 37,919 different antisarcoma assays with 34,955 different chemical compounds. Furthermore, the experimental conditions reported in this dataset include 157 types of biological activity parameters, 36 drug targets, 43 cell lines, and 17 assay organisms. Considering this information, we propose combining perturbation theory (PT) principles with machine learning (ML) to develop a PTML model to predict antisarcoma compounds. PTML models use one function of reference that measures the probability of a drug being active under certain conditions (protein, cell line, organism, etc.). In this paper, we used a linear discriminant analysis and neural network to train and compare PT and non-PT models. All the explored models have an accuracy of 89.19-95.25% for training and 89.22-95.46% in validation sets. PTML-based strategies have similar accuracy but generate simplest models. Therefore, they may become a versatile tool for predicting antisarcoma compounds.
Collapse
Affiliation(s)
- Alejandro Cabrera-Andrade
- Grupo
de Bio-Quimioinformática, Universidad
de Las Américas, de los Granados Avenue, Quito 170125, Ecuador
- Carrera
de Enfermería, Facultad de Ciencias de la Salud, Universidad de Las Américas, de los Granados Avenue, Quito 170125, Ecuador
- RNASA-IMEDIR,
Computer Sciences Faculty, University of
A Coruña, A Coruña 15071, Spain
| | - Andrés López-Cortés
- RNASA-IMEDIR,
Computer Sciences Faculty, University of
A Coruña, A Coruña 15071, Spain
- Centro
de Investigación Genética y Genómica, Facultad
de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Mariscal Sucre Avenue, Quito 170129, Ecuador
| | - Cristian R. Munteanu
- RNASA-IMEDIR,
Computer Sciences Faculty, University of
A Coruña, A Coruña 15071, Spain
- Biomedical
Research Institute of A Coruña (INIBIC), University Hospital Complex of A Coruña (CHUAC), A Coruña 15006, Spain
- Centro de
Investigación en Tecnologías de la Información
y las Comunicaciones (CITIC), Campus de
Elviña s/n, A Coruña 15071, Spain
| | - Alejandro Pazos
- RNASA-IMEDIR,
Computer Sciences Faculty, University of
A Coruña, A Coruña 15071, Spain
- Biomedical
Research Institute of A Coruña (INIBIC), University Hospital Complex of A Coruña (CHUAC), A Coruña 15006, Spain
| | - Yunierkis Pérez-Castillo
- Grupo
de Bio-Quimioinformática, Universidad
de Las Américas, de los Granados Avenue, Quito 170125, Ecuador
- Escuela
de Ciencias Físicas y Matemáticas, Universidad de Las Américas, de los Granados Avenue, Quito 170125, Ecuador
| | - Eduardo Tejera
- Grupo
de Bio-Quimioinformática, Universidad
de Las Américas, de los Granados Avenue, Quito 170125, Ecuador
- Facultad
de Ingeniería y Ciencias Aplicadas, Universidad de Las Américas, de los Granados Avenue, Quito 170125, Ecuador
| | - Sonia Arrasate
- Department
of Organic Chemistry II and Basque Center for Biophysics, University of Basque Country UPV/EHU, Leioa 48940, Biscay, Spain
| | - Humbert González-Díaz
- Department
of Organic Chemistry II and Basque Center for Biophysics, University of Basque Country UPV/EHU, Leioa 48940, Biscay, Spain
- Ikerbasque,
Basque Foundation for Science, Bilbao 48011, Biscay, Spain
| |
Collapse
|
20
|
Fu P, Shi Y, Chen G, Fan Y, Gu Y, Gao Z. Prognostic Factors in Patients With Osteosarcoma With the Surveillance, Epidemiology, and End Results Database. Technol Cancer Res Treat 2020; 19:1533033820947701. [PMID: 32787692 PMCID: PMC7427153 DOI: 10.1177/1533033820947701] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Background: Osteosarcoma is a rare type of bone tumor, and this study aimed to assess the clinicopathologic features and prognoses of osteosarcoma patients. Methods: Clinicopathologic and survival data of 1025 patients between 2010 and 2016, 230 between 2008 and 2009 were downloaded and analyzed from the SEER database. Patients’ survival was analyzed using the Kaplan-Meier analysis; prognostic factors were assessed using the Cox regression hazards model. The 1-, 3-, and 5-year survival rates were estimated with nomogram. Competitive risk models were used to identify prognostic risk factors related to endpoint events of osteosarcoma patients. Results: Overall, 722 samples were obtained from the extremities, 134 from the axial bones, and 119 from the cranial and mandible in SEER (2010-2016 cohort). After the preliminary diagnosis, the median survival time of patients with osteosarcoma was 39 months, and the 1-, 3-, and 5-year survival rates were 87.3%, 67.2%, and 58.0%, respectively (P < 0.001). The competitive risk model revealed no competitive risks of the endpoint event. Conclusion: Our study found out the prognostic factors in patients with Osteosarcoma by Cox regression hazards model, after that, nomogram was established to predict the 1-, 3-, and 5-year survival rates, which may help oncologists to understand the highly malignant tumor.
Collapse
Affiliation(s)
- Peng Fu
- Department of Orthopedic, The Second Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Yu Shi
- Department of Radiotherapy, 74567Affiliated Hospital of Nantong University, Nantong, China
| | - Gang Chen
- Department of Orthopedic, The Second Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Yaohua Fan
- Department of Clinical Oncology, 569220The Second Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Yanhong Gu
- Department of Clinical Oncology, 74734The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Zhenzhen Gao
- Department of Clinical Oncology, 569220The Second Affiliated Hospital of Jiaxing University, Jiaxing, China
| |
Collapse
|
21
|
Li C, Gao H, Feng X, Bi C, Zhang J, Yin J. Ginsenoside Rh2 impedes proliferation and migration and induces apoptosis by regulating NF-κB, MAPK, and PI3K/Akt/mTOR signaling pathways in osteosarcoma cells. J Biochem Mol Toxicol 2020; 34:e22597. [PMID: 32762018 DOI: 10.1002/jbt.22597] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 05/07/2020] [Accepted: 07/23/2020] [Indexed: 12/14/2022]
Abstract
Ginsenoside Rh2 is a primary bioactive compound obtained from ginseng that indicated anticancer activities against several malignant tumors. However, previous studies have reported little about the inhibitory effect of Rh2 on osteosarcoma (OS). This study aims to explore whether Rh2 could exert anticancer effects in OS cells and further investigate the proliferation, migration, and apoptosis mechanisms induced by Rh2 in human OS U20S cell line. The viability of U20S cells was obtained by the 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide assay. Cell migration property was analyzed by wound-healing assay. Apoptosis was visualized using terminal deoxynucleotidyl transferase dUTP nick-end labeling (TUNEL), 4',6-diamidino-2-phenylindole (DAPI), and annexin V/propidium iodide (PI) staining. Relative protein expressed was confirmed through Western blot analysis. Mitochondrial membrane potential was evaluated by JC-1 staining. In this study, we used broad-spectrum anticancer drug cisplatin (CP) as a positive control. The results indicated that Rh2 remarkably inhibited cell viability of U20S cells in a dose- and time-dependent manner, and suppressed migration. TUNEL, DAPI, annexin V/PI, and JC-1 assay suggested that Rh2 could induce cellular apoptosis. Rh2 could reduce the levels of Bcl-2, caspase 3, and caspase 9, and promote the expression level of Bax in U20S cells. Moreover, Rh2 could induce apoptosis by promoting mitogen-activated protein kinase (MAPK) signaling pathway and inhibit PI3K/Akt/mTOR and nuclear factor-κB (NF-κB) signaling pathway in U20S cells. These findings indicated that Rh2 has an anticancer effect on U20S cells by regulating MAPK, PI3K/Akt/mTOR, and NF-κB signaling pathway.
Collapse
Affiliation(s)
- Chenchen Li
- Department of Natural Products Chemistry, School of Pharmaceutical Sciences, Jilin University, Changchun, Jilin, China
| | - Huan Gao
- Department of Pharmacy, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Xuemei Feng
- Department of Natural Products Chemistry, School of Pharmaceutical Sciences, Jilin University, Changchun, Jilin, China
| | - Chuyao Bi
- Department of Natural Products Chemistry, School of Pharmaceutical Sciences, Jilin University, Changchun, Jilin, China
| | - Jing Zhang
- Department of Natural Products Chemistry, School of Pharmaceutical Sciences, Jilin University, Changchun, Jilin, China
| | - Jianyuan Yin
- Department of Natural Products Chemistry, School of Pharmaceutical Sciences, Jilin University, Changchun, Jilin, China
| |
Collapse
|
22
|
Hattinger CM, Patrizio MP, Luppi S, Serra M. Pharmacogenomics and Pharmacogenetics in Osteosarcoma: Translational Studies and Clinical Impact. Int J Mol Sci 2020; 21:E4659. [PMID: 32629971 PMCID: PMC7369799 DOI: 10.3390/ijms21134659] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 06/23/2020] [Accepted: 06/25/2020] [Indexed: 12/14/2022] Open
Abstract
High-grade osteosarcoma (HGOS) is a very aggressive bone tumor which primarily affects adolescents and young adults. Although not advanced as is the case for other cancers, pharmacogenetic and pharmacogenomic studies applied to HGOS have been providing hope for an improved understanding of the biology and the identification of genetic biomarkers, which may impact on clinical care management. Recent developments of pharmacogenetics and pharmacogenomics in HGOS are expected to: i) highlight genetic events that trigger oncogenesis or which may act as drivers of disease; ii) validate research models that best predict clinical behavior; and iii) indicate genetic biomarkers associated with clinical outcome (in terms of treatment response, survival probability and susceptibility to chemotherapy-related toxicities). The generated body of information may be translated to clinical settings, in order to improve both effectiveness and safety of conventional chemotherapy trials as well as to indicate new tailored treatment strategies. Here, we review and summarize the current scientific evidence for each of the aforementioned issues in view of possible clinical applications.
Collapse
Affiliation(s)
| | | | | | - Massimo Serra
- IRCCS Istituto Ortopedico Rizzoli, Laboratory of Experimental Oncology, Pharmacogenomics and Pharmacogenetics Research Unit, 40136 Bologna, Italy; (C.M.H.); (M.P.P.); (S.L.)
| |
Collapse
|
23
|
Li M, Yin L, Wu L, Zhu Y, Wang X. Paclitaxel inhibits proliferation and promotes apoptosis through regulation ROS and endoplasmic reticulum stress in osteosarcoma cell. Mol Cell Toxicol 2020. [DOI: 10.1007/s13273-020-00093-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
24
|
Sun L, Wang L, Luan S, Jiang Y, Wang Q. miR-429 inhibits osteosarcoma progression by targeting HOXA9 through suppressing Wnt/β-catenin signaling pathway. Oncol Lett 2020; 20:2447-2455. [PMID: 32782562 PMCID: PMC7399823 DOI: 10.3892/ol.2020.11766] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 05/20/2020] [Indexed: 12/12/2022] Open
Abstract
Osteosarcoma (OS) is the most commonly diagnosed malignant cancer of bone that occurs in adolescents and children. Mounting number of studies have indicated that miRNAs are increasingly playing fundamental roles in OS development. Thus, the biological function of miR-429 in OS progression was explored. The results of RT-qPCR revealed that miR-429 was downregulated in OS tissues and OS cell lines (MG-63, U2OS, Saos-2) while homeobox A9 (HOXA9) was markedly increased. Moreover, HOXA9 was confirmed as a direct target of miR-429 by using luciferase reporter assay. It was identified that miR-429 exhibited a suppressive effect on OS progression while HOXA9 showed the oncogenic function in OS progression by using MTT and Transwell assays. More importantly, rescue assays manifested that HOXA9 can partially overturn the suppressive effect of miR-429 on OS. Overexpression of miR-429 inhibited the activation of Wnt/β-catenin signaling pathway. In conclusion, miR-429 suppressed OS progression by targeting HOXA9 through Wnt/β-catenin pathway.
Collapse
Affiliation(s)
- Liangzhi Sun
- Department of Orthopedics, Weifang People's Hospital, Weifang, Shandong 261041, P.R. China
| | - Libo Wang
- Hetan Health Center, Weifang, Shandong 261100, P.R. China
| | - Suxian Luan
- Reproductive Medicine Centre, Weifang People's Hospital, Weifang, Shandong 261041, P.R. China
| | - Yanzhou Jiang
- Department of Orthopedics, Hanting People's Hospital, Weifang, Shandong 261100, P.R. China
| | - Qiang Wang
- Department of Orthopedics, Hanting People's Hospital, Weifang, Shandong 261100, P.R. China
| |
Collapse
|
25
|
Zhang M, Chen L, Liu Y, Chen M, Zhang S, Kong D. Sea cucumber Cucumaria frondosa fucoidan inhibits osteosarcoma adhesion and migration by regulating cytoskeleton remodeling. Oncol Rep 2020; 44:469-476. [PMID: 32467988 PMCID: PMC7336482 DOI: 10.3892/or.2020.7614] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 04/07/2020] [Indexed: 12/13/2022] Open
Abstract
Osteosarcoma (OS) has been demonstrated to be difficult to cure due to its potently malignant metastasis. Therefore, new therapeutic approaches blocking the metastatic potential of OS are urgently required to improve the outcomes for OS patients. In the present study, the anti-metastatic capacity of sea cucumber (Cucumaria frondosa) fucoidan (Cf-Fuc) was evaluated on osteosarcoma cells by cell adhesion assay, Transwell assay and U2OS cell migration assay. The underlying mechanism on the dynamic remodeling of the cytoskeleton was also explored. The present data indicated that Cf-Fuc could block the U2OS osteosarcoma cell adhesion to fibronectin and significantly inhibit U2OS cell migration. Cf-Fuc greatly impaired the migration capacity of U2OS cells, and the migrated distance and velocity of Cf-Fuc-treated cells were markedly reduced. Also, Cf-Fuc could impair the dynamic remodeling of the cytoskeleton possibly by suppressing the phosphorylation of focal adhesion kinase and paxillin, as well as the activation of the Rac1/PAK1/LIMK1/cofilin signaling axis. Collectively, the present findings provide a novel therapeutic potential of C. frondosa fucoidan for osteosarcoma metastasis.
Collapse
Affiliation(s)
- Minglei Zhang
- Department of Orthopedics, China‑Japan Union Hospital of Jilin University, Changchun, Jilin 130033, P.R. China
| | - Li Chen
- Department of Oral Radiology, School and Hospital of Stomatology, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Yang Liu
- Department of Radiology, The Second Affiliated Hospital of Jilin University, Changchun, Jilin 130041, P.R. China
| | - Minghui Chen
- Department of Cardiovascular Medicine, The Second Affiliated Hospital of Jilin University, Changchun, Jilin 130041, P.R. China
| | - Shuang Zhang
- Healthcare Department, Affiliated Hospital of Changchun University of Traditional Chinese Medicine, Changchun, Jilin 130021, P.R. China
| | - Daliang Kong
- Department of Orthopedics, China‑Japan Union Hospital of Jilin University, Changchun, Jilin 130033, P.R. China
| |
Collapse
|
26
|
Trujillo-Paolillo A, Salinas-Souza C, Dias-Oliveira I, Petrilli AS, Toledo SRC. CYP Genotypes Are Associated with Toxicity and Survival in Osteosarcoma Patients. J Adolesc Young Adult Oncol 2020; 9:621-627. [PMID: 32298597 DOI: 10.1089/jayao.2019.0180] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Purpose: Osteosarcoma is the malignant bone tumor most common in children and adolescents. Many cytochrome P-450 (CYP) members detoxify anticancer drugs used in osteosarcoma treatment, and thus, the aim of the present study was to investigate CYP polymorphisms in osteosarcoma patients. Methods: The present study investigated DNA from peripheral blood from 70 osteosarcoma patients treated with high doses of cisplatin, doxorubicin, and methotrexate. CYP1A2*1F (163C>A; rs762551); CYP2C9*3 (1075A>C; rs1057910); and CYP3A5*3 (6986A>G; rs776746) polymorphisms were investigated through real-time PCR using TaqMan probes. Results: The CYP2C9*3 allele did not present any association with clinical events. The CYP1A2 CC/AC genotypes were associated with ototoxicity occurrence (p = 0.041, odds ratio [OR] = 8.4) and high grades of ototoxicity (p = 0.039, OR = 10.7), when compared with patients carrying the CYP1A2 AA genotype. The CYP1A2 CC genotype was associated with high grades of diarrhea (p = 0.043, OR = 4.6) and fever (p = 0.041, OR = 7.1) in comparison with the CYP1A2 AA/AC genotypes. The CYP3A5 CC genotype was associated with weight loss (p = 0.009, OR = 3.8) and high grades of hepatotoxicity (p = 0.010, OR = 4.3) when compared with the CYP3A5 TT/CT genotypes. The CYP3A5 CC/CT genotypes were associated with high grades of vomit (p = 0.013, OR = 10.8), pulmonary relapse absence (p = 0.029, OR = 9.5), and better overall and event-free survivals (p = 0.017, hazard ratio [HR] = 3.1; p = 0.044, HR = 2.5; respectively) when compared with the CYP3A5 AA genotype. Conclusion: CYP1A2*1A and CYP3A5*3 alleles were associated with toxicity events. CYP3A5*3 allele was associated with better survival. Thus, CYP genotypes might be promising markers to tailoring treatment in osteosarcoma patients.
Collapse
Affiliation(s)
- Alini Trujillo-Paolillo
- Support Group for Children and Adolescents with Cancer (GRAACC), Pediatric Oncology Institute (IOP), Federal University of Sao Paulo (UNIFESP/EPM), Sao Paulo, Brazil.,Department of Clinical and Experimental Oncology, Discipline of Hematology and Hemotherapy, Federal University of Sao Paulo (UNIFESP/EPM), Sao Paulo, Brazil
| | - Carolina Salinas-Souza
- Support Group for Children and Adolescents with Cancer (GRAACC), Pediatric Oncology Institute (IOP), Federal University of Sao Paulo (UNIFESP/EPM), Sao Paulo, Brazil
| | - Indhira Dias-Oliveira
- Support Group for Children and Adolescents with Cancer (GRAACC), Pediatric Oncology Institute (IOP), Federal University of Sao Paulo (UNIFESP/EPM), Sao Paulo, Brazil
| | - Antônio S Petrilli
- Support Group for Children and Adolescents with Cancer (GRAACC), Pediatric Oncology Institute (IOP), Federal University of Sao Paulo (UNIFESP/EPM), Sao Paulo, Brazil.,Department of Pediatrics, Discipline of Pediatric Oncology, Federal University of Sao Paulo (UNIFESP/EPM), Sao Paulo, Brazil
| | - Sílvia R C Toledo
- Support Group for Children and Adolescents with Cancer (GRAACC), Pediatric Oncology Institute (IOP), Federal University of Sao Paulo (UNIFESP/EPM), Sao Paulo, Brazil.,Department of Clinical and Experimental Oncology, Discipline of Hematology and Hemotherapy, Federal University of Sao Paulo (UNIFESP/EPM), Sao Paulo, Brazil
| |
Collapse
|
27
|
Liu S, Liu J, Yu X, Shen T, Fu Q. Identification of a Two-Gene ( PML-EPB41) Signature With Independent Prognostic Value in Osteosarcoma. Front Oncol 2020; 9:1578. [PMID: 32039036 PMCID: PMC6992559 DOI: 10.3389/fonc.2019.01578] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Accepted: 12/31/2019] [Indexed: 12/25/2022] Open
Abstract
Background: Osteosarcoma (OSA) is the most prevalent form of malignant bone cancer and it occurs predominantly in children and adolescents. OSA is associated with a poor prognosis and highest cause of cancer-related death. However, there are a few biomarkers that can serve as reasonable assessments of prognosis. Methods: Gene expression profiling data were downloaded from dataset GSE39058 and GSE21257 from the Gene Expression Omnibus database as well as TARGET database. Bioinformatic analysis with data integration was conducted to discover the significant biomarkers for predicting prognosis. Verification was conducted by qPCR and western blot to measure the expression of genes. Results: 733 seed genes were selected by combining the results of the expression profiling data with hub nodes in a human protein-protein interaction network with their gene functional enrichment categories identified. Following by Cox proportional risk regression modeling, a 2-gene (PML-EPB41) signature was developed for prognostic prediction of patients with OSA. Patients in the high-risk group had significantly poorer survival outcomes than in the low-risk group. Finally, the signature was validated and analyzed by the external dataset along with Kaplan–Meier survival analysis as well as biological experiment. A molecular gene model was built to serve as an innovative predictor of prognosis for patients with OSA. Conclusion: Our findings define novel biomarkers for OSA prognosis, which will possibly aid in the discovery of novel therapeutic targets with clinical applications.
Collapse
Affiliation(s)
- Shengye Liu
- Department of Spine and Joint Surgery, Shengjing Hospital of China Medical University, Shenyang, China
| | - Jiamei Liu
- Department of Pathology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Xuechen Yu
- Hammer Health Sciences Center, Columbia University Medical Center, New York, NY, United States
| | - Tao Shen
- Department of Spine and Joint Surgery, Shengjing Hospital of China Medical University, Shenyang, China
| | - Qin Fu
- Department of Spine and Joint Surgery, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
28
|
Zhang W, Lei Z, Meng J, Li G, Zhang Y, He J, Yan W. Water Extract of Sporoderm-Broken Spores of Ganoderma lucidum Induces Osteosarcoma Apoptosis and Restricts Autophagic Flux. Onco Targets Ther 2019; 12:11651-11665. [PMID: 32021244 PMCID: PMC6942530 DOI: 10.2147/ott.s226850] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 12/11/2019] [Indexed: 12/16/2022] Open
Abstract
Purpose Osteosarcoma (OS) is a malignant bone tumor with easy metastasis and poor prognosis. Ganoderma lucidum (G. lucidum), a traditional Chinese medicine, was reported playing a critical role in suppressing multiple tumor progress. So we wanted to investigate the effects and molecular mechanisms of water extract of sporoderm-broken spores of G. lucidum (BSGLWE) on osteosarcoma. Methods In vitro, the effects on cell proliferation of BSGLWE in osteosarcoma cells were detected by CCK-8, colony formation assay and flow cytometry; migration ability of osteosarcoma cells was evaluated by cell scratch and transwell assays. Cell apoptosis and autophagy were tested by transmission electron microscopy (TEM). Potential signaling pathways were detected by Western blotting and immunofluorescence. In xenograft orthotopic model, the luminescence intensity measured by an in vivo bioluminescence imaging system, and the expression of related proteins in tumor cells were assessed by IHC analysis. Results BSGLWE suppressed the proliferation and migration of osteosarcoma cells in a dose-dependent manner, and osteosarcoma cell cycle progression at the G2/M phase was arrested by the BSGLWE. In addition, increased apoptosis-related protein expression meant BSFLWE induced caspase-dependent apoptosis of osteosarcoma cells. TEM results indicated that BSGLWE promoted the formation of apoptotic bodies and autophagosomes in HOS and U2 cells. Western blotting or immunofluorescence and rescue assay revealed that BSGLWE blocked autophagic flux by inducing initiation of autophagy and increasing autophagosome accumulation of osteosarcoma cells. BSGLWE not only repressed the angiogenesis in the mouse model, but also induced apoptosis and blocked autophagy in vivo. Conclusion BSGLWE inhibits osteosarcoma progression.
Collapse
Affiliation(s)
- Wenkan Zhang
- Department of Orthopedics Research Institute, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, People's Republic of China.,Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, People's Republic of China
| | - Zhong Lei
- Department of Orthopedics Research Institute, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, People's Republic of China.,Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, People's Republic of China
| | - Jiahong Meng
- Department of Orthopedics Research Institute, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, People's Republic of China.,Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, People's Republic of China
| | - Guoqi Li
- Department of Orthopedics Research Institute, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, People's Republic of China.,Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, People's Republic of China
| | - Yuxiang Zhang
- Department of Orthopedics Research Institute, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, People's Republic of China.,Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, People's Republic of China
| | - Jiaming He
- Department of Orthopedics Research Institute, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, People's Republic of China.,Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, People's Republic of China
| | - Weiqi Yan
- Department of Orthopedics Research Institute, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, People's Republic of China.,Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, People's Republic of China
| |
Collapse
|
29
|
MicroRNA-93 promotes the tumorigenesis of osteosarcoma by targeting TIMP2. Biosci Rep 2019; 39:BSR20191237. [PMID: 31383784 PMCID: PMC6706598 DOI: 10.1042/bsr20191237] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Revised: 07/19/2019] [Accepted: 07/30/2019] [Indexed: 12/14/2022] Open
Abstract
Osteosarcoma (OS) is the most frequent primary bone malignancy and affects adolescents and young adults. Recently dysregulation of miRNAs has received more attention because of its extensive role in OS carcinogenesis. This research was designed to verify how microRNA-93 (miR-93) and tissue inhibitor of matrix metalloproteinase 2 (TIMP2) be involved in OS development. At first, the levels of miR-93 and its predictive target gene TIMP2 were detected in OS and osteoblast cell lines, and 62 pairs OS and adjacent non-OS specimens by real-time PCR and western blot. Then, viability, invasion, and epithelial mesenchymal transition (EMT) of OS cell lines were examined when overexpressed or knocked down miR-93, or overexpressed TIMP2. Finally, the interaction between miR-93 and TIMP2 was evaluated using mutation, gain, and loss experiment. Our data indicated that miR-93 was increased while TIMP2 was decreased in both OS cell lines and tissues. MiR-93 high-expression and TIMP2 low-expression were related with poor overall survival and prognosis of OS patients. Overexpression or knockdown experiment indicated that miR-93 enhanced OS cell viability, invasion, and EMT expression. TIMP2 could inhibit OS cell viability, invasion, and EMT expression. Further, miR-93 directly targeted TIMP2 and negatively regulated TIMP2 level in OS cells. And up-regulation of TIMP2 reversed the effects of miR-93 in OS. Finally, miR-93 regulated the oncogenic functions in OS cells by regulating the expression of TIMP2. In conclusion, our study demonstrates that miR-93 may exert an oncogenic function while TIMP2 may act as a tumor suppressor on OS.
Collapse
|
30
|
Alegre F, Ormonde AR, Godinez DR, Illendula A, Bushweller JH, Wittenburg LA. The interaction between RUNX2 and core binding factor beta as a potential therapeutic target in canine osteosarcoma. Vet Comp Oncol 2019; 18:52-63. [PMID: 31381810 DOI: 10.1111/vco.12526] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 06/14/2019] [Accepted: 07/07/2019] [Indexed: 12/16/2022]
Abstract
Osteosarcoma remains the most common primary bone tumour in dogs with half of affected dogs unable to survive 1 year beyond diagnosis. New therapeutic options are needed to improve outcomes for this disease. Recent investigations into potential therapeutic targets have focused on cell surface molecules with little clear therapeutic benefit. Transcription factors and protein interactions represent underdeveloped areas of therapeutic drug development. We have utilized allosteric inhibitors of the core binding factor transcriptional complex, comprised of core binding factor beta (CBFβ) and RUNX2, in four canine osteosarcoma cell lines Active inhibitor compounds demonstrate anti-tumour activities with concentrations demonstrated to be achievable in vivo while an inactive, structural analogue has no activity. We show that CBFβ inhibitors are capable of inducing apoptosis, inhibiting clonogenic cell growth, altering cell cycle progression and impeding migration and invasion in a cell line-dependent manner. These effects coincide with a reduced interaction between RUNX2 and CBFβ and alterations in expression of RUNX2 target genes. We also show that addition of CBFβ inhibitors to the commonly used cytotoxic chemotherapeutic drugs doxorubicin and carboplatin leads to additive and/or synergistic anti-proliferative effects in canine osteosarcoma cell lines. Taken together, we have identified the interaction between components of the core binding factor transcriptional complex, RUNX2 and CBFβ, as a potential novel therapeutic target in canine osteosarcoma and provide justification for further investigations into the anti-tumour activities we describe here.
Collapse
Affiliation(s)
- Fernando Alegre
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California, Davis, California
| | - Amanda R Ormonde
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California, Davis, California
| | - Dayn R Godinez
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California, Davis, California
| | - Anuradha Illendula
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, Virginia
| | - John H Bushweller
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, Virginia
| | - Luke A Wittenburg
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California, Davis, California
| |
Collapse
|
31
|
Hattinger CM, Patrizio MP, Magagnoli F, Luppi S, Serra M. An update on emerging drugs in osteosarcoma: towards tailored therapies? Expert Opin Emerg Drugs 2019; 24:153-171. [PMID: 31401903 DOI: 10.1080/14728214.2019.1654455] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Introduction: Current treatment of conventional and non-conventional high-grade osteosarcoma (HGOS) is based on the surgical removal of primary tumor and, when possible, of metastases and local reccurrence, together with systemic pre- and post-operative chemotherapy with drugs that have been used since decades. Areas covered: This review is intended to summarize the new agents and therapeutic strategies that are under clinical evaluation in HGOS, with the aim to increase the cure probability of this highly malignant bone tumor, which has not significantly improved during the last 30-40 years. The list of drugs, compounds and treatment modalities presented and discussed here has been generated by considering only those that are included in presently ongoing and recruiting clinical trials, or which have been completed in the last 2 years with reported results, on the basis of the information obtained from different and continuously updated databases. Expert opinion: Despite HGOS is a rare tumor, several clinical trials are presently evaluating different treatment strategies, which may hopefully positively impact on the outcome of patients who experience unfavorable prognosis when treated with conventional therapies.
Collapse
Affiliation(s)
- Claudia Maria Hattinger
- Laboratory of Experimental Oncology, Pharmacogenomics and Pharmacogenetics Research Unit, IRCCS Istituto Ortopedico Rizzoli , Bologna , Italy
| | - Maria Pia Patrizio
- Laboratory of Experimental Oncology, Pharmacogenomics and Pharmacogenetics Research Unit, IRCCS Istituto Ortopedico Rizzoli , Bologna , Italy
| | - Federica Magagnoli
- Laboratory of Experimental Oncology, Pharmacogenomics and Pharmacogenetics Research Unit, IRCCS Istituto Ortopedico Rizzoli , Bologna , Italy
| | - Silvia Luppi
- Laboratory of Experimental Oncology, Pharmacogenomics and Pharmacogenetics Research Unit, IRCCS Istituto Ortopedico Rizzoli , Bologna , Italy
| | - Massimo Serra
- Laboratory of Experimental Oncology, Pharmacogenomics and Pharmacogenetics Research Unit, IRCCS Istituto Ortopedico Rizzoli , Bologna , Italy
| |
Collapse
|
32
|
Tang Y, Ji F. lncRNA HOTTIP facilitates osteosarcoma cell migration, invasion and epithelial-mesenchymal transition by forming a positive feedback loop with c-Myc. Oncol Lett 2019; 18:1649-1656. [PMID: 31423232 PMCID: PMC6607149 DOI: 10.3892/ol.2019.10463] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2018] [Accepted: 04/24/2019] [Indexed: 01/04/2023] Open
Abstract
Homeobox A transcript at the distal tip (HOTTIP) is an oncogenic long non-coding RNA in cancer. The aim of the present study was to investigate the function and mechanism of HOTTIP in the aggressive behaviors of human osteosarcoma (OS) cells. Expression levels of HOTTIP and epithelial-mesenchymal transition (EMT) markers were determined by reverse transcription-quantitative PCR. Cell invasive and migratory abilities were evaluated in vitro using Matrigel and wound healing assays, respectively. Knockdown of HOTTIP expression was achieved by small interfering RNA-mediated silencing. Overexpression of c-Myc was accomplished by transfecting cultured cells with a c-Myc overexpression plasmid. HOTTIP was demonstrated to be upregulated in OS tissues and cell lines; knockdown of HOTTIP inhibited OS cell migration, invasion and EMT, and suppressed c-Myc expression. In addition, overexpression of c-Myc increased HOTTIP expression and enhanced OS cell migration and invasion. HOTTIP promoted cell migration and invasion by upregulating c-Myc in OS. The positive feedback loop formed by HOTTIP and c-Myc may contribute to OS progression, and HOTTIP may act as a therapeutic target for OS.
Collapse
Affiliation(s)
- Yang Tang
- Department of Orthopedics, Changhai Hospital, Second Military Medical University, Shanghai 200438, P.R. China
| | - Fang Ji
- Department of Orthopedics, Changhai Hospital, Second Military Medical University, Shanghai 200438, P.R. China
| |
Collapse
|
33
|
Polydatin inhibits proliferation and promotes apoptosis of doxorubicin-resistant osteosarcoma through LncRNA TUG1 mediated suppression of Akt signaling. Toxicol Appl Pharmacol 2019; 371:55-62. [DOI: 10.1016/j.taap.2019.04.005] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 03/31/2019] [Accepted: 04/05/2019] [Indexed: 02/01/2023]
|
34
|
Hattinger CM, Patrizio MP, Luppi S, Magagnoli F, Picci P, Serra M. Current understanding of pharmacogenetic implications of DNA damaging drugs used in osteosarcoma treatment. Expert Opin Drug Metab Toxicol 2019; 15:299-311. [PMID: 30822170 DOI: 10.1080/17425255.2019.1588885] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
INTRODUCTION DNA damaging drugs are widely used for the chemotherapeutic treatment of high-grade osteosarcoma (HGOS). In HGOS patients, several germline polymorphisms have been reported to impact on the development of adverse toxic events related to DNA damaging drugs treatment. Some of these polymorphisms, when present in tumor cells, may also influence treatment response and prognosis of HGOS patients. Area covered: In this review, the authors have focused on pharmacogenetic markers (mainly germline polymorphisms) described in patients with HGOS, which have proved or indicated to be related to the susceptibility to adverse toxic reactions and/or to influence response to DNA damaging drugs. The concordant and discordant results reported in different studies have also been discussed. Expert opinion: Response and toxicity predisposition to DNA damaging drugs are influenced by genes encoding proteins involved in their uptake, efflux, activation, inactivation, and in DNA repair, activity of which may vary according to specific gene variations. In HGOS, there is a substantial medical need for biomarkers predictive for individual response and toxicity predisposition to DNA-targeting drugs, which may be used to tailor therapy in order to decrease the occurrence of adverse side effects and increase treatment efficacy and safety.
Collapse
Affiliation(s)
- Claudia Maria Hattinger
- a Pharmacogenomics and Pharmacogenetics Research Unit of the Laboratory of Experimental Oncology , IRCCS Istituto Ortopedico Rizzoli , Bologna , Italy
| | - Maria Pia Patrizio
- a Pharmacogenomics and Pharmacogenetics Research Unit of the Laboratory of Experimental Oncology , IRCCS Istituto Ortopedico Rizzoli , Bologna , Italy
| | - Silvia Luppi
- a Pharmacogenomics and Pharmacogenetics Research Unit of the Laboratory of Experimental Oncology , IRCCS Istituto Ortopedico Rizzoli , Bologna , Italy
| | - Federica Magagnoli
- a Pharmacogenomics and Pharmacogenetics Research Unit of the Laboratory of Experimental Oncology , IRCCS Istituto Ortopedico Rizzoli , Bologna , Italy
| | - Piero Picci
- b Laboratory of Experimental Oncology , IRCCS Istituto Ortopedico Rizzoli , Bologna , Italy
| | - Massimo Serra
- a Pharmacogenomics and Pharmacogenetics Research Unit of the Laboratory of Experimental Oncology , IRCCS Istituto Ortopedico Rizzoli , Bologna , Italy
| |
Collapse
|
35
|
Liu W, Zhou Z, Zhang Q, Rong Y, Li L, Luo Y, Wang J, Yin G, Lv C, Cai W. Overexpression of miR-1258 inhibits cell proliferation by targeting AKT3 in osteosarcoma. Biochem Biophys Res Commun 2019; 510:479-486. [PMID: 30737029 DOI: 10.1016/j.bbrc.2019.01.139] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 01/31/2019] [Indexed: 02/05/2023]
Abstract
Osteosarcoma (OS) has emerged as the most common primary musculoskeletal malignant tumor which affects children and adolescents. A growing number of relevant studies have shown that many microRNAs (miRNAs) play a vital regulatory role in the etiology of various types of cancer. miR-1258 has been widely studied in various cancers, but there have been few studies of its role in OS. In this present study, miR-1258 expression was dramatically decreased in OS tissues as well as OS cell lines. In addition, decreased expression of miR-1258 was significantly associated with malignant clinical manifestations and poor clinical prognosis of patients with OS. Moreover, upregulation of miR-1258 significantly inhibited cell proliferation as well as promoting cell cycle arrest at G0/G1. AKT3 was identified as a direct target of miR-1258 by binding to its 3'-UTR, and miR-1258 was negatively correlated with AKT3 expression in clinical OS tissues. AKT3 was evidently upregulated in OS tissues and cells and upregulation of AKT3 accelerated the progression of OS. Moreover, through a series of rescue experiments, we demonstrated that AKT3 can abolish the role of miR-1258 in suppressing proliferation as well as regulating the cell cycle in OS cells. In conclusion, our results suggest that the miR-1258-AKT3 axis may be a promising prognostic marker and therapeutic target for human OS.
Collapse
Affiliation(s)
- Wei Liu
- Department of Orthopaedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China; Department of Orthopaedics, West China Hospital Sichuan University, Chengdu, Sichuan, China
| | - Zhimin Zhou
- Department of Orthopaedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China; Department of Orthopaedics, Zhongda Hospital Southeast University, Nanjing, Jiangsu, China
| | - Qi Zhang
- Department of Orthopaedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yuluo Rong
- Department of Orthopaedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Linwei Li
- Department of Orthopaedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yongjun Luo
- Department of Orthopaedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jiaxing Wang
- Department of Orthopaedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Guoyong Yin
- Department of Orthopaedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China.
| | - Chengtang Lv
- Department of Orthopaedics, Yancheng Third People's Hospital, Yancheng, Jiangsu, China.
| | - Weihua Cai
- Department of Orthopaedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China.
| |
Collapse
|
36
|
Xu L, Wang L, Xue B, Wang S. MTHFR variant is associated with high-dose methotrexate-induced toxicity in the Chinese osteosarcoma patients. J Bone Oncol 2018; 13:143-147. [PMID: 30591868 PMCID: PMC6303521 DOI: 10.1016/j.jbo.2018.10.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 10/01/2018] [Accepted: 10/12/2018] [Indexed: 01/17/2023] Open
Abstract
Background The role of Methylene tetrahydrofolate reductase (MTHFR) C677T and A1298C polymorphisms in the efficacy and toxicity of MTX-based therapy remains uncertain. Our purpose was to clarify whether these two polymorphisms are associated with the outcome of chemotherapy in a cohort of Chinese osteosarcoma (OS) patients treated by high-dose MTX. Methods 109 OS patients who had sequentially received high-dose MTX therapy were included in this study. Plasma MTX level was measured routinely at 0, 24, 48 and 72 h after the administration of MTX. Two variants of MTHFR were genotyped using TaqMan SNP Genotyping Assay, including rs1801133 (C667T) and rs1801131 (A1298C). The extent of toxicity induced by MTX, including hematological toxicity, hepatic toxicity, renal toxicity and mucositis, was scored from grade 1 to 4. Severe toxicity was defined as a grade score of ≥3. Patients were dichotomized as follows: grade <3 or ≥3 for toxicity, and ≤0.2 µmol/L or >0.2 µmol/L for plasma MTX level at 72 h. The frequencies of genotypes and allele were compared between the dichotomized groups with the Chi-square test. Results 24.8% (27/109) of the patients were found to have significantly high plasma MTX level at the 72 h. Patients with high MTX level at 72 h were found to have significantly higher frequency of genotype TT of rs1801133 (p = 0.002). As for rs1801131, no significant association was found with plasma MTX level. Patients with severe hepatic toxicity or mucositis were found to have remarkably higher incidence of genotype TT of rs1801133 than those with mild toxicity (33.3% vs. 14.8%, p = 0.04 for hepatic toxicity; 34.8% vs. 19.8%, p = 0.05 for mucositis). Conclusions Variant rs1801133 was confirmed to have remarkable influence on the MTX-induced toxicity. We recommend identification of the genotype of MTHFR variant prior to the application of high-dose MTX to OS patients, which could be an important predictor to screen severe toxicities and thus improve treatment outcomes.
Collapse
Affiliation(s)
- Leilei Xu
- Department of Orthopedic Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Zhongshan Road 321, Nanjing 210008, China
| | - Lujun Wang
- Department of Pharmacy, The Affiliated Drum Tower Hospital of Nanjing University Medical School, China
| | - Bingchuan Xue
- Department of Orthopedic Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Zhongshan Road 321, Nanjing 210008, China
| | - Shoufeng Wang
- Department of Orthopedic Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Zhongshan Road 321, Nanjing 210008, China
| |
Collapse
|
37
|
Oleandrin synergizes with cisplatin in human osteosarcoma cells by enhancing cell apoptosis through activation of the p38 MAPK signaling pathway. Cancer Chemother Pharmacol 2018; 82:1009-1020. [PMID: 30267330 PMCID: PMC6267710 DOI: 10.1007/s00280-018-3692-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Accepted: 09/24/2018] [Indexed: 01/14/2023]
Abstract
Purpose Our previous studies have reported the antitumor effect of oleandrin on osteosarcoma; however, its chemosensitizing effect in osteosarcoma treatment is still unknown. Therefore, we explored the sensitizing effects of oleandrin to cisplatin in osteosarcoma and investigated the potential mechanisms. Methods After exposure to oleandrin and/or cisplatin, CCK-8 and colony formation assays, DAPI staining and flow cytometry were performed to detect cell proliferation and apoptosis in 143B, U-2OS and MG-63 osteosarcoma cells. The median-effect analysis was applied to evaluate the combined effect. Western blot was used to determine the expression of related proteins. Osteosarcoma xenografts and histological observations were applied to confirm the combined effect in vivo. Results Compared with cisplatin or oleandrin alone, the combined treatment significantly inhibited cell proliferation and induced cell apoptosis. The median-effect analysis indicated a synergistic cytotoxic effect. The combined treatment downregulated Bcl-2 and upregulated Bax and cleaved caspase-3, -8 and -9. And the suppression of caspases reduced cell death. Furthermore, oleandrin alone or with cisplatin, activated the p38 MAPK/Elk-1 pathway. The inhibition of the p38 MAPK pathway increased cell viability and reduced apoptosis. In vivo, the combined treatment was also verified to significantly inhibit tumor growth, induce apoptosis and activate the p38 MAPK pathway. Conclusions The combination of oleandrin with cisplatin exerts a synergistic antitumor effect in osteosarcoma, which relates to the activation of the p38 MAPK pathway.
Collapse
|
38
|
He G, Ma Y, Zhu Y, Yong L, Liu X, Wang P, Liang C, Yang C, Zhao Z, Hai B, Pan X, Liu Z, Liu X, Mao C. Cross Talk Between Autophagy and Apoptosis Contributes to ZnO Nanoparticle-Induced Human Osteosarcoma Cell Death. Adv Healthc Mater 2018; 7:e1800332. [PMID: 29900694 PMCID: PMC6310009 DOI: 10.1002/adhm.201800332] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 05/18/2018] [Indexed: 12/13/2022]
Abstract
Killing osteosarcoma cells by zinc oxide nanoparticles (NPs) and its underlying subcellular mechanism are never studied. Here, it is found that the NPs induce cross talk between apoptosis and autophagy, which leads to osteosarcoma cell death. Specifically, the NP uptake promotes autophagy by inducing accumulation of autophagosomes along with impairment of lysosomal functions. The autophagy further causes the uptaken NPs to release zinc ions by promoting their dissolution. These intracellular zinc ions, together with those that are originally released from the extracellular NPs and flowed into the cells, collectively target and damage mitochondria to produce reactive oxygen species (ROS). Then the ROS inhibit cell proliferation by arresting S phase and trigger apoptosis by extrinsic and intrinsic pathways, ultimately leading to cell death. More importantly, suppression of the early stage autophagy restores cell viability by abolishing apoptosis whereas blockade of the late stage autophagy inversely enhances apoptosis. In contrast, inhibition of apoptosis shows a limited ability to restore cell viability but obviously enhance autophagy. Notably, cell viability is strongly ameliorated by the combination of inhibitors for both the late stage autophagy and the apoptosis. These findings provide a mechanistic understanding of the NP-directed autophagy and apoptosis in osteosarcoma cells.
Collapse
Affiliation(s)
- Guanping He
- Department of Orthopedics, Peking University Third Hospital, No. 49, North Garden Street, Haidian District, Beijing 100191, China
| | - Yunlong Ma
- The Center for Pain Medicine, Peking University Third Hospital, No. 49, North Garden Street, Haidian District, Beijing 100191, China
| | - Ye Zhu
- Department of Chemistry & Biochemistry, Stephenson Life Sciences Research Center, University of Oklahoma, Norman, Oklahoma 73019, USA
| | - Lei Yong
- Department of Orthopedics, Peking University Third Hospital, No. 49, North Garden Street, Haidian District, Beijing 100191, China
| | - Xiao Liu
- Department of Orthopedics, Peking University Third Hospital, No. 49, North Garden Street, Haidian District, Beijing 100191, China
| | - Peng Wang
- Department of Orthopedics, Peking University Third Hospital, No. 49, North Garden Street, Haidian District, Beijing 100191, China
| | - Chen Liang
- Department of Orthopedics, Peking University Third Hospital, No. 49, North Garden Street, Haidian District, Beijing 100191, China
| | - Chenlong Yang
- Department of Orthopedics, Peking University Third Hospital, No. 49, North Garden Street, Haidian District, Beijing 100191, China
| | - Zhigang Zhao
- Department of Orthopedics, Peking University Third Hospital, No. 49, North Garden Street, Haidian District, Beijing 100191, China
| | - Bao Hai
- Department of Orthopedics, Peking University Third Hospital, No. 49, North Garden Street, Haidian District, Beijing 100191, China
| | - Xiaoyu Pan
- Department of Orthopedics, Peking University Third Hospital, No. 49, North Garden Street, Haidian District, Beijing 100191, China
| | - Zhongjun Liu
- Department of Orthopedics, Peking University Third Hospital, No. 49, North Garden Street, Haidian District, Beijing 100191, China
| | - Xiaoguang Liu
- Department of Orthopedics, Peking University Third Hospital, No. 49, North Garden Street, Haidian District, Beijing 100191, China
| | - Chuanbin Mao
- Department of Chemistry & Biochemistry, Stephenson Life Sciences Research Center, University of Oklahoma, Norman, Oklahoma 73019, USA
| |
Collapse
|
39
|
Ma B, Zhu J, Zhao A, Zhang J, Wang Y, Zhang H, Zhang L, Zhang Q. Raddeanin A, a natural triterpenoid saponin compound, exerts anticancer effect on human osteosarcoma via the ROS/JNK and NF-κB signal pathway. Toxicol Appl Pharmacol 2018; 353:87-101. [DOI: 10.1016/j.taap.2018.05.025] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 05/12/2018] [Accepted: 05/21/2018] [Indexed: 01/04/2023]
|
40
|
Sági JC, Egyed B, Kelemen A, Kutszegi N, Hegyi M, Gézsi A, Herlitschke MA, Rzepiel A, Fodor LE, Ottóffy G, Kovács GT, Erdélyi DJ, Szalai C, Semsei ÁF. Possible roles of genetic variations in chemotherapy related cardiotoxicity in pediatric acute lymphoblastic leukemia and osteosarcoma. BMC Cancer 2018; 18:704. [PMID: 29970035 PMCID: PMC6029426 DOI: 10.1186/s12885-018-4629-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Accepted: 06/22/2018] [Indexed: 12/26/2022] Open
Abstract
Background The treatment of acute lymphoblastic leukemia (ALL) and osteosarcoma (OSC) is very effective: the vast majority of patients recover and survive for decades. However, they still need to face serious adverse effects of chemotherapy. One of these is cardiotoxicity which may lead to progressive heart failure in the long term. Cardiotoxicity is contributed mainly to the use of anthracyclines and might have genetic risk factors. Our goal was to test the association between left ventricular function and genetic variations of candidate genes. Methods Echocardiography data from medical records of 622 pediatric ALL and 39 OSC patients were collected from the period 1989–2015. Fractional shortening (FS) and ejection fraction (EF) were determined, 70 single nucleotide polymorphisms (SNPs) in 26 genes were genotyped. Multivariate logistic regression and multi-adjusted general linear model were performed to investigate the influence of genetic polymorphisms on the left ventricular parameters. Bayesian network based Bayesian multilevel analysis of relevance (BN-BMLA) method was applied to test for the potential interaction of the studied cofactors and SNPs. Results Our results indicate that variations in ABCC2, CYP3A5, NQO1, SLC22A6 and SLC28A3 genes might influence the left ventricular parameters. CYP3A5 rs4646450 TT was 17% among ALL cases with FS lower than 28, and 3% in ALL patients without pathological FS (p = 5.60E-03; OR = 6.94 (1.76–27.39)). SLC28A3 rs7853758 AA was 12% in ALL cases population, while only 1% among controls (p = 6.50E-03; OR = 11.56 (1.98–67.45)). Patients with ABCC2 rs3740066 GG genotype had lower FS during the acute phase of therapy and 5–10 years after treatment (p = 7.38E-03, p = 7.11E-04, respectively). NQO1 rs1043470 rare T allele was associated with lower left ventricular function in the acute phase and 5–10 years after the diagnosis (p = 4.28E-03 and 5.82E-03, respectively), and SLC22A6 gene rs6591722 AA genotype was associated with lower mean FS (p = 1.71E-03), 5–10 years after the diagnosis. Conclusions Genetic variants in transporters and metabolic enzymes might modulate the individual risk to cardiac toxicity after chemotherapy. Electronic supplementary material The online version of this article (10.1186/s12885-018-4629-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Judit C Sági
- Department of Genetics, Cell- and Immunobiology, Semmelweis University, 1089 Nagyvárad tér 4., 6 em, Budapest, 611, Hungary
| | - Bálint Egyed
- Department of Genetics, Cell- and Immunobiology, Semmelweis University, 1089 Nagyvárad tér 4., 6 em, Budapest, 611, Hungary.,Second Department of Pediatrics, Semmelweis University, Tűzoltó utca 7-9, Budapest, H-1094, Hungary
| | - Andrea Kelemen
- Department of Genetics, Cell- and Immunobiology, Semmelweis University, 1089 Nagyvárad tér 4., 6 em, Budapest, 611, Hungary
| | - Nóra Kutszegi
- Department of Genetics, Cell- and Immunobiology, Semmelweis University, 1089 Nagyvárad tér 4., 6 em, Budapest, 611, Hungary.,Second Department of Pediatrics, Semmelweis University, Tűzoltó utca 7-9, Budapest, H-1094, Hungary
| | - Márta Hegyi
- Second Department of Pediatrics, Semmelweis University, Tűzoltó utca 7-9, Budapest, H-1094, Hungary
| | - András Gézsi
- Department of Genetics, Cell- and Immunobiology, Semmelweis University, 1089 Nagyvárad tér 4., 6 em, Budapest, 611, Hungary
| | - Martina Ayaka Herlitschke
- Department of Genetics, Cell- and Immunobiology, Semmelweis University, 1089 Nagyvárad tér 4., 6 em, Budapest, 611, Hungary
| | - Andrea Rzepiel
- Second Department of Pediatrics, Semmelweis University, Tűzoltó utca 7-9, Budapest, H-1094, Hungary
| | - Lili E Fodor
- Department of Genetics, Cell- and Immunobiology, Semmelweis University, 1089 Nagyvárad tér 4., 6 em, Budapest, 611, Hungary
| | - Gábor Ottóffy
- Department of Pediatrics, Oncohaematology Division, Pécs University, József Attila út 7, Pécs, H-7623, Hungary
| | - Gábor T Kovács
- Second Department of Pediatrics, Semmelweis University, Tűzoltó utca 7-9, Budapest, H-1094, Hungary
| | - Dániel J Erdélyi
- Second Department of Pediatrics, Semmelweis University, Tűzoltó utca 7-9, Budapest, H-1094, Hungary
| | - Csaba Szalai
- Department of Genetics, Cell- and Immunobiology, Semmelweis University, 1089 Nagyvárad tér 4., 6 em, Budapest, 611, Hungary.,Central Laboratory, Heim Pal Children Hospital, Üllői út 86, Budapest, H-1089, Hungary
| | - Ágnes F Semsei
- Department of Genetics, Cell- and Immunobiology, Semmelweis University, 1089 Nagyvárad tér 4., 6 em, Budapest, 611, Hungary.
| |
Collapse
|
41
|
Xu L, Xia C, Sun Q, Sheng F, Xiong J, Wang S. Variants of FasL and ABCC5 are predictive of outcome after chemotherapy-based treatment in osteosarcoma. J Bone Oncol 2018; 12:44-48. [PMID: 30065912 PMCID: PMC6066469 DOI: 10.1016/j.jbo.2018.04.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 04/08/2018] [Accepted: 04/10/2018] [Indexed: 01/04/2023] Open
Abstract
Objectives Previous pharmacogenetics studies showed that genetic variants could be indicative of the response to chemotherapy. We aimed to investigate whether variants of FasL, MSH2, ABCC5, CASP3 and CYP3A4 are associated with the outcome after chemotherapy-based treatment in osteosarcoma. Methods 132 osteosarcoma patients who had completed the neoadjuvant chemotherapy in our center were included. 5-year progression-free survival (PFS) was assessed from the initial treatment to the earliest sign of disease progression or death from any cause. 5 SNPs were genotyped using TaqMan SNP Genotyping Assay, including rs763110 of FasL, rs4638843 of MSH2, rs939338 of ABCC5, rs2720376 of CASP3 and rs4646437 of CYP3A4. Patients were classified into two groups according to the 5-year PFS (event/no event). The chi-square test was used to analyze difference of genotype frequency. Logistic regression analysis was used to determine the independent predictors of the PFS rate. Results The overall 5-year PFS was 61.4% (81/132). Genotype TT/CT of rs763110 and genotype GG/AG of rs939338 were significantly associated with the event of 5-year PFS (p = 0.028 for rs763110; p = 0.039 for rs939338). Patients with no risk allele showed a 5-year PFS of 73.7% (42/57), which was significantly higher than a PFS of 54.2% (26/48) for patients with one risk allele and 48.1% (13/27) for patients with two different risk alleles (p = 0.03). Logistic regression analysis showed that allele T of FasL rs763110 and allele G of ABCC5 rs939338 were independent risk factors of the 5-year PFS. The ORs were 2.14 (95%CI = 1.13–3.35, p = 0.01) for rs763110 and 1.73 (95%CI = 1.05–2.52, p = 0.03) for rs939338, respectively. Conclusions The association of variants of FASL and ABCC5 with survival outcome after chemotherapy was validated in patients with osteosarcoma. Our findings may provide a new insight into a more personalized treatment for patients with osteosarcoma.
Collapse
Affiliation(s)
- Leilei Xu
- Department of Orthopedic Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Zhongshan Road 321, Nanjing 210008, China
| | - Chao Xia
- Department of Orthopedic Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Zhongshan Road 321, Nanjing 210008, China
| | - Qi Sun
- Department of Pathology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, China
| | - Fei Sheng
- Department of Orthopedic Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Zhongshan Road 321, Nanjing 210008, China
| | - Jin Xiong
- Department of Orthopedic Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Zhongshan Road 321, Nanjing 210008, China
| | - Shoufeng Wang
- Department of Orthopedic Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Zhongshan Road 321, Nanjing 210008, China
| |
Collapse
|
42
|
Identification of Key Genes and miRNAs in Osteosarcoma Patients with Chemoresistance by Bioinformatics Analysis. BIOMED RESEARCH INTERNATIONAL 2018; 2018:4761064. [PMID: 29850522 PMCID: PMC5937522 DOI: 10.1155/2018/4761064] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Revised: 02/21/2018] [Accepted: 03/04/2018] [Indexed: 12/20/2022]
Abstract
Chemoresistance is a significant factor associated with poor outcomes of osteosarcoma patients. The present study aims to identify Chemoresistance-regulated gene signatures and microRNAs (miRNAs) in Gene Expression Omnibus (GEO) database. The results of Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) included positive regulation of transcription, DNA-templated, tryptophan metabolism, and the like. Then differentially expressed genes (DEGs) were uploaded to Search Tool for the Retrieval of Interacting Genes (STRING) to construct protein-protein interaction (PPI) networks, and 9 hub genes were screened, such as fucosyltransferase 3 (Lewis blood group) (FUT3) whose expression in chemoresistant samples was high, but with a better prognosis in osteosarcoma patients. Furthermore, the connection between DEGs and differentially expressed miRNAs (DEMs) was explored. GEO2R was utilized to screen out DEGs and DEMs. A total of 668 DEGs and 5 DEMs were extracted from GSE7437 and GSE30934 differentiating samples of poor and good chemotherapy reaction patients. The Database for Annotation, Visualization, and Integrated Discovery (DAVID) was used to perform GO and KEGG pathway enrichment analysis to identify potential pathways and functional annotations linked with osteosarcoma chemoresistance. The present study may provide a deeper understanding about regulatory genes of osteosarcoma chemoresistance and identify potential therapeutic targets for osteosarcoma.
Collapse
|
43
|
Koster R, Panagiotou OA, Wheeler WA, Karlins E, Gastier-Foster JM, de Toledo SRC, Petrilli AS, Flanagan AM, Tirabosco R, Andrulis IL, Wunder JS, Gokgoz N, Patiño-Garcia A, Lecanda F, Serra M, Hattinger C, Picci P, Scotlandi K, Thomas DM, Ballinger ML, Gorlick R, Barkauskas DA, Spector LG, Tucker M, Hicks BD, Yeager M, Hoover RN, Wacholder S, Chanock SJ, Savage SA, Mirabello L. Genome-wide association study identifies the GLDC/IL33 locus associated with survival of osteosarcoma patients. Int J Cancer 2018; 142:1594-1601. [PMID: 29210060 PMCID: PMC5814322 DOI: 10.1002/ijc.31195] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Accepted: 11/13/2017] [Indexed: 12/31/2022]
Abstract
Survival rates for osteosarcoma, the most common primary bone cancer, have changed little over the past three decades and are particularly low for patients with metastatic disease. We conducted a multi-institutional genome-wide association study (GWAS) to identify germline genetic variants associated with overall survival in 632 patients with osteosarcoma, including 523 patients of European ancestry and 109 from Brazil. We conducted a time-to-event analysis and estimated hazard ratios (HR) and 95% confidence intervals (CI) using Cox proportional hazards models, with and without adjustment for metastatic disease. The results were combined across the European and Brazilian case sets using a random-effects meta-analysis. The strongest association after meta-analysis was for rs3765555 at 9p24.1, which was inversely associated with overall survival (HR = 1.76; 95% CI 1.41-2.18, p = 4.84 × 10-7 ). After imputation across this region, the combined analysis identified two SNPs that reached genome-wide significance. The strongest single association was with rs55933544 (HR = 1.9; 95% CI 1.5-2.4; p = 1.3 × 10-8 ), which localizes to the GLDC gene, adjacent to the IL33 gene and was consistent across both the European and Brazilian case sets. Using publicly available data, the risk allele was associated with lower expression of IL33 and low expression of IL33 was associated with poor survival in an independent set of patients with osteosarcoma. In conclusion, we have identified the GLDC/IL33 locus on chromosome 9p24.1 as associated with overall survival in patients with osteosarcoma. Further studies are needed to confirm this association and shed light on the biological underpinnings of this susceptibility locus.
Collapse
Affiliation(s)
- Roelof Koster
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Orestis A. Panagiotou
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | | | - Eric Karlins
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
- Cancer Genomics Research Laboratory, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Julie M. Gastier-Foster
- Nationwide Children’s Hospital, and The Ohio State University Department of Pathology and Pediatrics, Columbus, OH, USA
| | | | - Antonio S. Petrilli
- Laboratorio de Genética, Pediatric Oncology Institute, GRAACC/UNIFESP, São Paulo, Brazil
| | - Adrienne M. Flanagan
- UCL Cancer Institute, Huntley Street, London, UK
- Royal National Orthopaedic Hospital NHS Trust, Stanmore, Middlesex, UK
| | - Roberto Tirabosco
- Royal National Orthopaedic Hospital NHS Trust, Stanmore, Middlesex, UK
| | - Irene L. Andrulis
- Litwin Centre for Cancer Genetics, Samuel Lunenfeld Research Institute, Mount Sinai Hospital, University of Toronto, Toronto, Ontario, Canada
| | - Jay S. Wunder
- Litwin Centre for Cancer Genetics, Samuel Lunenfeld Research Institute, Mount Sinai Hospital, University of Toronto, Toronto, Ontario, Canada
| | - Nalan Gokgoz
- Litwin Centre for Cancer Genetics, Samuel Lunenfeld Research Institute, Mount Sinai Hospital, University of Toronto, Toronto, Ontario, Canada
| | - Ana Patiño-Garcia
- Department of Pediatrics, University Clinic of Navarra, Universidad de Navarra, Pamplona, Spain
| | - Fernando Lecanda
- Department of Pediatrics, University Clinic of Navarra, Universidad de Navarra, Pamplona, Spain
| | - Massimo Serra
- Laboratory of Experimental Oncology, Orthopaedic Rizzoli Institute, Bologna, Italy
| | - Claudia Hattinger
- Laboratory of Experimental Oncology, Orthopaedic Rizzoli Institute, Bologna, Italy
| | - Piero Picci
- Laboratory of Experimental Oncology, Orthopaedic Rizzoli Institute, Bologna, Italy
| | - Katia Scotlandi
- Laboratory of Experimental Oncology, Orthopaedic Rizzoli Institute, Bologna, Italy
| | - David M. Thomas
- The Kinghorn Cancer Centre, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia
| | - Mandy L. Ballinger
- The Kinghorn Cancer Centre, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia
| | - Richard Gorlick
- Albert Einstein College of Medicine, The Children’s Hospital at Montefiore, New York, NY, USA
| | - Donald A. Barkauskas
- Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Logan G. Spector
- Department of Pediatrics, University of Minnesota Minneapolis, MN, 55455, USA
| | - Margaret Tucker
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Belynda D. Hicks
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
- Cancer Genomics Research Laboratory, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Meredith Yeager
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
- Cancer Genomics Research Laboratory, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Robert N. Hoover
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Sholom Wacholder
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Stephen J. Chanock
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Sharon A. Savage
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Lisa Mirabello
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
44
|
Meng Q, Dai M, Nie X, Zhang W, Xu X, Li J, Mu H, Liu X, Qin L, Zhu X, Yan J, Zheng M. MicroRNA-19 contributes to the malignant phenotypes of osteosarcoma in vitro by targeting Pax6. Tumour Biol 2018; 40:1010428317744704. [PMID: 29345189 DOI: 10.1177/1010428317744704] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
This study was conducted to detect the expression of miR-19 and Pax6 (Paired box protein 6) in human osteosarcoma cells and the effects on biological characteristics of osteosarcoma cells. Quantitative real-time polymerase chain reaction was used to detect the expression of Pax6 and miR-19 in normal human osteoblasts (hFOB 1.19) and osteosarcoma cell lines (U2OS, Saos-2, and MG-63). Results showed that miR-19 was significantly upregulated in osteosarcoma cell lines compared with that in hFOB 1.19 cells, while the expression of Pax6 messenger RNA was significantly downregulated. Pax6 was defined as the target gene of miR-19 which was validated by luciferase reporter gene analysis. Results indicated that miR-19 had an interaction with Pax6 3'-untranslated region. At the same time, the protein expression of Pax6 was significantly decreased in the MG-63 cells transfected with miR-19 mimic and was notably enhanced in osteosarcoma MG-63 cells transfected with miR-19 inhibitor. These data suggested that Pax6 was a target of miR-19 in osteosarcoma MG-63 cells. The effects of miR-19 on the biological behavior of MG-63 cells were determined by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide, flow cytometry, and Transwell assay. Results showed that the downregulation of miR-19 inhibited cell viability, reduced the percentage of cells in S phase and the number of cells passing through the Transwell chamber, and increased the number of apoptotic cells. Western blot analysis showed that the inhibition of miR-19 significantly increased the expression of epithelial proteins (E-cadherin and β-catenin) and decreased the expression of mesenchymal protein (Vimentin), extracellular signal-regulated kinase, and phosphorylated extracellular signal-regulated kinase in MG-63 cells. MiR-19 inhibitor and Pax6 small interfering RNA were simultaneously transfected into MG-63 cells. Results from 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide, flow cytometry, and Transwell assay demonstrated that the inhibition of Pax6 expression in MG-63 cells could reverse the cell biological effects induced by the inhibition of miR-19 expression. Based on these findings, it was suggested that miR-19, upregulated in osteosarcoma cells, negatively regulated the expression of Pax6, which can promote the malignant phenotypes of osteosarcoma cells via activation of the extracellular signal-regulated kinase signaling pathways. Therefore, miR-19/Pax6 may offer potential for use as a target for the treatment of osteosarcoma.
Collapse
Affiliation(s)
- Qingbing Meng
- 1 Orthopedics Department, Yancheng City No. 1 People's Hospital, Yancheng, P.R. China
| | - Ming Dai
- 2 Department of Medical Laboratory, School of Public Health, Nantong University, Nantong, P.R. China
| | - Xuejun Nie
- 3 Department of Ultrasound, Affiliated Hospital of Nantong University, Nantong, P.R. China
| | - Wensheng Zhang
- 1 Orthopedics Department, Yancheng City No. 1 People's Hospital, Yancheng, P.R. China
| | - Xingli Xu
- 1 Orthopedics Department, Yancheng City No. 1 People's Hospital, Yancheng, P.R. China
| | - Jian Li
- 1 Orthopedics Department, Yancheng City No. 1 People's Hospital, Yancheng, P.R. China
| | - Hongxin Mu
- 1 Orthopedics Department, Yancheng City No. 1 People's Hospital, Yancheng, P.R. China
| | - Xiaolan Liu
- 1 Orthopedics Department, Yancheng City No. 1 People's Hospital, Yancheng, P.R. China
| | - Ling Qin
- 1 Orthopedics Department, Yancheng City No. 1 People's Hospital, Yancheng, P.R. China
| | - Xiaoqi Zhu
- 1 Orthopedics Department, Yancheng City No. 1 People's Hospital, Yancheng, P.R. China
| | - Jun Yan
- 1 Orthopedics Department, Yancheng City No. 1 People's Hospital, Yancheng, P.R. China
| | - Minqian Zheng
- 1 Orthopedics Department, Yancheng City No. 1 People's Hospital, Yancheng, P.R. China
| |
Collapse
|
45
|
Li Y, Wu Y. MiR-200-3p inhibits tumor cell proliferation and induces apoptosis by upregulation of FOXO1 in osteosarcoma cells. Mol Cell Toxicol 2018. [DOI: 10.1007/s13273-018-0009-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
46
|
Simpson S, Dunning MD, de Brot S, Grau-Roma L, Mongan NP, Rutland CS. Comparative review of human and canine osteosarcoma: morphology, epidemiology, prognosis, treatment and genetics. Acta Vet Scand 2017; 59:71. [PMID: 29065898 PMCID: PMC5655853 DOI: 10.1186/s13028-017-0341-9] [Citation(s) in RCA: 189] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Accepted: 10/18/2017] [Indexed: 01/09/2023] Open
Abstract
Osteosarcoma (OSA) is a rare cancer in people. However OSA incidence rates in dogs are 27 times higher than in people. Prognosis in both species is relatively poor, with 5 year OSA survival rates in people not having improved in decades. For dogs, 1 year survival rates are only around ~ 45%. Improved and novel treatment regimens are urgently required to improve survival in both humans and dogs with OSA. Utilising information from genetic studies could assist in this in both species, with the higher incidence rates in dogs contributing to the dog population being a good model of human disease. This review compares the clinical characteristics, gross morphology and histopathology, aetiology, epidemiology, and genetics of canine and human OSA. Finally, the current position of canine OSA genetic research is discussed and areas for additional work within the canine population are identified.
Collapse
|
47
|
miR-216a inhibits osteosarcoma cell proliferation, invasion and metastasis by targeting CDK14. Cell Death Dis 2017; 8:e3103. [PMID: 29022909 PMCID: PMC5682665 DOI: 10.1038/cddis.2017.499] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Revised: 07/18/2017] [Accepted: 08/31/2017] [Indexed: 02/08/2023]
Abstract
Osteosarcoma (OS) has emerged as the most common primary musculoskeletal malignant tumour affecting children and young adults. Cyclin-dependent kinases (CDKs) are closely associated with gene regulation in tumour biology. Accumulating evidence indicates that the aberrant function of CDK14 is involved in a broad spectrum of diseases and is associated with clinical outcomes. MicroRNAs (miRNAs) are crucial epigenetic regulators in the development of OS. However, the essential role of CDK14 and the molecular mechanisms by which miRNAs regulate CDK14 in the oncogenesis and progression of OS have not been fully elucidated. Here we found that CDK14 expression was closely associated with poor prognosis and overall survival of OS patients. Using dual-luciferase reporter assays, we also found that miR-216a inhibits CDK14 expression by binding to the 3′-untranslated region of CDK14. Overexpression of miR-216a significantly suppressed cell proliferation, migration and invasion in vivo and in vitro by inhibiting CDK14 production. Overexpression of CDK14 in the miR-216a-transfected OS cells effectively rescued the suppression of cell proliferation, migration and invasion caused by miR-216a. In addition, Kaplan–Meier analysis indicated that miR-216a expression predicted favourable clinical outcomes for OS patients. Moreover, miR-216a expression was downregulated in OS patients and was negatively associated with CDK14 expression. Overall, these data highlight the role of the miR-216a/CDK14 axis as a novel pleiotropic modulator and demonstrate the associated molecular mechanisms, thus suggesting the intriguing possibility that miR-216a activation and CDK14 inhibition may be novel and attractive therapeutic strategies for treating OS patients.
Collapse
|
48
|
Zhu J, Yu W, Liu B, Wang Y, Shao J, Wang J, Xia K, Liang C, Fang W, Zhou C, Tao H. Escin induces caspase-dependent apoptosis and autophagy through the ROS/p38 MAPK signalling pathway in human osteosarcoma cells in vitro and in vivo. Cell Death Dis 2017; 8:e3113. [PMID: 29022891 PMCID: PMC5682655 DOI: 10.1038/cddis.2017.488] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Revised: 08/05/2017] [Accepted: 08/09/2017] [Indexed: 02/06/2023]
Abstract
Osteosarcoma is one of the most malignant neoplasms in adolescents, and it generally develops multidrug resistance. Escin, a natural mixture of triterpene saponins isolated from Aesculus hippocastanum (horse chestnut), has demonstrated potent anti-tumour potential in vitro and in vivo. In the present study, we found that escin inhibited osteosarcoma proliferation in a dose- and time-dependent manner. Additionally, escin-induced apoptosis was evidenced by the increased expression of caspase-related proteins and the formation of apoptotic bodies. Escin also induced autophagy, with elevated LC3, ATG5, ATG12 and Beclin expression as well as autophagosome formation. Inhibition of escin-induced autophagy promoted apoptosis. Moreover, p38 mitogen-activated protein kinases (MAPKs) and reactive oxygen species (ROS) were activated by escin. A p38 MAPK inhibitor partially attenuated the autophagy and apoptosis triggered by escin, but a ROS scavenger showed a greater inhibitory effect. Finally, the therapeutic efficacy of escin against osteosarcoma was demonstrated in an orthotopic model. Overall, escin counteracted osteosarcoma by inducing autophagy and apoptosis via the activation of the ROS/p38 MAPK signalling pathway; these findings provide evidence for escin as a novel and potent therapeutic for the treatment of osteosarcoma.
Collapse
Affiliation(s)
- Jian Zhu
- Department of Orthopedics, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, #88 Jie Fang Road, Hangzhou, Zhejiang 310009, PR China.,Orthopedics Research Institute of Zhejiang University, #88, Jiefang Road, Hangzhou 310009, PR China
| | - Wei Yu
- Department of Orthopedics, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, #88 Jie Fang Road, Hangzhou, Zhejiang 310009, PR China.,Orthopedics Research Institute of Zhejiang University, #88, Jiefang Road, Hangzhou 310009, PR China
| | - Bing Liu
- Department of Orthopedics, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, #88 Jie Fang Road, Hangzhou, Zhejiang 310009, PR China.,Orthopedics Research Institute of Zhejiang University, #88, Jiefang Road, Hangzhou 310009, PR China
| | - Yitian Wang
- Department of Orthopedics, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, #88 Jie Fang Road, Hangzhou, Zhejiang 310009, PR China.,Orthopedics Research Institute of Zhejiang University, #88, Jiefang Road, Hangzhou 310009, PR China
| | - Jianlin Shao
- La Jolla Institute for Allergy and Immunology, La Jolla, CA, USA
| | - Junjie Wang
- Department of Orthopedics, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, #88 Jie Fang Road, Hangzhou, Zhejiang 310009, PR China.,Orthopedics Research Institute of Zhejiang University, #88, Jiefang Road, Hangzhou 310009, PR China
| | - Kaishun Xia
- Department of Orthopedics, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, #88 Jie Fang Road, Hangzhou, Zhejiang 310009, PR China.,Orthopedics Research Institute of Zhejiang University, #88, Jiefang Road, Hangzhou 310009, PR China
| | - Chengzhen Liang
- Department of Orthopedics, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, #88 Jie Fang Road, Hangzhou, Zhejiang 310009, PR China.,Orthopedics Research Institute of Zhejiang University, #88, Jiefang Road, Hangzhou 310009, PR China
| | - Weijing Fang
- Department of Orthopedics, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, #88 Jie Fang Road, Hangzhou, Zhejiang 310009, PR China.,Orthopedics Research Institute of Zhejiang University, #88, Jiefang Road, Hangzhou 310009, PR China
| | - Chenhe Zhou
- Department of Orthopedics, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, #88 Jie Fang Road, Hangzhou, Zhejiang 310009, PR China.,Orthopedics Research Institute of Zhejiang University, #88, Jiefang Road, Hangzhou 310009, PR China
| | - Huimin Tao
- Department of Orthopedics, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, #88 Jie Fang Road, Hangzhou, Zhejiang 310009, PR China.,Orthopedics Research Institute of Zhejiang University, #88, Jiefang Road, Hangzhou 310009, PR China
| |
Collapse
|
49
|
Gianferante DM, Mirabello L, Savage SA. Germline and somatic genetics of osteosarcoma - connecting aetiology, biology and therapy. Nat Rev Endocrinol 2017; 13:480-491. [PMID: 28338660 DOI: 10.1038/nrendo.2017.16] [Citation(s) in RCA: 299] [Impact Index Per Article: 42.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Clinical outcomes and treatment modalities for osteosarcoma, the most common primary cancer of bone, have changed very little over the past 30 years. The peak incidence of osteosarcoma occurs during the adolescent growth spurt, which suggests that bone growth and pubertal hormones are important in the aetiology of the disease. Tall stature, high birth weight and certain inherited cancer predisposition syndromes are well-described risk factors for osteosarcoma. Common genetic variants are also associated with osteosarcoma. The somatic genome of osteosarcoma is highly aneuploid, exhibits extensive intratumoural heterogeneity and has a higher mutation rate than most other paediatric cancers. Complex pathways related to bone growth and development and tumorigenesis are also important in osteosarcoma biology. In this Review, we discuss the contributions of germline and somatic genetics, tumour biology and animal models in improving our understanding of osteosarcoma aetiology, and their potential to identify novel therapeutic targets and thus improve the lives of patients with osteosarcoma.
Collapse
Affiliation(s)
- D Matthew Gianferante
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, 9609 Medical Center Drive, Bethesda, Maryland 20892, USA
| | - Lisa Mirabello
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, 9609 Medical Center Drive, Bethesda, Maryland 20892, USA
| | - Sharon A Savage
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, 9609 Medical Center Drive, Bethesda, Maryland 20892, USA
| |
Collapse
|
50
|
Ding L, Li R, Han X, Zhou Y, Zhang H, Cui Y, Wang W, Bai J. Inhibition of Skp2 suppresses the proliferation and invasion of osteosarcoma cells. Oncol Rep 2017. [PMID: 28627672 DOI: 10.3892/or.2017.5713] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Osteosarcoma (OS) is a common bone tumor that mainly affects children and young adults. S-phase kinase‑associated protein 2 (Skp2) has been characterized to play a critical oncogenic role in a variety of human malignancies. However, the biological function of Skp2 in OS remains largely obscure. In the present study, we elucidated the role of Skp2 in cell growth, cell cycle, apoptosis and migration in OS cells. We found that depletion of Skp2 inhibited cell growth in both MG-63 and SW 1353 cells. Moreover, we observed that depletion of Skp2 triggered cell apoptosis in two OS cell lines. Furthermore, downregulation of Skp2 induced cell cycle arrest in the G0/G1 phase in OS cells. Notably, our wound healing assay results revealed that inhibition of Skp2 suppressed cell migration in OS cells. Invariably, our western blot results demonstrated that depletion of Skp2 in OS cells inhibited activation of pAkt and increased p27 expression in OS cells, suggesting that Skp2 exerted its oncogenic function partly through the regulation of Akt and p27. Our findings revealed that targeting Skp2 could be a promising therapeutic strategy for the treatment of OS.
Collapse
Affiliation(s)
- Lu Ding
- Department of Orthopedics, Tumor Hospital Affiliated to Xinjiang Medical University, Xinshi, Urumqi, Xinjiang 830000, P.R. China
| | - Rong Li
- Department of Maternal, Child and Adolescent Health, College of Public Health, Xinjiang Medical University, Xinshi, Urumqi, Xinjiang 830000, P.R. China
| | - Xiaoping Han
- Department of Orthopedics, Fifth Affiliated Hospital, Xinjiang Medical University, Xinshi, Urumqi, Xinjiang 830000, P.R. China
| | - Yubo Zhou
- Department of Orthopedics, Traditional Chinese Medicine Hospital Affiliated to Xinjiang Medical University, Xinshi, Urumqi, Xinjiang, P.R. China
| | - Hua Zhang
- Department of Orthopedics, Fifth Affiliated Hospital, Xinjiang Medical University, Xinshi, Urumqi, Xinjiang 830000, P.R. China
| | - Yong Cui
- Department of Orthopedics, Fifth Affiliated Hospital, Xinjiang Medical University, Xinshi, Urumqi, Xinjiang 830000, P.R. China
| | - Wu Wang
- Department of Orthopedics, Fifth Affiliated Hospital, Xinjiang Medical University, Xinshi, Urumqi, Xinjiang 830000, P.R. China
| | - Jingping Bai
- Department of Orthopedics, Tumor Hospital Affiliated to Xinjiang Medical University, Xinshi, Urumqi, Xinjiang 830000, P.R. China
| |
Collapse
|