1
|
Ewell SM, Burton H, Mochona B. In Silico Screening of 1,3,4-Thiadiazole Derivatives as Inhibitors of Vascular Endothelial Growth Factor Receptor-2 (VEGFR-2). Curr Issues Mol Biol 2024; 46:11220-11235. [PMID: 39451546 PMCID: PMC11505934 DOI: 10.3390/cimb46100666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 08/30/2024] [Accepted: 10/02/2024] [Indexed: 10/26/2024] Open
Abstract
Angiogenesis plays a pivotal role in the growth, survival, and metastasis of solid tumors, with Vascular Endothelial Growth Factor Receptor-2 (VEGFR-2) being overexpressed in many human solid tumors, making it an appealing target for anti-cancer therapies. This study aimed to identify potential lead compounds with azole moiety exhibiting VEGFR-2 inhibitory effects. A ligand-based pharmacophore model was constructed using the X-ray crystallographic structure of VEGFR-2 complexed with tivozanib (PDB ID: 4ASE) to screen the ZINC15 database. Following virtual screening, six compounds demonstrated promising docking scores and drug-likeness comparable to tivozanib. These hits underwent detailed pharmacokinetic analysis to assess their absorption, distribution, metabolism, excretion, and toxicity (ADMET) properties. Furthermore, Density Functional Theory (DFT) analysis was employed to investigate the molecular orbital properties of the top hits from molecular docking. Molecular dynamics (MD) simulations were conducted to evaluate the conformational stability of the complexes over a 100 ns run. Results indicated that the compounds (ZINC8914312, ZINC8739578, ZINC8927502, and ZINC17138581) exhibited the most promising lead requirements for inhibiting VEGFR-2 and suppressing angiogenesis in cancer therapy. This integrated approach, combining pharmacophore modeling, molecular docking, ADMET studies, DFT analysis, and MD simulations, provides valuable insights into the identification of potential anti-cancer agents targeting VEGFR-2.
Collapse
Affiliation(s)
- Steven M. Ewell
- Department of Chemistry, Florida A&M University, Tallahassee, FL 32307, USA;
| | - Hannah Burton
- College of Pharmacy and Pharmaceutical Sciences, Institute of Public Health, Florida A&M University, Tallahassee, FL 32307, USA
| | - Bereket Mochona
- Department of Chemistry, Florida A&M University, Tallahassee, FL 32307, USA;
| |
Collapse
|
2
|
Liu C, Kuang S, Huang T, Wu J, Zhang L, Gong X. Radiotherapy plus temozolomide with or without anlotinib in H3K27M-mutant diffuse midline glioma: A retrospective cohort study. CNS Neurosci Ther 2024; 30:e14730. [PMID: 38644565 PMCID: PMC11033330 DOI: 10.1111/cns.14730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 03/16/2024] [Accepted: 03/31/2024] [Indexed: 04/23/2024] Open
Abstract
BACKGROUND Besides the hallmark of H3K27M mutation, aberrant amplifications of receptor tyrosine kinases (RTKs) are commonly observed in diffuse midline glioma (DMG), a highly malignant brain tumor with dismal prognosis. Here, we intended to evaluate the efficacy and safety of a multitarget RTK inhibitor anlotinib in patients with H3K27M-DMG. METHODS A total of 40 newly diagnosed H3K27M-DMG patients including 15 with anlotinib and 25 without anlotinib treatment were retrospectively enrolled in this cohort. Progression-free survival (PFS), overall survival (OS), and toxicities were assessed and compared. RESULTS The median PFS and OS of all patients in this cohort were 8.5 months (95% CI, 6.5-11.3) and 15.5 months (95% CI, 12.6-17.1), respectively. According to the Response Assessment in Neuro-Oncology (RANO) criteria, the disease control rate in the anlotinib group [93.3%, 95% confidence interval (CI), 70.2-98.8] was significantly higher than those without anlotinib (64%, 95% CI: 40.5-79.8, p = 0.039). The median PFS of patients with and without anlotinib was 11.6 months (95% CI, 7.8-14.3) and 6.4 months (95% CI, 4.3-10.3), respectively. Both the median PFS and OS of DMG patients treated with anlotinib were longer than those without anlotinib in the infratentorial patients (PFS: 10.3 vs. 5.4 months, p = 0.006; OS: 16.6 vs. 8.7 months, p = 0.016). Multivariate analysis also indicated anlotinib (HR: 0.243, 95% CI: 0.066-0.896, p = 0.034) was an independent prognosticator for longer OS in the infratentorial subgroup. In addition, the adverse events of anlotinib administration were tolerable in the whole cohort. CONCLUSIONS This study first reported that anlotinib combined with Stupp regimen is a safe and feasible regimen for newly diagnosed patients with H3K27M-DMG. Further, anlotinib showed significant efficacy for H3K27M-DMG located in the infratentorial region.
Collapse
Affiliation(s)
- Chao Liu
- Department of OncologyXiangya Hospital, Central South UniversityChangshaChina
| | - Shuwen Kuang
- Department of OncologyXiangya Hospital, Central South UniversityChangshaChina
| | - Tianxiang Huang
- Department of NeurosurgeryXiangya Hospital, Central South UniversityChangshaChina
| | - Jun Wu
- Department of NeurosurgeryXiangya Hospital, Central South UniversityChangshaChina
| | - Longbo Zhang
- Department of NeurosurgeryXiangya Hospital, Central South UniversityChangshaChina
| | - Xuan Gong
- Department of NeurosurgeryXiangya Hospital, Central South UniversityChangshaChina
| |
Collapse
|
3
|
Taruneshwar Jha K, Shome A, Chahat, Chawla PA. Recent advances in nitrogen-containing heterocyclic compounds as receptor tyrosine kinase inhibitors for the treatment of cancer: Biological activity and structural activity relationship. Bioorg Chem 2023; 138:106680. [PMID: 37336103 DOI: 10.1016/j.bioorg.2023.106680] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/04/2023] [Accepted: 06/12/2023] [Indexed: 06/21/2023]
Abstract
Erratic cell proliferation is the initial symptom of cancer, which can eventually metastasize to other organs. Before cancer becomes metastatic, its spread is triggered by pro-angiogenic factors including vascular endothelial growth factor receptor (VEGFR), epidermal growth factor receptor (EGFR), Platelet-derived growth factor receptor (PDGFR), fibroblast growth factor receptor (FGFR) and Platelet Factor (PF4), all of which are part of receptor tyrosine kinase (RTK) family. Receptor tyrosine kinases (RTKs) are cell-surface proteins and aresignaling enzymes that transfer ATP-phosphate to tyrosine residue substrates. Important biological processes like proliferation, differentiation, motility, and cell-cycle regulation are all possessedby these proteins. Unusual RTK expression is typically associated with cell growth abnormalities, which is linked to tumor acquisition, angiogenesis, and cancer progression. In addition to the already available medications, numerous other heterocyclic are being studied for their potential action against a variety of cancers. In the fight against cancer, in particular, these heterocycles have been used for their dynamic core scaffold and their inherent adaptability. In this review article, we have compiled last five years research work including nitrogen containing heterocycles that have targeted RTK. Herein, the SAR and activity of various compounds containing diverse heterocyclic (pyrimidine, indole, pyridine, pyrazole, benzimidazole, and pyrrole) scaffolds are discussed, and they may prove useful in the future for designing new leads against RTKs. Our focus in this manuscript is to comprehensively review the latest research on the biological activity and structural activity relationship of nitrogen compounds as RTK inhibitors. We believe that this may be an important contribution to the field, as it can help guide future research efforts and facilitate the development of more effective cancer therapies.
Collapse
Affiliation(s)
- Keshav Taruneshwar Jha
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Ghal Kalan, G.T Road, Moga, Punjab 142001, India
| | - Abhimannu Shome
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Ghal Kalan, G.T Road, Moga, Punjab 142001, India
| | - Chahat
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Ghal Kalan, G.T Road, Moga, Punjab 142001, India
| | - Pooja A Chawla
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Ghal Kalan, G.T Road, Moga, Punjab 142001, India.
| |
Collapse
|
4
|
Yadav N, Babu D, Madigubba S, Panigrahi M, Phanithi PB. Tyrphostin A9 attenuates glioblastoma growth by suppressing PYK2/EGFR-ERK signaling pathway. J Neurooncol 2023; 163:675-692. [PMID: 37415005 DOI: 10.1007/s11060-023-04383-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 06/24/2023] [Indexed: 07/08/2023]
Abstract
PURPOSE Glioblastoma (GBM) is a fatal primary brain tumor with extremely poor clinical outcomes. The anticancer efficiency of tyrosine kinase inhibitors (TKIs) has been shown in GBM and other cancer, with limited therapeutic outcomes. In the current study, we aimed to investigate the clinical impact of active proline-rich tyrosine kinase-2 (PYK2) and epidermal growth factor receptor (EGFR) in GBM and evaluate its druggability by a synthetic TKI-Tyrphostin A9 (TYR A9). METHODS The expression profile of PYK2 and EGFR in astrocytoma biopsies (n = 48) and GBM cell lines were evaluated through quantitative PCR, western blots, and immunohistochemistry. The clinical association of phospho-PYK2 and EGFR was analyzed with various clinicopathological features and the Kaplan-Meier survival curve. The phospho-PYK2 and EGFR druggability and subsequent anticancer efficacy of TYR A9 was evaluated in GBM cell lines and intracranial C6 glioma model. RESULTS Our expression data revealed an increased phospho-PYK2, and EGFR expression aggravates astrocytoma malignancy and is associated with patients' poor survival. The mRNA and protein correlation analysis showed a positive association between phospho-PYK2 and EGFR in GBM tissues. The in-vitro studies demonstrated that TYR A9 reduced GBM cell growth, cell migration, and induced apoptosis by attenuating PYK2/EGFR-ERK signaling. The in-vivo data showed TYR A9 treatment dramatically reduced glioma growth with augmented animal survival by repressing PYK2/EGFR-ERK signaling. CONCLUSION Altogether, this study report that increased phospho-PYK2 and EGFR expression in astrocytoma was associated with poor prognosis. The in-vitro and in-vivo evidence underlined translational implication of TYR A9 by suppressing PYK2/EGFR-ERK modulated signaling pathway. The schematic diagram displayed proof of concept of the current study indicating activated PYK2 either through the Ca2+/Calmodulin-dependent protein kinase II (CAMKII) signaling pathway or autophosphorylation at Tyr402 induces association to the SH2 domain of c-Src that leads to c-Src activation. Activated c-Src in turn activates PYK2 at other tyrosine residues that recruit Grb2/SOS complex and trigger ERK½ activation. Besides, PYK2 interaction with c-Src acts as an upstream of EGFR transactivator that can activate the ERK½ signaling pathway, which induces cell proliferation and cell survival by increasing anti-apoptotic proteins or inhibiting pro-apoptotic proteins. TYR A9 treatment attenuate GBM cell proliferation and migration; and induce GBM cell death by inhibiting PYK2 and EGFR-induced ERK activation.
Collapse
Affiliation(s)
- Neera Yadav
- Neuroscience Laboratory, Department of Biotechnology and Bioinformatics, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana, 500 046, India
| | - Deepak Babu
- Neuroscience Laboratory, Department of Biotechnology and Bioinformatics, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana, 500 046, India
| | - Sailaja Madigubba
- Department of Laboratory Medicine, Krishna Institute of Medical Sciences, Secunderabad, Telangana, 500 003, India
| | - Manas Panigrahi
- Department of Neurosurgery, Krishna Institute of Medical Sciences, Secunderabad, Telangana, 500 003, India
| | - Prakash Babu Phanithi
- Neuroscience Laboratory, Department of Biotechnology and Bioinformatics School of Life Sciences, University of Hyderabad, Room No: F-23/F-71, Hyderabad, Telangana, 500 046, India.
| |
Collapse
|
5
|
Shabbir A, Kojadinovic A, Shafiq T, Mundi PS. Targeting RET alterations in cancer: Recent progress and future directions. Crit Rev Oncol Hematol 2023; 181:103882. [PMID: 36481304 DOI: 10.1016/j.critrevonc.2022.103882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 09/06/2022] [Accepted: 11/21/2022] [Indexed: 12/12/2022] Open
Abstract
Genomic alterations in the receptor tyrosine kinase RET represent actionable driver events in several cancer types. Activation of the kinase domain by point mutations represents a pathognomonic event in medullary thyroid cancer, while RET fusions are critical driver events in a sizable subset of differentiated thyroid cancer and a smaller percentage of lung cancer. Early trials with multi-kinase inhibitors yielded modest improvement in outcomes for RET-driven cancers. In recent years, highly selective RET inhibitors entered clinical trials and demonstrated remarkable response rates, resulting in accelerated approval for selpercatinib and pralsetinib in 2020. An important mechanism of eventual resistance to RET inhibitors is the emergence of secondary drug resistance mutations, particularly in the solvent front, and several promising compounds are in development to overcome these mutations. Mechanisms of acquired resistance that bypass RET signaling altogether have also been discovered, suggesting that combinatorial drug strategies may be necessary for some patients.
Collapse
Affiliation(s)
| | - Arsenije Kojadinovic
- Department of Medicine, Icahn School of Medicine at Mount Sinai, USA; Department of Medicine, James J. Peters VA Medical Center, USA
| | - Tabinda Shafiq
- Department of Endocrinology, Baptist Health Medical Center, North Little Rock, USA
| | - Prabhjot S Mundi
- Department of Medicine, James J. Peters VA Medical Center, USA; Department of Hematology-Oncology, Columbia University Medical Center, USA.
| |
Collapse
|
6
|
Xiao Y, Xu G, Cloyd JM, Du S, Mao Y, Pawlik TM. Predicting Novel Drug Candidates for Pancreatic Neuroendocrine Tumors via Gene Signature Comparison and Connectivity Mapping. J Gastrointest Surg 2022; 26:1670-1678. [PMID: 35508682 DOI: 10.1007/s11605-022-05337-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Accepted: 04/19/2022] [Indexed: 02/08/2023]
Abstract
INTRODUCTION There is a paucity of effective treatment options for advanced pancreatic neuroendocrine tumors (pNETs). Genome-wide analyses may allow for potential drugs to be identified based on differentially expressed genes (DEGs). METHODS Oligo microarray data of RNA expression profiling of pNETs and normal pancreas tissues were downloaded from the Gene Expression Omnibus. Functional and pathway enrichment information of the DEGs was obtained using the Gene Ontology and Kyoto Encyclopedia of Genes and Genomes databases. Corresponding homologous proteins were analyzed and potential therapeutic drugs for pNETs were identified using the Connectivity Map and Drug-Gene Interaction Database. RESULTS Assessment of raw data from 12,610 pNET genes demonstrated that 1082 and 380 genes were upregulated and downregulated, respectively, compared with normal pancreas tissue. Upregulated pathways were associated with nitrogen metabolism (i.e., GABAergic synapse, and graft-versus-host disease), whereas downregulated pathways included C-type leptin receptor signaling pathway, pertussis and AMPK signaling pathway. In particular, the protein-protein interaction analysis revealed 10 upregulated hub genes (DYNLL1, GNB5, GNB2, GNG4, GNAI2, GNAI1, HIST2H2BE, NUP107, NUP133, and SNAP25) and 10 downregulated hub genes (CXCL8, F2, CXCL2, GCG, SST, INS, GALR3, CCL20, ADRA2B, and CXCL6). Using the Drug-Gene Interaction Database, candidate drugs for pNETs treatment included 3 EGFR inhibitors (canertinib, erlotinib, WZ-4-145), as well as other cell-signaling pathway inhibitors such as AG-592, acarbose, lonidamine, azacytidine, rottlerin, and HU-211. CONCLUSION Using available genetic atlas data, potential drug candidates for treatment of pNETs were identified based on differentially expressed genes. These results may help focus efforts on identifying targeted agents with therapeutic efficacy to treat patients with pNETs.
Collapse
Affiliation(s)
- Yao Xiao
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Gang Xu
- Department of Liver Surgery and Liver Transplant Center, West China Hospital of Sichuan University, Chengdu, China
| | - Jordan M Cloyd
- Department of Surgery, The Ohio State University Wexner Medical Center and James Cancer Hospital and Solove Research Institute, 395 W. 12th Ave., Suite 670, Columbus, OH, USA
| | - Shunda Du
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Yilei Mao
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Timothy M Pawlik
- Department of Surgery, The Ohio State University Wexner Medical Center and James Cancer Hospital and Solove Research Institute, 395 W. 12th Ave., Suite 670, Columbus, OH, USA.
| |
Collapse
|
7
|
de Souza Oliveira PF, Faria AVS, Clerici SP, Akagi EM, Carvalho HF, Justo GZ, Durán N, Ferreira-Halder CV. Violacein negatively modulates the colorectal cancer survival and epithelial-mesenchymal transition. J Cell Biochem 2022; 123:1247-1258. [PMID: 35661241 DOI: 10.1002/jcb.30295] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 04/30/2022] [Accepted: 05/13/2022] [Indexed: 12/27/2022]
Abstract
Violacein is a secondary metabolite produced by several microorganisms including Chromobacterium violaceum, and it is already used in food and cosmetics. However, due to its potent anticancer and low side effects, its molecular action needs to be deeply scrutinized. Therefore, the main objective of this study was to evaluate the violacein's ability to interfere with three cancer hallmarks: growth factors receptor-dependent signaling, proliferation, and epithelial-mesenchymal transition (EMT). Violacein has been associated with the induction of apoptosis in colorectal cancer (CRC) cells. Here, we demonstrate that this molecule is also active in CRC spheroids and inhibits cell migration. Violacein treatment reduced the amount of EGFR and AXL receptors in the HT29 cell line. Accordingly, the inhibition of the AKT, ERK, and PKCδ kinases, which are downstream mediators of the signaling pathways triggered by EGFR and AXL, is detected. Another interesting finding was that even when the cells were stimulated with transforming growth factor-β, the EMT marker (N-cadherin) decreased. Therefore, this study provides further evidence that reinforces the potential of violacein as an antitumor agent, once this biomolecule can "switch off" properties associated with cancer plasticity.
Collapse
Affiliation(s)
| | - Alessandra V S Faria
- Department of Biochemistry and Tissue Biology, University of Campinas, UNICAMP, Campinas, São Paulo, Brazil
| | - Stefano P Clerici
- Department of Biochemistry and Tissue Biology, University of Campinas, UNICAMP, Campinas, São Paulo, Brazil
| | - Erica M Akagi
- Department of Biochemistry and Tissue Biology, University of Campinas, UNICAMP, Campinas, São Paulo, Brazil
| | - Hernandes F Carvalho
- Department of Biochemistry and Tissue Biology, University of Campinas, UNICAMP, Campinas, São Paulo, Brazil
| | - Giselle Z Justo
- Department of Pharmaceutical Sciences and Biochemistry, Federal University of São Paulo (UNIFESP-Diadema), São Paulo, Brazil
| | - Nelson Durán
- Laboratory of Urogenital Carcinogenesis and Immunotherapy, Department of Structural and Functional Biology, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil.,Nanomedicine Research Unit (Nanomed), Center for Natural and Human Sciences (CCNH), Federal University of ABC (UFABC), Santo André, Brazil
| | - Carmen V Ferreira-Halder
- Department of Biochemistry and Tissue Biology, University of Campinas, UNICAMP, Campinas, São Paulo, Brazil
| |
Collapse
|
8
|
Smith MP, Ferguson HR, Ferguson J, Zindy E, Kowalczyk KM, Kedward T, Bates C, Parsons J, Watson J, Chandler S, Fullwood P, Warwood S, Knight D, Clarke RB, Francavilla C. Reciprocal priming between receptor tyrosine kinases at recycling endosomes orchestrates cellular signalling outputs. EMBO J 2021; 40:e107182. [PMID: 34086370 PMCID: PMC8447605 DOI: 10.15252/embj.2020107182] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 04/27/2021] [Accepted: 04/28/2021] [Indexed: 12/25/2022] Open
Abstract
Integration of signalling downstream of individual receptor tyrosine kinases (RTKs) is crucial to fine-tune cellular homeostasis during development and in pathological conditions, including breast cancer. However, how signalling integration is regulated and whether the endocytic fate of single receptors controls such signalling integration remains poorly elucidated. Combining quantitative phosphoproteomics and targeted assays, we generated a detailed picture of recycling-dependent fibroblast growth factor (FGF) signalling in breast cancer cells, with a focus on distinct FGF receptors (FGFRs). We discovered reciprocal priming between FGFRs and epidermal growth factor (EGF) receptor (EGFR) that is coordinated at recycling endosomes. FGFR recycling ligands induce EGFR phosphorylation on threonine 693. This phosphorylation event alters both FGFR and EGFR trafficking and primes FGFR-mediated proliferation but not cell invasion. In turn, FGFR signalling primes EGF-mediated outputs via EGFR threonine 693 phosphorylation. This reciprocal priming between distinct families of RTKs from recycling endosomes exemplifies a novel signalling integration hub where recycling endosomes orchestrate cellular behaviour. Therefore, targeting reciprocal priming over individual receptors may improve personalized therapies in breast and other cancers.
Collapse
Affiliation(s)
- Michael P Smith
- Division of Molecular and Cellular FunctionSchool of Biological ScienceFaculty of Biology Medicine and Health (FBMH)The University of ManchesterManchesterUK
| | - Harriet R Ferguson
- Division of Molecular and Cellular FunctionSchool of Biological ScienceFaculty of Biology Medicine and Health (FBMH)The University of ManchesterManchesterUK
| | - Jennifer Ferguson
- Division of Molecular and Cellular FunctionSchool of Biological ScienceFaculty of Biology Medicine and Health (FBMH)The University of ManchesterManchesterUK
| | - Egor Zindy
- Division of Cell Matrix and Regenerative MedicineSchool of Biological Science, FBMHThe University of ManchesterManchesterUK
- Present address:
Center for Microscopy and Molecular ImagingUniversité Libre de Bruxelles (ULB)GosseliesBelgium
| | - Katarzyna M Kowalczyk
- Division of Molecular and Cellular FunctionSchool of Biological ScienceFaculty of Biology Medicine and Health (FBMH)The University of ManchesterManchesterUK
- Present address:
Department of BiochemistryUniversity of OxfordOxfordUK
| | - Thomas Kedward
- Division of Cancer SciencesSchool of Medical ScienceFBMHThe University of ManchesterManchesterUK
| | - Christian Bates
- Division of Molecular and Cellular FunctionSchool of Biological ScienceFaculty of Biology Medicine and Health (FBMH)The University of ManchesterManchesterUK
| | - Joseph Parsons
- Division of Cancer SciencesSchool of Medical ScienceFBMHThe University of ManchesterManchesterUK
| | - Joanne Watson
- Division of Evolution and Genomic SciencesSchool of Biological ScienceFBMHThe University of ManchesterManchesterUK
| | - Sarah Chandler
- Division of Molecular and Cellular FunctionSchool of Biological ScienceFaculty of Biology Medicine and Health (FBMH)The University of ManchesterManchesterUK
| | - Paul Fullwood
- Division of Molecular and Cellular FunctionSchool of Biological ScienceFaculty of Biology Medicine and Health (FBMH)The University of ManchesterManchesterUK
| | - Stacey Warwood
- Bio‐MS Core Research FacilityFBMHThe University of ManchesterManchesterUK
| | - David Knight
- Bio‐MS Core Research FacilityFBMHThe University of ManchesterManchesterUK
| | - Robert B Clarke
- Division of Cancer SciencesSchool of Medical ScienceFBMHThe University of ManchesterManchesterUK
- Manchester Breast CentreManchester Cancer Research CentreManchesterUK
| | - Chiara Francavilla
- Division of Molecular and Cellular FunctionSchool of Biological ScienceFaculty of Biology Medicine and Health (FBMH)The University of ManchesterManchesterUK
- Manchester Breast CentreManchester Cancer Research CentreManchesterUK
| |
Collapse
|
9
|
Pacini L, Jenks AD, Lima NC, Huang PH. Targeting the Fibroblast Growth Factor Receptor (FGFR) Family in Lung Cancer. Cells 2021; 10:1154. [PMID: 34068816 PMCID: PMC8151052 DOI: 10.3390/cells10051154] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 05/05/2021] [Accepted: 05/07/2021] [Indexed: 12/12/2022] Open
Abstract
Lung cancer is the most common cause of cancer-related deaths globally. Genetic alterations, such as amplifications, mutations and translocations in the fibroblast growth factor receptor (FGFR) family have been found in non-small cell lung cancer (NSCLC) where they have a role in cancer initiation and progression. FGFR aberrations have also been identified as key compensatory bypass mechanisms of resistance to targeted therapy against mutant epidermal growth factor receptor (EGFR) and mutant Kirsten rat sarcoma 2 viral oncogene homolog (KRAS) in lung cancer. Targeting FGFR is, therefore, of clinical relevance for this cancer type, and several selective and nonselective FGFR inhibitors have been developed in recent years. Despite promising preclinical data, clinical trials have largely shown low efficacy of these agents in lung cancer patients with FGFR alterations. Preclinical studies have highlighted the emergence of multiple intrinsic and acquired resistance mechanisms to FGFR tyrosine kinase inhibitors, which include on-target FGFR gatekeeper mutations and activation of bypass signalling pathways and alternative receptor tyrosine kinases. Here, we review the landscape of FGFR aberrations in lung cancer and the array of targeted therapies under clinical evaluation. We also discuss the current understanding of the mechanisms of resistance to FGFR-targeting compounds and therapeutic strategies to circumvent resistance. Finally, we highlight our perspectives on the development of new biomarkers for stratification and prediction of FGFR inhibitor response to enable personalisation of treatment in patients with lung cancer.
Collapse
Affiliation(s)
| | | | | | - Paul H. Huang
- Division of Molecular Pathology, The Institute of Cancer Research, London SM2 5NG, UK; (L.P.); (A.D.J.); (N.C.L.)
| |
Collapse
|
10
|
Siaw JT, Gabre JL, Uçkun E, Vigny M, Zhang W, Van den Eynden J, Hallberg B, Palmer RH, Guan J. Loss of RET Promotes Mesenchymal Identity in Neuroblastoma Cells. Cancers (Basel) 2021; 13:cancers13081909. [PMID: 33921066 PMCID: PMC8071449 DOI: 10.3390/cancers13081909] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 03/21/2021] [Accepted: 04/12/2021] [Indexed: 12/18/2022] Open
Abstract
Aberrant activation of anaplastic lymphoma kinase (ALK) drives neuroblastoma (NB). Previous work identified the RET receptor tyrosine kinase (RTK) as a downstream target of ALK activity in NB models. We show here that ALK activation in response to ALKAL2 ligand results in the rapid phosphorylation of RET in NB cells, providing additional insight into the contribution of RET to the ALK-driven gene signature in NB. To further address the role of RET in NB, RET knockout (KO) SK-N-AS cells were generated by CRISPR/Cas9 genome engineering. Gene expression analysis of RET KO NB cells identified a reprogramming of NB cells to a mesenchymal (MES) phenotype that was characterized by increased migration and upregulation of the AXL and MNNG HOS transforming gene (MET) RTKs, as well as integrins and extracellular matrix components. Strikingly, the upregulation of AXL in the absence of RET reflects the development timeline observed in the neural crest as progenitor cells undergo differentiation during embryonic development. Together, these findings suggest that a MES phenotype is promoted in mesenchymal NB cells in the absence of RET, reflective of a less differentiated developmental status.
Collapse
Affiliation(s)
- Joachim T. Siaw
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, SE-40530 Gothenburg, Sweden; (J.T.S.); (J.L.G.); (E.U.); (B.H.); (R.H.P.)
| | - Jonatan L. Gabre
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, SE-40530 Gothenburg, Sweden; (J.T.S.); (J.L.G.); (E.U.); (B.H.); (R.H.P.)
- Anatomy and Embryology Unit, Department of Human Structure and Repair, Ghent University, 9000 Ghent, Belgium;
| | - Ezgi Uçkun
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, SE-40530 Gothenburg, Sweden; (J.T.S.); (J.L.G.); (E.U.); (B.H.); (R.H.P.)
| | - Marc Vigny
- Université Pierre et Marie Curie, UPMC, INSERM UMRS-839, 75005 Paris, France;
| | - Wancun Zhang
- Department of Pediatric Oncology Surgery, Children’s Hospital Affiliated to Zhengzhou University, Zhengzhou 450018, China;
| | - Jimmy Van den Eynden
- Anatomy and Embryology Unit, Department of Human Structure and Repair, Ghent University, 9000 Ghent, Belgium;
| | - Bengt Hallberg
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, SE-40530 Gothenburg, Sweden; (J.T.S.); (J.L.G.); (E.U.); (B.H.); (R.H.P.)
| | - Ruth H. Palmer
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, SE-40530 Gothenburg, Sweden; (J.T.S.); (J.L.G.); (E.U.); (B.H.); (R.H.P.)
| | - Jikui Guan
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, SE-40530 Gothenburg, Sweden; (J.T.S.); (J.L.G.); (E.U.); (B.H.); (R.H.P.)
- Department of Pediatric Oncology Surgery, Children’s Hospital Affiliated to Zhengzhou University, Zhengzhou 450018, China;
- Correspondence:
| |
Collapse
|
11
|
Lima NC, Atkinson E, Bunney TD, Katan M, Huang PH. Targeting the Src Pathway Enhances the Efficacy of Selective FGFR Inhibitors in Urothelial Cancers with FGFR3 Alterations. Int J Mol Sci 2020; 21:E3214. [PMID: 32370101 PMCID: PMC7246793 DOI: 10.3390/ijms21093214] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Revised: 04/24/2020] [Accepted: 04/27/2020] [Indexed: 01/08/2023] Open
Abstract
Selective FGFR inhibitors such as infigratinib (BGJ398) and erdafitinib (JNJ-42756493) have been evaluated in clinical trials for cancers with FGFR3 molecular alterations, particularly in urothelial carcinoma patients. However, a substantial proportion of these patients (up to 50%) display intrinsic resistance to these drugs and receive minimal clinical benefit. There is thus an unmet need for alternative therapeutic strategies to overcome primary resistance to selective FGFR inhibitors. In this study, we demonstrate that cells expressing cancer-associated activating FGFR3 mutants and the FGFR3-TACC3 fusion showed primary resistance to infigratinib in long-term colony formation assays in both NIH-3T3 and urothelial carcinoma models. We find that expression of these FGFR3 molecular alterations resulted in elevated constitutive Src activation compared to wildtype FGFR3 and that cells co-opted this pathway as a means to achieve intrinsic resistance to infigratinib. Targeting the Src pathway with low doses of the kinase inhibitor dasatinib synergistically sensitized multiple urothelial carcinoma lines harbouring endogenous FGFR3 alterations to infigratinib. Our data provide preclinical rationale that supports the use of dasatinib in combination with selective FGFR inhibitors as a means to overcome intrinsic drug resistance in the salvage therapy setting in urothelial cancer patients with FGFR3 molecular alterations.
Collapse
Affiliation(s)
- Nadia Carvalho Lima
- Division of Molecular Pathology, The Institute of Cancer Research, London SM2 5NG, UK; (N.C.L.); (E.A.)
| | - Eliza Atkinson
- Division of Molecular Pathology, The Institute of Cancer Research, London SM2 5NG, UK; (N.C.L.); (E.A.)
| | - Tom D. Bunney
- Institute of Structural and Molecular Biology, Division of Biosciences, University College London, London WC1E 6BT, UK; (T.D.B.); (M.K.)
| | - Matilda Katan
- Institute of Structural and Molecular Biology, Division of Biosciences, University College London, London WC1E 6BT, UK; (T.D.B.); (M.K.)
| | - Paul H. Huang
- Division of Molecular Pathology, The Institute of Cancer Research, London SM2 5NG, UK; (N.C.L.); (E.A.)
| |
Collapse
|
12
|
Zhao D, Jiang M, Zhang X, Hou H. The role of RICTOR amplification in targeted therapy and drug resistance. Mol Med 2020; 26:20. [PMID: 32041519 PMCID: PMC7011243 DOI: 10.1186/s10020-020-0146-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 01/30/2020] [Indexed: 12/11/2022] Open
Abstract
The emergence of tyrosine kinase inhibitors (TKIs) has changed the current treatment paradigm and achieved good results in recent decades. However, an increasing number of studies have indicated that the complex network of receptor tyrosine kinase (RTK) co-activation could influence the characteristic phenotypes of cancer and the tumor response to targeted treatments. One of strategies to blocking RTK co-activation is targeting the downstream factors of RTK, such as PI3K-AKT-mTOR pathway. RICTOR, a core component of mTORC2, acts as a key effector molecule of the PI3K-AKT pathway; its amplification is often associated with poor clinical outcomes and resistance to TKIs. Here, we discuss the biology of RICTOR in tumor and the prospects of targeting RICTOR as a complementary therapy to inhibit RTK co-activation.
Collapse
Affiliation(s)
- Deze Zhao
- Department of Medical Oncology, The Affiliated Hospital of Qingdao University, Qingdao University, 16 Jiangsu Road, Qingdao, 266005, China
| | - Man Jiang
- Department of Medical Oncology, The Affiliated Hospital of Qingdao University, Qingdao University, 16 Jiangsu Road, Qingdao, 266005, China
| | - Xiaochun Zhang
- Department of Medical Oncology, The Affiliated Hospital of Qingdao University, Qingdao University, 16 Jiangsu Road, Qingdao, 266005, China
| | - Helei Hou
- Department of Medical Oncology, The Affiliated Hospital of Qingdao University, Qingdao University, 16 Jiangsu Road, Qingdao, 266005, China.
| |
Collapse
|
13
|
Wang Y, Jiang X, Feng F, Liu W, Sun H. Degradation of proteins by PROTACs and other strategies. Acta Pharm Sin B 2020; 10:207-238. [PMID: 32082969 PMCID: PMC7016280 DOI: 10.1016/j.apsb.2019.08.001] [Citation(s) in RCA: 193] [Impact Index Per Article: 38.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 07/19/2019] [Accepted: 07/30/2019] [Indexed: 12/13/2022] Open
Abstract
Blocking the biological functions of scaffold proteins and aggregated proteins is a challenging goal. PROTAC proteolysis-targeting chimaera (PROTAC) technology may be the solution, considering its ability to selectively degrade target proteins. Recent progress in the PROTAC strategy include identification of the structure of the first ternary eutectic complex, extra-terminal domain-4-PROTAC-Von-Hippel-Lindau (BRD4-PROTAC-VHL), and PROTAC ARV-110 has entered clinical trials for the treatment of prostate cancer in 2019. These discoveries strongly proved the value of the PROTAC strategy. In this perspective, we summarized recent meaningful research of PROTAC, including the types of degradation proteins, preliminary biological data in vitro and in vivo, and new E3 ubiquitin ligases. Importantly, the molecular design, optimization strategy and clinical application of candidate molecules are highlighted in detail. Future perspectives for development of advanced PROTAC in medical fields have also been discussed systematically.
Collapse
Affiliation(s)
- Yang Wang
- Department of Pharmaceutical Analysis, Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing 210009, China
| | - Xueyang Jiang
- Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing 211198, China
| | - Feng Feng
- Jiangsu Food and Pharmaceutical Science College, Huaian 223003, China
- Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing 211198, China
| | - Wenyuan Liu
- Department of Pharmaceutical Analysis, Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing 210009, China
| | - Haopeng Sun
- Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 211198, China
| |
Collapse
|
14
|
Hinz TK, Kleczko EK, Singleton KR, Calhoun J, Marek LA, Kim J, Tan AC, Heasley LE. Functional RNAi Screens Define Distinct Protein Kinase Vulnerabilities in EGFR-Dependent HNSCC Cell Lines. Mol Pharmacol 2019; 96:862-870. [PMID: 31554698 DOI: 10.1124/mol.119.117804] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 09/14/2019] [Indexed: 12/15/2022] Open
Abstract
The inhibitory epidermal growth factor receptor (EGFR) antibody, cetuximab, is an approved therapy for head and neck squamous cell carcinoma (HNSCC). Despite tumor response observed in some HNSCC patients, cetuximab alone or combined with radio- or chemotherapy fails to yield long-term control or cures. We hypothesize that a flexible receptor tyrosine kinase coactivation signaling network supports HNSCC survival in the setting of EGFR blockade, and that drugs disrupting this network will provide superior tumor control when combined with EGFR inhibitors. In this work, we submitted EGFR-dependent HNSCC cell lines to RNA interference-based functional genomics screens to identify, in an unbiased fashion, essential protein kinases for growth and survival as well as synthetic lethal targets for combined inhibition with EGFR antagonists. Mechanistic target of rapamycin kinase (MTOR) and erythroblastosis oncogene B (ERBB)3 were identified as high-ranking essential kinase hits in the HNSCC cell lines. MTOR dependency was confirmed by distinct short hairpin RNAs (shRNAs) and high sensitivity of the cell lines to AZD8055, whereas ERBB3 dependency was validated by shRNA-mediated silencing. Furthermore, a synthetic lethal kinome shRNA screen with a pan-ERBB inhibitor, AZD8931, identified multiple components of the extracellular signal-regulated kinase (ERK) mitogen-activated protein kinase pathway, consistent with ERK reactivation and/or incomplete ERK pathway inhibition in response to EGFR inhibitor monotherapy. As validation, distinct mitogen-activated protein kinase kinase (MEK) inhibitors yielded synergistic growth inhibition when combined with the EGFR inhibitors, gefitinib and AZD8931. The findings identify ERBB3 and MTOR as important pharmacological vulnerabilities in HNSCC and support combining MEK and EGFR inhibitors to enhance clinical efficacy in HNSCC. SIGNIFICANCE STATEMENT: Many cancers are driven by nonmutated receptor tyrosine kinase coactivation networks that defy full inhibition with single targeted drugs. This study identifies erythroblastosis oncogene B (ERBB)3 as an essential protein kinase in epidermal growth factor receptor-dependent head and neck squamous cell cancer (HNSCC) cell lines and a synthetic lethal interaction with the extracellular signal-regulated kinase mitogen-activated protein kinase pathway that provides a rationale for combining pan-ERBB and mitogen-activated protein kinase inhibitors as a therapeutic approach in subsets of HNSCC.
Collapse
Affiliation(s)
- Trista K Hinz
- Departments of Craniofacial Biology (T.K.H., E.K.K., K.R.S., J.C., L.A.M., L.E.H.) and Medicine (J.K., A.C.T.), University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Emily K Kleczko
- Departments of Craniofacial Biology (T.K.H., E.K.K., K.R.S., J.C., L.A.M., L.E.H.) and Medicine (J.K., A.C.T.), University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Katherine R Singleton
- Departments of Craniofacial Biology (T.K.H., E.K.K., K.R.S., J.C., L.A.M., L.E.H.) and Medicine (J.K., A.C.T.), University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Jacob Calhoun
- Departments of Craniofacial Biology (T.K.H., E.K.K., K.R.S., J.C., L.A.M., L.E.H.) and Medicine (J.K., A.C.T.), University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Lindsay A Marek
- Departments of Craniofacial Biology (T.K.H., E.K.K., K.R.S., J.C., L.A.M., L.E.H.) and Medicine (J.K., A.C.T.), University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Jihye Kim
- Departments of Craniofacial Biology (T.K.H., E.K.K., K.R.S., J.C., L.A.M., L.E.H.) and Medicine (J.K., A.C.T.), University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Aik Choon Tan
- Departments of Craniofacial Biology (T.K.H., E.K.K., K.R.S., J.C., L.A.M., L.E.H.) and Medicine (J.K., A.C.T.), University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Lynn E Heasley
- Departments of Craniofacial Biology (T.K.H., E.K.K., K.R.S., J.C., L.A.M., L.E.H.) and Medicine (J.K., A.C.T.), University of Colorado Anschutz Medical Campus, Aurora, Colorado
| |
Collapse
|
15
|
Hinz TK, Heasley LE. Translating mesothelioma molecular genomics and dependencies into precision oncology-based therapies. Semin Cancer Biol 2019; 61:11-22. [PMID: 31546009 DOI: 10.1016/j.semcancer.2019.09.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 09/18/2019] [Accepted: 09/19/2019] [Indexed: 12/28/2022]
Abstract
Malignant pleural mesothelioma (MPM) is a rare, yet lethal asbestos-induced cancer and despite marked efforts to reduce occupational exposure, the incidence has not yet significantly declined. Since 2003, combined treatment with a platinum-based agent and pemetrexed has been the first-line therapy and no effective or approved second-line treatments have emerged. The seemingly slow advance in developing new MPM treatments does not appear to be related to a low level of clinical and pre-clinical research activity. Rather, we suggest that a key hurdle in successfully translating basic discovery into novel MPM therapeutics is the underlying assumption that as a rare cancer, it will also be molecularly and genetically homogeneous. In fact, lung adenocarcinoma and melanoma only benefitted from precision oncology upon full appreciation of the high degree of molecular heterogeneity inherent in these cancers, especially regarding the diversity of oncogenic drivers. Herein, we consider the recent explosion of molecular and genetic information that has become available regarding MPM and suggest ways in which the unfolding landscape may guide identification of novel therapeutic vulnerabilities within subsets of MPM that can be targeted in a manner consistent with the tenets of precision oncology.
Collapse
Affiliation(s)
- Trista K Hinz
- Department of Craniofacial Biology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, United States
| | - Lynn E Heasley
- Department of Craniofacial Biology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, United States.
| |
Collapse
|
16
|
Meel MH, Kaspers GJL, Hulleman E. Preclinical therapeutic targets in diffuse midline glioma. Drug Resist Updat 2019; 44:15-25. [PMID: 31202081 DOI: 10.1016/j.drup.2019.06.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 05/29/2019] [Accepted: 06/04/2019] [Indexed: 12/29/2022]
Abstract
Diffuse midline gliomas (DMG) are rapidly fatal tumors of the midbrain in children, characterized by a diffuse growing pattern and high levels of intrinsic resistance to therapy. The location of these tumors, residing behind the blood-brain barrier (BBB), and the limited knowledge about the biology of these tumors, has hindered the development of effective treatment strategies. However, the introduction of diagnostic biopsies and the implementation of autopsy protocols in several large centers world-wide has allowed for a detailed characterization of these rare tumors. This has resulted in the identification of novel therapeutic targets, as well as major advances in understanding the biology of DMG in relation to therapy resistance. We here provide an overview of the cellular pathways and tumor-specific aberrations that have been targeted in preclinical DMG research, and discuss the advantages and limitations of these therapeutic strategies in relation to therapy resistance and BBB-penetration. Therewith, we aim to provide researchers with a framework for successful preclinical therapy development.
Collapse
Affiliation(s)
- Michaël Hananja Meel
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands; Emma Children's Hospital, Amsterdam UMC, Vrije Universiteit Amsterdam, Pediatric Oncology, Cancer Center Amsterdam, the Netherlands
| | - Gertjan J L Kaspers
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands; Emma Children's Hospital, Amsterdam UMC, Vrije Universiteit Amsterdam, Pediatric Oncology, Cancer Center Amsterdam, the Netherlands
| | - Esther Hulleman
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands; Emma Children's Hospital, Amsterdam UMC, Vrije Universiteit Amsterdam, Pediatric Oncology, Cancer Center Amsterdam, the Netherlands.
| |
Collapse
|
17
|
Yunus M, Jansson PJ, Kovacevic Z, Kalinowski DS, Richardson DR. Tumor-induced neoangiogenesis and receptor tyrosine kinases - Mechanisms and strategies for acquired resistance. Biochim Biophys Acta Gen Subj 2019; 1863:1217-1225. [PMID: 31029846 DOI: 10.1016/j.bbagen.2019.04.017] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 04/23/2019] [Accepted: 04/23/2019] [Indexed: 12/15/2022]
Abstract
BACKGROUND Angiogenesis is essential for tumor growth, proliferation and metastasis. Tumor-related angiogenesis is complex and involves multiple signaling pathways. Controlling angiogenesis is a promising strategy for limiting cancer progression. SCOPE OF REVIEW Several receptor tyrosine kinases influence the angiogenic response via multiple signaling molecules and pathways. Understanding the functional interaction of kinases in the angiogenic process and development of resistance to kinase inhibition is essential for future successful therapeutic strategies. MAJOR CONCLUSIONS Strategies that target receptor tyrosine kinases and other tumor microenvironment factors simultaneously, or sequentially, are required for achieving an efficient and robust anti-angiogenic response. GENERAL SIGNIFICANCE Understanding the molecular mechanism of angiogenesis has improved, and has led, to the clinical development and approval of anti-angiogenic drugs. While many patients have benefited from these agents, their limited efficacy and the development of resistance remains a challenge. This review highlights current therapies and challenges associated with targeting angiogenesis in cancer.
Collapse
Affiliation(s)
- Madiha Yunus
- Molecular Pharmacology and Pathology Program, Department of Pathology and Bosch Institute, Medical Foundation Building (K25), University of Sydney, New South Wales 2006, Australia
| | - Patric J Jansson
- Molecular Pharmacology and Pathology Program, Department of Pathology and Bosch Institute, Medical Foundation Building (K25), University of Sydney, New South Wales 2006, Australia
| | - Zaklina Kovacevic
- Molecular Pharmacology and Pathology Program, Department of Pathology and Bosch Institute, Medical Foundation Building (K25), University of Sydney, New South Wales 2006, Australia
| | - Danuta S Kalinowski
- Molecular Pharmacology and Pathology Program, Department of Pathology and Bosch Institute, Medical Foundation Building (K25), University of Sydney, New South Wales 2006, Australia
| | - Des R Richardson
- Molecular Pharmacology and Pathology Program, Department of Pathology and Bosch Institute, Medical Foundation Building (K25), University of Sydney, New South Wales 2006, Australia.
| |
Collapse
|
18
|
Hui DHF, Tam KJ, Jiao IZF, Ong CJ. Semaphorin 3C as a Therapeutic Target in Prostate and Other Cancers. Int J Mol Sci 2019; 20:E774. [PMID: 30759745 PMCID: PMC6386986 DOI: 10.3390/ijms20030774] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2019] [Revised: 02/05/2019] [Accepted: 02/08/2019] [Indexed: 12/21/2022] Open
Abstract
The semaphorins represent a large family of signaling molecules with crucial roles in neuronal and cardiac development. While normal semaphorin function pertains largely to development, their involvement in malignancy is becoming increasingly evident. One member, Semaphorin 3C (SEMA3C), has been shown to drive a number of oncogenic programs, correlate inversely with cancer prognosis, and promote the progression of multiple different cancer types. This report surveys the body of knowledge surrounding SEMA3C as a therapeutic target in cancer. In particular, we summarize SEMA3C's role as an autocrine andromedin in prostate cancer growth and survival and provide an overview of other cancer types that SEMA3C has been implicated in including pancreas, brain, breast, and stomach. We also propose molecular strategies that could potentially be deployed against SEMA3C as anticancer agents such as biologics, small molecules, monoclonal antibodies and antisense oligonucleotides. Finally, we discuss important considerations for the inhibition of SEMA3C as a cancer therapeutic agent.
Collapse
Affiliation(s)
- Daniel H F Hui
- Vancouver Prostate Centre and Department of Urologic Sciences, University of British Columbia, Vancouver, BC V6H 3Z6, Canada.
| | - Kevin J Tam
- Vancouver Prostate Centre and Department of Urologic Sciences, University of British Columbia, Vancouver, BC V6H 3Z6, Canada.
| | - Ivy Z F Jiao
- Vancouver Prostate Centre and Department of Urologic Sciences, University of British Columbia, Vancouver, BC V6H 3Z6, Canada.
| | - Christopher J Ong
- Vancouver Prostate Centre and Department of Urologic Sciences, University of British Columbia, Vancouver, BC V6H 3Z6, Canada.
| |
Collapse
|
19
|
Maeda A, Nishino T, Matsunaga R, Yokoyama A, Suga H, Yagi T, Konishi H. Transglutaminase-mediated cross-linking of WDR54 regulates EGF receptor-signaling. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2019; 1866:285-295. [DOI: 10.1016/j.bbamcr.2018.11.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 11/06/2018] [Accepted: 11/16/2018] [Indexed: 12/31/2022]
|
20
|
Chen J, Hao Y, Chen J, Huang L, Ao W, Yang J, Li L, Heng J, Chen Z, Liang W, Hao X, Gao W. Colony stimulating factor-1 receptor promotes proliferation, migration and invasion in the human nasopharyngeal carcinoma 6-10B cell line via the phosphoinositide 3-kinase/Akt pathway. Oncol Lett 2018; 16:1205-1211. [PMID: 30061942 DOI: 10.3892/ol.2018.8750] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 02/21/2018] [Indexed: 12/18/2022] Open
Abstract
The present study aimed to investigate the effects of colony-stimulating factor-1 receptor (CSF-1R) on proliferation, migration and invasion in the human nasopharyngeal carcinoma (NPC) 6-10B cell line, and to investigate the possible underlying mechanisms. Using a lentiviral transfection method, a virus carrying the CSF-1R gene was transfected into 6-10B cells. The expression of CSF-1R was then detected by reverse transcription-quantitative polymerase chain reaction and western blot analysis, and was revealed to be markedly enhanced in 6-10B cells. Subsequently, an MTT assay was performed to assess cell proliferative ability, and flow cytometric analysis was utilized to measure the apoptotic rate of the cells. Wound healing and Transwell assays were also performed to observe cell migration and invasion capabilities. Additionally, western blot analysis was used to detect the protein expression of the proliferation and apoptosis signaling factors cyclin D1, B-cell lymphoma 2, Bcl-2-associated X protein, and phosphorylated and total extracellular protein kinase B (Akt/PKB) in 6-10B cells. The results showed that CSF-1R overexpression promoted the proliferation, migration and invasion of the 6-10B cells. The corresponding mechanism may be associated with activation of the phosphoinositide 3-kinase/Akt pathway, which promotes cell survival and proliferation. These results indicated a potential molecular target for the treatment of NPC.
Collapse
Affiliation(s)
- Jiayu Chen
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, Hubei 430000, P.R. China.,Cancer Center, People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi Zhuang Autonomous Region 530000, P.R. China
| | - Yanrong Hao
- Cancer Center, People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi Zhuang Autonomous Region 530000, P.R. China
| | - Jiaxin Chen
- Cancer Center, People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi Zhuang Autonomous Region 530000, P.R. China
| | - Li Huang
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, Hubei 430000, P.R. China
| | - Wen Ao
- Cancer Center, People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi Zhuang Autonomous Region 530000, P.R. China
| | - Jiao Yang
- Cancer Center, People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi Zhuang Autonomous Region 530000, P.R. China
| | - Lei Li
- Cancer Center, People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi Zhuang Autonomous Region 530000, P.R. China
| | - Junping Heng
- Cancer Center, People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi Zhuang Autonomous Region 530000, P.R. China
| | - Zhaohon Chen
- Cancer Center, People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi Zhuang Autonomous Region 530000, P.R. China
| | - Wuqing Liang
- Cancer Center, People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi Zhuang Autonomous Region 530000, P.R. China
| | - Xin Hao
- Cancer Center, People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi Zhuang Autonomous Region 530000, P.R. China
| | - Weiwei Gao
- Cancer Center, People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi Zhuang Autonomous Region 530000, P.R. China
| |
Collapse
|
21
|
Kleczko EK, Heasley LE. Mechanisms of rapid cancer cell reprogramming initiated by targeted receptor tyrosine kinase inhibitors and inherent therapeutic vulnerabilities. Mol Cancer 2018; 17:60. [PMID: 29458371 PMCID: PMC5817864 DOI: 10.1186/s12943-018-0816-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 02/13/2018] [Indexed: 01/06/2023] Open
Abstract
Receptor tyrosine kinase (RTK) pathways serve as frequent oncogene drivers in solid cancers and small molecule and antibody-based inhibitors have been developed as targeted therapeutics for many of these oncogenic RTKs. In general, these drugs, when delivered as single agents in a manner consistent with the principles of precision medicine, induce tumor shrinkage but rarely complete tumor elimination. Moreover, acquired resistance of treated tumors is nearly invariant such that monotherapy strategies with targeted RTK drugs fail to provide long-term control or cures. The mechanisms mediating acquired resistance in tumors at progression treated with RTK inhibitors are relatively well defined compared to the molecular and cellular understanding of the cancer cells that persist early on therapy. We and others propose that these persisting cancer cells, termed "residual disease", provide the reservoir from which acquired resistance eventually emerges. Herein, we will review the literature that describes rapid reprogramming induced upon inhibition of oncogenic RTKs in cancer cells as a mechanism by which cancer cells persist to yield residual disease and consider strategies for disrupting these intrinsic responses for future therapeutic gain.
Collapse
Affiliation(s)
- Emily K. Kleczko
- Division of Renal Diseases and Hypertension, Department of Medicine, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045 USA
| | - Lynn E. Heasley
- Department of Craniofacial Biology, School of Dental Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045 USA
| |
Collapse
|
22
|
Blurring Boundaries: Receptor Tyrosine Kinases as functional G Protein-Coupled Receptors. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2018; 339:1-40. [DOI: 10.1016/bs.ircmb.2018.02.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
23
|
Wong JP, Todd JR, Finetti MA, McCarthy F, Broncel M, Vyse S, Luczynski MT, Crosier S, Ryall KA, Holmes K, Payne LS, Daley F, Wai P, Jenks A, Tanos B, Tan AC, Natrajan RC, Williamson D, Huang PH. Dual Targeting of PDGFRα and FGFR1 Displays Synergistic Efficacy in Malignant Rhabdoid Tumors. Cell Rep 2017; 17:1265-1275. [PMID: 27783942 PMCID: PMC5098123 DOI: 10.1016/j.celrep.2016.10.005] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Revised: 08/07/2016] [Accepted: 09/30/2016] [Indexed: 12/13/2022] Open
Abstract
Subunits of the SWI/SNF chromatin remodeling complex are mutated in a significant proportion of human cancers. Malignant rhabdoid tumors (MRTs) are lethal pediatric cancers characterized by a deficiency in the SWI/SNF subunit SMARCB1. Here, we employ an integrated molecular profiling and chemical biology approach to demonstrate that the receptor tyrosine kinases (RTKs) PDGFRα and FGFR1 are coactivated in MRT cells and that dual blockade of these receptors has synergistic efficacy. Inhibitor combinations targeting both receptors and the dual inhibitor ponatinib suppress the AKT and ERK1/2 pathways leading to apoptosis. MRT cells that have acquired resistance to the PDGFRα inhibitor pazopanib are susceptible to FGFR inhibitors. We show that PDGFRα levels are regulated by SMARCB1 expression, and assessment of clinical specimens documents the expression of both PDGFRα and FGFR1 in rhabdoid tumor patients. Our findings support a therapeutic approach in cancers with SWI/SNF deficiencies by exploiting RTK coactivation dependencies. Malignant rhabdoid tumors display coactivation of PDGFRα and FGFR1 Dual inhibition of PDGFRα and FGFR1 leads to synergistic apoptosis FGFR1 inhibition overcomes acquired resistance to pazopanib treatment PDGFRα and FGFR1 are expressed in rhabdoid tumor patient specimens
Collapse
Affiliation(s)
- Jocelyn P Wong
- Division of Cancer Biology, The Institute of Cancer Research, London SW3 6JB, UK
| | - Jason R Todd
- Division of Cancer Biology, The Institute of Cancer Research, London SW3 6JB, UK
| | - Martina A Finetti
- Northern Institute for Cancer Research, Newcastle University, Newcastle upon Tyne NE1 4LP, UK
| | - Frank McCarthy
- Division of Cancer Biology, The Institute of Cancer Research, London SW3 6JB, UK
| | - Malgorzata Broncel
- Division of Cancer Biology, The Institute of Cancer Research, London SW3 6JB, UK
| | - Simon Vyse
- Division of Cancer Biology, The Institute of Cancer Research, London SW3 6JB, UK
| | - Maciej T Luczynski
- Division of Cancer Biology, The Institute of Cancer Research, London SW3 6JB, UK
| | - Stephen Crosier
- Northern Institute for Cancer Research, Newcastle University, Newcastle upon Tyne NE1 4LP, UK
| | - Karen A Ryall
- Translational Bioinformatics and Cancer Systems Biology Laboratory, Division of Medical Oncology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Kate Holmes
- Division of Cancer Biology, The Institute of Cancer Research, London SW3 6JB, UK
| | - Leo S Payne
- Division of Cancer Biology, The Institute of Cancer Research, London SW3 6JB, UK
| | - Frances Daley
- The Breast Cancer Now Toby Robins Research Centre, Division of Breast Cancer Research, The Institute of Cancer Research, London SW3 6JB, UK
| | - Patty Wai
- The Breast Cancer Now Toby Robins Research Centre, Division of Breast Cancer Research, The Institute of Cancer Research, London SW3 6JB, UK
| | - Andrew Jenks
- Division of Cancer Therapeutics, The Institute of Cancer Research, London SW3 6JB, UK
| | - Barbara Tanos
- Division of Cancer Therapeutics, The Institute of Cancer Research, London SW3 6JB, UK
| | - Aik-Choon Tan
- Translational Bioinformatics and Cancer Systems Biology Laboratory, Division of Medical Oncology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Rachael C Natrajan
- The Breast Cancer Now Toby Robins Research Centre, Division of Breast Cancer Research, The Institute of Cancer Research, London SW3 6JB, UK
| | - Daniel Williamson
- Northern Institute for Cancer Research, Newcastle University, Newcastle upon Tyne NE1 4LP, UK
| | - Paul H Huang
- Division of Cancer Biology, The Institute of Cancer Research, London SW3 6JB, UK.
| |
Collapse
|
24
|
Vyse S, McCarthy F, Broncel M, Paul A, Wong JP, Bhamra A, Huang PH. Quantitative phosphoproteomic analysis of acquired cancer drug resistance to pazopanib and dasatinib. J Proteomics 2017; 170:130-140. [PMID: 28842319 PMCID: PMC5673060 DOI: 10.1016/j.jprot.2017.08.015] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2017] [Revised: 07/19/2017] [Accepted: 08/17/2017] [Indexed: 12/14/2022]
Abstract
Acquired drug resistance impacts the majority of patients being treated with tyrosine kinase inhibitors (TKIs) and remains a key challenge in modern anti-cancer therapy. The lack of clinically effective therapies to overcome resistance represents an unmet need. Understanding the signalling that drives drug resistance will facilitate the development of new salvage therapies to treat patients with secondary TKI resistance. In this study, we utilise mass spectrometry to characterise the global phosphoproteomic alterations that accompany the acquisition of resistance to two FDA-approved TKIs, pazopanib and dasatinib, in the A204 rhabdoid tumour cell line. Our analysis finds that only 6% and 9.7% of the quantified phosphoproteome is altered upon the acquisition of pazopanib and dasatinib resistance, respectively. Pazopanib resistant cells display elevated phosphorylation in cytoskeletal regulatory pathways while dasatinib resistant cells show an upregulation of the insulin receptor/IGF-1R signalling pathway. Drug response profiling rediscovers several previously reported vulnerabilities associated with pazopanib and dasatinib resistance and identifies a new dependency to the second generation HSP90 inhibitor NVP-AUY-922. This study provides a useful resource detailing the candidate signalling determinants of acquired TKI resistance; and reveals a therapeutic approach of inhibiting HSP90 function as a means of salvage therapy to overcome pazopanib and dasatinib resistance. Significance Pazopanib and dasatinib are tyrosine kinase inhibitors (TKIs) approved for the treatment of multiple cancer types. Patients who are treated with these drugs are prone to the development of drug resistance and consequently tumour relapse. Here we use quantitative phosphoproteomics to characterise the signalling pathways which are enriched in cells that have acquired resistance to these two drugs. Furthermore, targeted drug screens were used to identify salvage therapies capable of overcoming pazopanib and dasatinib resistance. This data advances our understanding of the mechanisms of TKI resistance and highlights candidate targets for cancer therapy. Pazopanib resistant cells display elevated phosphorylation in cytoskeletal regulatory pathways. Phosphoproteins in the insulin and IGF-1R pathways are upregulated in dasatinib resistant cells. Less than 10% of the phosphoproteome is altered in acquired drug-resistant A204 cells. Both dasatinib and pazopanib resistant A204 cells are vulnerable to HSP90 inhibition.
Collapse
Affiliation(s)
- Simon Vyse
- Division of Cancer Biology, The Institute of Cancer Research, London SW3 6JB, UK
| | - Frank McCarthy
- Division of Cancer Biology, The Institute of Cancer Research, London SW3 6JB, UK
| | - Malgorzata Broncel
- Division of Cancer Biology, The Institute of Cancer Research, London SW3 6JB, UK
| | - Angela Paul
- Proteomics Core Facility, The Institute of Cancer Research, London SW3 6JB, UK
| | - Jocelyn P Wong
- Division of Cancer Biology, The Institute of Cancer Research, London SW3 6JB, UK
| | - Amandeep Bhamra
- Proteomics Core Facility, The Institute of Cancer Research, London SW3 6JB, UK
| | - Paul H Huang
- Division of Cancer Biology, The Institute of Cancer Research, London SW3 6JB, UK.
| |
Collapse
|
25
|
Vyse S, Desmond H, Huang PH. Advances in mass spectrometry based strategies to study receptor tyrosine kinases. IUCRJ 2017; 4:119-130. [PMID: 28250950 PMCID: PMC5330522 DOI: 10.1107/s2052252516020546] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Accepted: 12/27/2016] [Indexed: 06/06/2023]
Abstract
Receptor tyrosine kinases (RTKs) are key transmembrane environmental sensors that are capable of transmitting extracellular information into phenotypic responses, including cell proliferation, survival and metabolism. Advances in mass spectrometry (MS)-based phosphoproteomics have been instrumental in providing the foundations of much of our current understanding of RTK signalling networks and activation dynamics. Furthermore, new insights relating to the deregulation of RTKs in disease, for instance receptor co-activation and kinome reprogramming, have largely been identified using phosphoproteomic-based strategies. This review outlines the current approaches employed in phosphoproteomic workflows, including phosphopeptide enrichment and MS data-acquisition methods. Here, recent advances in the application of MS-based phosphoproteomics to bridge critical gaps in our knowledge of RTK signalling are focused on. The current limitations of the technology are discussed and emerging areas such as computational modelling, high-throughput phospho-proteomic workflows and next-generation single-cell approaches to further our understanding in new areas of RTK biology are highlighted.
Collapse
Affiliation(s)
- Simon Vyse
- Division of Cancer Biology, The Institute of Cancer Research, London SW3 6JB, England
| | - Howard Desmond
- Division of Cancer Biology, The Institute of Cancer Research, London SW3 6JB, England
| | - Paul H. Huang
- Division of Cancer Biology, The Institute of Cancer Research, London SW3 6JB, England
| |
Collapse
|
26
|
Affiliation(s)
- Paul H Huang
- a Division of Cancer Biology , The Institute of Cancer Research , London , UK
| |
Collapse
|