1
|
Dash S, Rathi E, Kumar A, Chawla K, Joseph A, Kini SG. Structure-activity relationship mediated molecular insights of DprE1 inhibitors: A Comprehensive Review. J Biomol Struct Dyn 2024; 42:6472-6522. [PMID: 37395797 DOI: 10.1080/07391102.2023.2230312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 06/21/2023] [Indexed: 07/04/2023]
Abstract
Emerging threats of multi-drug resistant (MDR), extensively drug-resistant (XDR), and totally drug-resistant (TDR) tuberculosis led to the discovery of a novel target which was entitled Decaprenylphosphoryl-β-D-ribose 2'-epimerase (DprE1) enzyme. DprE1 is composed of two isoforms, decaprenylphosphoryl-β-D-ribose oxidase (DprE1) and decaprenylphosphoryl-D-2-keto erythro pentose reductase (DprE2). The enzymes, DprE1 and DprE2, regulate the two-step epimerization process to form DPA (Decaprenylphosphoryl arabinose) from DPX (Decaprenylphosphoryl-D-ribose), which is the sole precursor in the cell wall synthesis of arabinogalactan (AG) and lipoarabinomannan (LAM). Target-based and whole-cell-based screening played an imperative role in the identification of the druggable target, DprE1, whereas the druggability of the DprE2 enzyme is not proved yet. To date, diverse scaffolds of heterocyclic and aromatic ring systems have been reported as DprE1 inhibitors based on their interaction mode, i.e. covalent, and non-covalent inhibitors. This review describes the structure-activity relationship (SAR) of reported covalent and non-covalent inhibitors to enlighten about the crucial pharmacophoric features required for DprE1 inhibition, along with in-silico studies which characterize the amino acid residues responsible for covalent and non-covalent interactions.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Swagatika Dash
- Department of Pharmaceutical Chemistry, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Ekta Rathi
- Department of Pharmaceutical Chemistry, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Avinash Kumar
- Department of Pharmaceutical Chemistry, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Kiran Chawla
- Department of Microbiology, Kasturba Medical College, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Alex Joseph
- Department of Pharmaceutical Chemistry, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Suvarna G Kini
- Department of Pharmaceutical Chemistry, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
- Manipal Mc Gill Centre for Infectious Diseases, Prasanna School of Public Health, Manipal Academy of Higher Education, Manipal, Karnataka, India
| |
Collapse
|
2
|
Li X, Yang Y, Lu N, Luo F, Fan R, Peng N. NOS2/miR-493-5p Signaling Regulates in the LPS-Induced Inflammatory Response in the RAW264.7 Cells. Biochem Genet 2023; 61:1097-1112. [PMID: 36449151 DOI: 10.1007/s10528-022-10297-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 10/18/2022] [Indexed: 12/05/2022]
Abstract
Tuberculosis (TB) is a fatal infectious disease; however, the molecular mechanisms underlying the pathogenicity of TB remain elusive. The present study aims to identify potential biomarkers associated with Mycobacterium tuberculosis (M.tb) infection by using integrated bioinformatics and in vitro validation studies. GSE50050, GSE78706, and GSE108844 data from the gene expression omnibus (GEO) database were downloaded to identify differentially expressed genes (DEGs). The functions of DEGs were further subjected to gene ontology (GO) and KEGG pathway analysis. The hub genes from the DEGs were determined based on the protein-protein interaction (PPI) network analysis. Finally, the hub genes were experimentally validated using the in vitro functional studies. A total of 26 common DEGs were identified among GSE50050, GSE78706, and GSE108844. The functional enrichment analysis showed that the common DEGs were associated with cytokines response and TB pathways. The PPI network analysis identified nine hub genes. Further in vitro studies showed that nitric oxide synthase 2 (NOS2) was up-regulated in RAW264.7 cells upon lipopolysaccharides (LPS) stimulation, which was accompanied by increased inflammatory cytokines release. Furthermore, NOS2 was found to be a target of miR-493-5p, which was confirmed by luciferase reporter assay. NOS2 was repressed by miR-493-5p overexpression and was up-regulated after miR-493-5p inhibition in RAW264.7 cells. The rescue experiments showed that LPS-induced increase in the inflammatory cytokines of the RAW264.7 cells was significantly attenuated by NOS2 knockdown and miR-493-5p overexpression. Collectively, our results for the first time demonstrated that NOS2/miR-493-5p signaling pathway may potentially involve in the inflammatory response during bacterial infection such as M. tb infection.
Collapse
Affiliation(s)
- Xiaofei Li
- Clinical Laboratory, The Third People's Hospital of Kunming, Kunming, China
| | - Yongrui Yang
- Department of Hepatology, The Third People's Hospital of Kunming, Kunming, China
| | - Nihong Lu
- Department of Respiratory Medicine, The Third People's Hospital of Kunming, Kunming, China
| | - Feng Luo
- Clinical Laboratory, The Third People's Hospital of Kunming, Kunming, China
| | - Ru Fan
- School of Public Health, Dali University, Dali, China
| | - Niancai Peng
- School of Life Science and Technology and School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an, 710049, China.
| |
Collapse
|
3
|
Balakrishnan V, Kehrabi Y, Ramanathan G, Paul SA, Tiong CK. Machine learning approaches in diagnosing tuberculosis through biomarkers - A systematic review. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2023; 179:16-25. [PMID: 36931609 DOI: 10.1016/j.pbiomolbio.2023.03.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 02/25/2023] [Accepted: 03/09/2023] [Indexed: 03/17/2023]
Abstract
Biomarker-based tests may facilitate Tuberculosis (TB) diagnosis, accelerate treatment initiation, and thus improve outcomes. This review synthesizes the literature on biomarker-based detection for TB diagnosis using machine learning. The systematic review approach follows the PRISMA guideline. Articles were sought using relevant keywords from Web of Science, PubMed, and Scopus, resulting in 19 eligible studies after a meticulous screening. All the studies were found to have focused on the supervised learning approach, with Support Vector Machine (SVM) and Random Forest emerging as the top two algorithms, with the highest accuracy, sensitivity and specificity reported to be 97.0%, 99.2%, and 98.0%, respectively. Further, protein-based biomarkers were widely explored, followed by gene-based such as RNA sequence and, Spoligotypes. Publicly available datasets were observed to be popularly used by the studies reviewed whilst studies targeting specific cohorts such as HIV patients or children gathering their own data from healthcare facilities, leading to smaller datasets. Of these, most studies used the leave one out cross validation technique to mitigate overfitting. The review shows that machine learning is increasingly assessed in research to improve TB diagnosis through biomarkers, as promising results were shown in terms of model's detection performance. This provides insights on the possible application of machine learning approaches to diagnose TB using biomarkers as opposed to the traditional methods that can be time consuming. Low-middle income settings, where access to basic biomarkers could be provided as compared to sputum-based tests that are not always available, could be a major application of such models.
Collapse
Affiliation(s)
- Vimala Balakrishnan
- Faculty of Computer Science and Information Technology, Universiti Malaya, 50603, Kuala Lumpur, Malaysia.
| | - Yousra Kehrabi
- Department of Infectious Diseases, Hôpital Bichat-Claude Bernard, Assistance Publique Hôpitaux de Paris, Paris, France
| | - Ghayathri Ramanathan
- Faculty of Computer Science and Information Technology, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| | - Scott Arjay Paul
- School of Biosciences, Faculty of Health and Medical Sciences, Taylor's University, Subang Jaya, Malaysia
| | - Chiong Kian Tiong
- Faculty of Medicine, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| |
Collapse
|
4
|
Dam S, Tangara S, Hamela C, Hattabi T, Faïon L, Carre P, Antoine R, Herledan A, Leroux F, Piveteau C, Eveque M, Flipo M, Deprez B, Kremer L, Willand N, Villemagne B, Hartkoorn RC. Tricyclic SpiroLactams Kill Mycobacteria In Vitro and In Vivo by Inhibiting Type II NADH Dehydrogenases. J Med Chem 2022; 65:16651-16664. [PMID: 36473699 PMCID: PMC9791652 DOI: 10.1021/acs.jmedchem.2c01493] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
It is critical that novel classes of antituberculosis drugs are developed to combat the increasing burden of infections by multidrug-resistant strains. To identify such a novel class of antibiotics, a chemical library of unique 3-D bioinspired molecules was explored revealing a promising, mycobacterium specific Tricyclic SpiroLactam (TriSLa) hit. Chemical optimization of the TriSLa scaffold delivered potent analogues with nanomolar activity against replicating and nonreplicating Mycobacterium tuberculosis. Characterization of isolated TriSLa-resistant mutants, and biochemical studies, found TriSLas to act as allosteric inhibitors of type II NADH dehydrogenases (Ndh-2 of the electron transport chain), resulting in an increase in bacterial NADH/NAD+ ratios and decreased ATP levels. TriSLas are chemically distinct from other inhibitors of Ndh-2 but share a dependence for fatty acids for activity. Finally, in vivo proof-of-concept studies showed TriSLas to protect zebrafish larvae from Mycobacterium marinum infection, suggesting a vulnerability of Ndh-2 inhibition in mycobacterial infections.
Collapse
Affiliation(s)
- Sushovan Dam
- Univ.
Lille, CNRS, Inserm, CHU Lille, Institut Pasteur Lille, U1019 - UMR
9017 - CIIL - Center for Infection and Immunity of Lille, F-59000 Lille, France
| | - Salia Tangara
- Univ.
Lille, Inserm, Institut Pasteur de Lille, U1177 - Drugs and Molecules
for Living Systems, F-59000 Lille, France
| | - Claire Hamela
- Centre
National de la Recherche Scientifique, Institut de Recherche en Infectiologie
de Montpellier, UMR 9004, Université
de Montpellier, 34293 Montpellier, France
| | - Theo Hattabi
- Univ.
Lille, Inserm, Institut Pasteur de Lille, U1177 - Drugs and Molecules
for Living Systems, F-59000 Lille, France
| | - Léo Faïon
- Univ.
Lille, Inserm, Institut Pasteur de Lille, U1177 - Drugs and Molecules
for Living Systems, F-59000 Lille, France
| | - Paul Carre
- Univ.
Lille, CNRS, Inserm, CHU Lille, Institut Pasteur Lille, U1019 - UMR
9017 - CIIL - Center for Infection and Immunity of Lille, F-59000 Lille, France
| | - Rudy Antoine
- Univ.
Lille, CNRS, Inserm, CHU Lille, Institut Pasteur Lille, U1019 - UMR
9017 - CIIL - Center for Infection and Immunity of Lille, F-59000 Lille, France
| | - Adrien Herledan
- Univ.
Lille, Inserm, Institut Pasteur de Lille, U1177 - Drugs and Molecules
for Living Systems, F-59000 Lille, France
| | - Florence Leroux
- Univ.
Lille, Inserm, Institut Pasteur de Lille, U1177 - Drugs and Molecules
for Living Systems, F-59000 Lille, France
| | - Catherine Piveteau
- Univ.
Lille, Inserm, Institut Pasteur de Lille, U1177 - Drugs and Molecules
for Living Systems, F-59000 Lille, France
| | - Maxime Eveque
- Univ.
Lille, Inserm, Institut Pasteur de Lille, U1177 - Drugs and Molecules
for Living Systems, F-59000 Lille, France
| | - Marion Flipo
- Univ.
Lille, Inserm, Institut Pasteur de Lille, U1177 - Drugs and Molecules
for Living Systems, F-59000 Lille, France
| | - Benoit Deprez
- Univ.
Lille, Inserm, Institut Pasteur de Lille, U1177 - Drugs and Molecules
for Living Systems, F-59000 Lille, France
| | - Laurent Kremer
- Centre
National de la Recherche Scientifique, Institut de Recherche en Infectiologie
de Montpellier, UMR 9004, Université
de Montpellier, 34293 Montpellier, France,INSERM, IRIM, 34293 Montpellier, France
| | - Nicolas Willand
- Univ.
Lille, Inserm, Institut Pasteur de Lille, U1177 - Drugs and Molecules
for Living Systems, F-59000 Lille, France,
| | - Baptiste Villemagne
- Univ.
Lille, Inserm, Institut Pasteur de Lille, U1177 - Drugs and Molecules
for Living Systems, F-59000 Lille, France,
| | - Ruben C. Hartkoorn
- Univ.
Lille, CNRS, Inserm, CHU Lille, Institut Pasteur Lille, U1019 - UMR
9017 - CIIL - Center for Infection and Immunity of Lille, F-59000 Lille, France,
| |
Collapse
|
5
|
Recent advances in oxazolidinones as antituberculosis agents. Future Med Chem 2022; 14:1149-1165. [PMID: 35866418 DOI: 10.4155/fmc-2022-0079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Tuberculosis (TB) is an infectious and fatal disease caused by Mycobacterium tuberculosis (Mtb) and remains a serious public health threat; therefore, the development of new antitubercular agents is a priority for the World Health Organization's End TB strategy and the United Nations' Sustainable Development Goals to eradicate TB. Oxazolidinones are a class of synthetic antibacterial agents with a distinct mode of action developed for the treatment of Gram-positive bacterial infections. Many oxazolidinones exhibit good activity against Mtb, and some are currently in clinical trials for multidrug-resistant TB and extensively drug-resistant TB therapy. In this review, the mechanism of action, activity and toxicity of oxazolidinones and recent progress in the research and development of oxazolidinones as anti-TB agents are summarized.
Collapse
|
6
|
Lane TR, Urbina F, Rank L, Gerlach J, Riabova O, Lepioshkin A, Kazakova E, Vocat A, Tkachenko V, Cole S, Makarov V, Ekins S. Machine Learning Models for Mycobacterium tuberculosisIn Vitro Activity: Prediction and Target Visualization. Mol Pharm 2022; 19:674-689. [PMID: 34964633 PMCID: PMC9121329 DOI: 10.1021/acs.molpharmaceut.1c00791] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Tuberculosis (TB) is a major global health challenge, with approximately 1.4 million deaths per year. There is still a need to develop novel treatments for patients infected with Mycobacterium tuberculosis (Mtb). There have been many large-scale phenotypic screens that have led to the identification of thousands of new compounds. Yet, there is very limited investment in TB drug discovery which points to the need for new methods to increase the efficiency of drug discovery against Mtb. We have used machine learning approaches to learn from the public Mtb data, resulting in many data sets and models with robust enrichment and hit rates leading to the discovery of new active compounds. Recently, we have curated predominantly small-molecule Mtb data and developed new machine learning classification models with 18 886 molecules at different activity cutoffs. We now describe the further validation of these Bayesian models using a library of over 1000 molecules synthesized as part of EU-funded New Medicines for TB and More Medicines for TB programs. We highlight molecular features which are enriched in these active compounds. In addition, we provide new regression and classification models that can be used for scoring compound libraries or used to design new molecules. We have also visualized these molecules in the context of known molecular targets and identified clusters in chemical property space, which may aid in future target identification efforts. Finally, we are also making these data sets publicly available, representing a significant increase to the available Mtb inhibition data in the public domain.
Collapse
Affiliation(s)
- Thomas R. Lane
- Collaborations Pharmaceuticals, Inc., 840 Main Campus Drive, Lab 3510 Raleigh, NC 27606, USA
| | - Fabio Urbina
- Collaborations Pharmaceuticals, Inc., 840 Main Campus Drive, Lab 3510 Raleigh, NC 27606, USA
| | - Laura Rank
- Collaborations Pharmaceuticals, Inc., 840 Main Campus Drive, Lab 3510 Raleigh, NC 27606, USA
| | - Jacob Gerlach
- Collaborations Pharmaceuticals, Inc., 840 Main Campus Drive, Lab 3510 Raleigh, NC 27606, USA
| | - Olga Riabova
- Research Center of Biotechnology RAS, 119071 Moscow, Russia
| | | | - Elena Kazakova
- Research Center of Biotechnology RAS, 119071 Moscow, Russia
| | - Anthony Vocat
- Global Health Institute, Ecole Polytechnique Fédérale de Lausanne, Lausanne 1015, Switzerland
| | - Valery Tkachenko
- Science Data Experts, 14909 Forest Landing Cir, Rockville, MD 20850
| | | | - Vadim Makarov
- Research Center of Biotechnology RAS, 119071 Moscow, Russia
| | - Sean Ekins
- Collaborations Pharmaceuticals, Inc., 840 Main Campus Drive, Lab 3510 Raleigh, NC 27606, USA
| |
Collapse
|
7
|
Synthesis and Antimycobacterial Activity of 3-Phenyl-1 H-indoles. MOLECULES (BASEL, SWITZERLAND) 2021; 26:molecules26175148. [PMID: 34500579 PMCID: PMC8433792 DOI: 10.3390/molecules26175148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 08/20/2021] [Accepted: 08/23/2021] [Indexed: 11/16/2022]
Abstract
Tuberculosis has been described as a global health crisis since the 1990s, with an estimated 1.4 million deaths in the last year. Herein, a series of 20 1H-indoles were synthesized and evaluated as in vitro inhibitors of Mycobacterium tuberculosis (Mtb) growth. Furthermore, the top hit compounds were active against multidrug-resistant strains, without cross-resistance with first-line drugs. Exposing HepG2 and Vero cells to the molecules for 72 h showed that one of the evaluated structures was devoid of apparent toxicity. In addition, this 3-phenyl-1H-indole showed no genotoxicity signals. Finally, time-kill and pharmacodynamic model analyses demonstrated that this compound has bactericidal activity at concentrations close to the Minimum Inhibitory Concentration, coupled with a strong time-dependent behavior. To the best of our knowledge, this study describes the activity of 3-phenyl-1H-indole against Mtb for the first time.
Collapse
|
8
|
Natural products from Brazilian biodiversity identified as potential inhibitors of PknA and PknB of M. tuberculosis using molecular modeling tools. Comput Biol Med 2021; 136:104694. [PMID: 34365277 DOI: 10.1016/j.compbiomed.2021.104694] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 07/07/2021] [Accepted: 07/23/2021] [Indexed: 11/21/2022]
Abstract
Mycobacterium tuberculosis was discovered in 1882 by Robert Koch but, since its discovery, the tuberculosis (TB) epidemic has endured, being one of the top 10 causes of death worldwide. Drug-resistant TB continues to be a public health threat and bioactive compounds with a new mode of action (MoA) are needed to overcome this. Since natural products are described as important sources for the development of new drugs, the objective of this work was to identify potential ligands from Brazilian natural products (NPs) for M. tuberculosis targets using molecular modeling tools. Using chemogenomics we identified the Serine/Threonine Protein Kinase PknB as a putative target for 13 NPs from a database from Brazilian biodiversity (NuBBE). Literature data supported further investigation of NuBBE105, NuBBE598, NuBBE936, NuBBE964, NuBBE1045, and NuBBE1180 by molecular docking and dynamics. Key interactions were observed with PknB and simulations confirmed stability and favorable binding energies. Considering structural similarity with PknB, we further explored binding of the NPs to PknA, critical for M. tuberculosis survival, and all of them resembled important interactions with the enzyme, showing stable and favorable binding energies, whilst van der Waals interactions seem to play a key role for binding to PknA and PknB. NuBBE936 and NuBBE1180 have already had their antimycobacterial activity reported and our results can provide a basis for their MoA. Finally, the other NPs which have not been tested against M. tuberculosis deserve further investigation, aiming at the discovery of antimycobacterial drug candidates with innovative MoA.
Collapse
|
9
|
Imran M, A S A, Thabet HK, Abida, Afroz Bakht M. Synthetic molecules as DprE1 inhibitors: A patent review. Expert Opin Ther Pat 2021; 31:759-772. [PMID: 33709862 DOI: 10.1080/13543776.2021.1902990] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
INTRODUCTION In recent years, the advent of multidrug-resistant tuberculosis (MDR-TB), the extensively-resistant TB (XDR-TB), and the total drug-resistant-TB (TDR-TB) have led the community to develop new antitubercular molecules. The decaprenylphosphoryl-β-D-ribose-2'-epimerase-1 (DprE1) is an established target to developed new anti-TB drugs. This enzyme is required to synthesize the cell wall of Mycobacterium tuberculosis (Mtb). AREA COVERED This patent review focuses on the granted patents and patent applications related to the chemical entities developed as DprE1 inhibitors for TB treatment from the publication year of the BTZ-043 compound patent application (2007) till 30 September 2020. EXPERT OPINION The DprE1 has many advantages in the development of new antitubercular molecules, for example, its location in the periplasm of the Mtb cell wall and its absence in the human body. This indicates that the DprE1 inhibitors are selective for Mtb, and their toxic and side effects on the human body may be negligible or small. Accordingly, the use of DprE1 inhibitors may be benefic for patients with drug-resistant bacteria that require long-term medication. Four molecules are in clinical trials, which could become the drugs of the future for TB-therapy.
Collapse
Affiliation(s)
- Mohd Imran
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Northern Border University, Rafha, Saudi Arabia
| | - Alshrari A S
- Department of Biological Sciences, Faculty of Science, Northern Border University, Arar, Saudi Arabia
| | - Hamdy Kh Thabet
- cDepartment of Chemistry, Faculty of Arts and Science, Northern Border University, Rafha, Saudi Arabia
| | - Abida
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Northern Border University, Rafha, Saudi Arabia
| | - Md Afroz Bakht
- dDepartment of Chemistry, College of Science and Humanities, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| |
Collapse
|
10
|
Fullam E, Young RJ. Physicochemical properties and Mycobacterium tuberculosis transporters: keys to efficacious antitubercular drugs? RSC Med Chem 2020; 12:43-56. [PMID: 34041481 PMCID: PMC8130550 DOI: 10.1039/d0md00265h] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 10/15/2020] [Indexed: 12/14/2022] Open
Abstract
Securing novel, safe, and effective medicines to treat Mycobacterium tuberculosis remains an elusive goal, particularly influenced by the largely impervious Mtb envelope that limits exposure and thus efficacy of inhibitors at their cellular and periplasmic targets. The impact of physicochemical properties on pharmacokinetic parameters that govern oral absorption and exposure at sites of infection is considered alongside how these properties influence penetration of the Mtb envelope, with the likely influence of transporter proteins. The findings are discussed to benchmark current drugs and the emerging pipeline, whilst considering tactics for future rational and targeted design strategies, based around emerging data on Mtb transporters and their structures and functions.
Collapse
Affiliation(s)
- Elizabeth Fullam
- School of Life Sciences, University of Warwick Coventry CV4 7AL UK
| | | |
Collapse
|
11
|
Makarov V, Salina E, Reynolds RC, Kyaw Zin PP, Ekins S. Molecule Property Analyses of Active Compounds for Mycobacterium tuberculosis. J Med Chem 2020; 63:8917-8955. [PMID: 32259446 DOI: 10.1021/acs.jmedchem.9b02075] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Tuberculosis (TB) continues to claim the lives of around 1.7 million people per year. Most concerning are the reports of multidrug drug resistance. Paradoxically, this global health pandemic is demanding new therapies when resources and interest are waning. However, continued tuberculosis drug discovery is critical to address the global health need and burgeoning multidrug resistance. Many diverse classes of antitubercular compounds have been identified with activity in vitro and in vivo. Our analyses of over 100 active leads are representative of thousands of active compounds generated over the past decade, suggests that they come from few chemical classes or natural product sources. We are therefore repeatedly identifying compounds that are similar to those that preceded them. Our molecule-centered cheminformatics analyses point to the need to dramatically increase the diversity of chemical libraries tested and get outside of the historic Mtb property space if we are to generate novel improved antitubercular leads.
Collapse
Affiliation(s)
- Vadim Makarov
- FRC Fundamentals of Biotechnology, Russian Academy of Science, Moscow 119071, Russia
| | - Elena Salina
- FRC Fundamentals of Biotechnology, Russian Academy of Science, Moscow 119071, Russia
| | - Robert C Reynolds
- Department of Medicine, Division of Hematology and Oncology, University of Alabama at Birmingham, NP 2540 J, 1720 Second Avenue South, Birmingham, Alabama 35294-3300, United States
| | - Phyo Phyo Kyaw Zin
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695, United States.,Bioinformatics Research Center, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Sean Ekins
- Collaborations Pharmaceuticals, Inc., 840 Main Campus Drive, Lab 3510 Raleigh, North Carolina 27606, United States
| |
Collapse
|
12
|
Biosynthesis of Galactan in Mycobacterium tuberculosis as a Viable TB Drug Target? Antibiotics (Basel) 2020; 9:antibiotics9010020. [PMID: 31935842 PMCID: PMC7168186 DOI: 10.3390/antibiotics9010020] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 12/27/2019] [Accepted: 01/02/2020] [Indexed: 12/21/2022] Open
Abstract
While target-based drug design has proved successful in several therapeutic areas, this approach has not yet provided compelling outcomes in the field of antibacterial agents. This statement remains especially true for the development of novel therapeutic interventions against tuberculosis, an infectious disease that is among the top ten leading causes of death globally. Mycobacterial galactan is an important component of the protective cell wall core of the tuberculosis pathogen and it could provide a promising target for the design of new drugs. In this review, we summarize the current knowledge on galactan biosynthesis in Mycobacterium tuberculosis, including landmark findings that led to the discovery and understanding of three key enzymes in this pathway: UDP-galactose mutase, and galactofuranosyl transferases GlfT1 and GlfT2. Moreover, we recapitulate the efforts aimed at their inhibition. The predicted common transition states of the three enzymes provide the lucrative possibility of multitargeting in pharmaceutical development, a favourable property in the mitigation of drug resistance. We believe that a tight interplay between target-based computational approaches and experimental methods will result in the development of original inhibitors that could serve as the basis of a new generation of drugs against tuberculosis.
Collapse
|
13
|
Braunstein M, Hickey AJ, Ekins S. Why Wait? The Case for Treating Tuberculosis with Inhaled Drugs. Pharm Res 2019; 36:166. [PMID: 31650321 PMCID: PMC7607971 DOI: 10.1007/s11095-019-2704-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 09/13/2019] [Indexed: 11/27/2022]
Abstract
The discovery of drugs to treat tuberculosis (TB) was a major medical milestone in the twentieth century. However, from the outset, drug resistance was observed. Currently, of the 10 million people that exhibit TB symptoms each year, 450,000 have multidrug or extensively drug resistant (MDR or XDR) TB. While greater understanding of the host and pathogen (Mycobacterium tuberculosis, Mtb) coupled with scientific ingenuity will lead to new drugs and vaccines, in the meantime 4000 people die daily from TB. Thus, efforts to improve existing TB drugs should also be prioritized. Improved efficacy and decreased dose and associated toxicity of existing drugs would translate to greater compliance, life expectancy and quality of life of Mtb infected individuals. One potential strategy to improve existing drugs is to deliver them by inhalation as aerosols to the lung, the primary site of Mtb infection. Inhaled drugs are used for other pulmonary diseases, but they have yet to be utilized for TB. Inhaled therapies for TB represent an untapped opportunity that the pharmaceutical, clinical and regulatory communities should consider.
Collapse
Affiliation(s)
- Miriam Braunstein
- Department of Microbiology and Immunology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Anthony J Hickey
- RTI International, Research Triangle Park, North Carolina, USA
- UNC Catalyst for Rare Diseases, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Sean Ekins
- UNC Catalyst for Rare Diseases, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA.
- Collaborations Pharmaceuticals, Inc., 840 Main Campus Drive, Lab 3510, Raleigh, North Carolina, USA.
| |
Collapse
|
14
|
Liu R, Krchnak V, Brown SN, Miller MJ. Deuteration of BTZ043 Extends the Lifetime of Meisenheimer Intermediates to the Antituberculosis Nitroso Oxidation State. ACS Med Chem Lett 2019; 10:1462-1466. [PMID: 31620234 DOI: 10.1021/acsmedchemlett.9b00308] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 08/29/2019] [Indexed: 01/19/2023] Open
Abstract
Substituted nitrobenzothiazinones (BTZs) are potent antituberculosis prodrugs that are reductively activated to produce nitroso moieties that form covalent adducts with a cysteine residue of decaprenylphosphoryl-β-d-ribose-2'-oxidase (DprE1) of Mycobacterium tuberculosis (Mtb). The resulting cell wall synthesis inhibition is lethal to Mtb, leading to consideration of development of BTZs for clinical use. The hydride-induced reduction of the nitroaromatic proceeds by reversible formation of the corresponding Meisenheimer complex. Herein we demonstrate that chemical reduction of BTZ043 with NaBD4 followed by reoxidation incorporates deuterium into the core nitro aromatic warhead. Subsequent reduction of the deuterated species is not affected, but, as expected, reoxidation is slowed by the deuterium isotope effect, thus prolonging the lifetime of the active nitroso oxidation state.
Collapse
Affiliation(s)
- Rui Liu
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Viktor Krchnak
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
- Department of Organic Chemistry, Palacky University, 17. Listopadu 12, Olomouc 771 46, Czech Republic
| | - Seth N. Brown
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Marvin J. Miller
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
| |
Collapse
|
15
|
Salina EG, Ekins S, Makarov VA. A rapid method for estimation of the efficacy of potential antimicrobials in humans and animals by agar diffusion assay. Chem Biol Drug Des 2018; 93:1021-1025. [PMID: 30468306 DOI: 10.1111/cbdd.13427] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 10/11/2018] [Accepted: 10/18/2018] [Indexed: 11/29/2022]
Abstract
Drug resistance continues to challenge traditional antimicrobial drugs and limit their clinical utility. This requires us to continue our search for new drug candidates with novel mechanisms of action against infectious diseases. We now describe a simple agar diffusion assay, which can be used as a general method for the rapid detection of antimicrobial activity of drug candidates in animal or human blood plasma for the ultimate prediction of the efficacy of potential drugs prior to clinical trials. We present an example for a clinical candidate against Mycobacterium tuberculosis.
Collapse
Affiliation(s)
- Elena G Salina
- Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Moscow, Russia
| | - Sean Ekins
- Collaborations Pharmaceuticals, Inc., Raleigh, North Carolina
| | - Vadim A Makarov
- Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
16
|
Lane T, Russo DP, Zorn KM, Clark AM, Korotcov A, Tkachenko V, Reynolds RC, Perryman AL, Freundlich JS, Ekins AS. Comparing and Validating Machine Learning Models for Mycobacterium tuberculosis Drug Discovery. Mol Pharm 2018; 15:4346-4360. [PMID: 29672063 PMCID: PMC6167198 DOI: 10.1021/acs.molpharmaceut.8b00083] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Tuberculosis is a global health dilemma. In 2016, the WHO reported 10.4 million incidences and 1.7 million deaths. The need to develop new treatments for those infected with Mycobacterium tuberculosis ( Mtb) has led to many large-scale phenotypic screens and many thousands of new active compounds identified in vitro. However, with limited funding, efforts to discover new active molecules against Mtb needs to be more efficient. Several computational machine learning approaches have been shown to have good enrichment and hit rates. We have curated small molecule Mtb data and developed new models with a total of 18,886 molecules with activity cutoffs of 10 μM, 1 μM, and 100 nM. These data sets were used to evaluate different machine learning methods (including deep learning) and metrics and to generate predictions for additional molecules published in 2017. One Mtb model, a combined in vitro and in vivo data Bayesian model at a 100 nM activity yielded the following metrics for 5-fold cross validation: accuracy = 0.88, precision = 0.22, recall = 0.91, specificity = 0.88, kappa = 0.31, and MCC = 0.41. We have also curated an evaluation set ( n = 153 compounds) published in 2017, and when used to test our model, it showed the comparable statistics (accuracy = 0.83, precision = 0.27, recall = 1.00, specificity = 0.81, kappa = 0.36, and MCC = 0.47). We have also compared these models with additional machine learning algorithms showing Bayesian machine learning models constructed with literature Mtb data generated by different laboratories generally were equivalent to or outperformed deep neural networks with external test sets. Finally, we have also compared our training and test sets to show they were suitably diverse and different in order to represent useful evaluation sets. Such Mtb machine learning models could help prioritize compounds for testing in vitro and in vivo.
Collapse
Affiliation(s)
- Thomas Lane
- Collaborations Pharmaceuticals, Inc., Main Campus Drive, Lab 3510 Raleigh, NC 27606, USA
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Daniel P. Russo
- Collaborations Pharmaceuticals, Inc., Main Campus Drive, Lab 3510 Raleigh, NC 27606, USA
- The Rutgers Center for Computational and Integrative Biology, Camden, NJ, 08102, USA
| | - Kimberley M. Zorn
- Collaborations Pharmaceuticals, Inc., Main Campus Drive, Lab 3510 Raleigh, NC 27606, USA
| | - Alex M. Clark
- Molecular Materials Informatics, Inc., 1900 St. Jacques #302, Montreal H3J 2S1, Quebec, Canada
| | - Alexandru Korotcov
- Science Data Software, LLC, 14914 Bradwill Court, Rockville, MD 20850, USA
| | - Valery Tkachenko
- Science Data Software, LLC, 14914 Bradwill Court, Rockville, MD 20850, USA
| | - Robert C. Reynolds
- Department of Medicine, Division of Hematology and Oncology, University of Alabama at Birmingham, NP 2540 J, 1720 2Avenue South, Birmingham, AL 35294-3300, USA
| | - Alexander L. Perryman
- Department of Pharmacology, Physiology and Neuroscience, Rutgers University-New Jersey Medical School, Newark, New Jersey 07103, USA
| | - Joel S. Freundlich
- Department of Pharmacology, Physiology and Neuroscience, Rutgers University-New Jersey Medical School, Newark, New Jersey 07103, USA
- Division of Infectious Diseases, Department of Medicine, and the Ruy V. Lourenço Center for the Study of Emerging and Re-emerging Pathogens, Rutgers University–New Jersey Medical School, Newark, New Jersey 07103, USA
| | - and Sean Ekins
- Collaborations Pharmaceuticals, Inc., Main Campus Drive, Lab 3510 Raleigh, NC 27606, USA
| |
Collapse
|
17
|
Montgomery SA, Young EF, Durham PG, Zulauf KE, Rank L, Miller BK, Hayden JD, Lin FC, Welch JT, Hickey AJ, Braunstein M. Efficacy of pyrazinoic acid dry powder aerosols in resolving necrotic and non-necrotic granulomas in a guinea pig model of tuberculosis. PLoS One 2018; 13:e0204495. [PMID: 30261007 PMCID: PMC6160074 DOI: 10.1371/journal.pone.0204495] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Accepted: 09/10/2018] [Indexed: 01/01/2023] Open
Abstract
New therapeutic strategies are needed to treat drug resistant tuberculosis (TB) and to improve treatment for drug sensitive TB. Pyrazinamide (PZA) is a critical component of current first-line TB therapy. However, the rise in PZA-resistant TB cases jeopardizes the future utility of PZA. To address this problem, we used the guinea pig model of TB and tested the efficacy of an inhaled dry powder combination, referred to as Pyrazinoic acid/ester Dry Powder (PDP), which is comprised of pyrazinoic acid (POA), the active moiety of PZA, and pyrazinoic acid ester (PAE), which is a PZA analog. Both POA and PAE have the advantage of being able to act on PZA-resistant Mycobacterium tuberculosis. When used in combination with oral rifampicin (R), inhaled PDP had striking effects on tissue pathology. Effects were observed in lungs, the site of delivery, but also in the spleen and liver indicating both local and systemic effects of inhaled PDP. Tissue granulomas that harbor M. tuberculosis in a persistent state are a hallmark of TB and they pose a challenge for therapy. Compared to other treatments, which preferentially cleared non-necrotic granulomas, R+PDP reduced necrotic granulomas more effectively. The increased ability of R+PDP to act on more recalcitrant necrotic granulomas suggests a novel mechanism of action. The results presented in this report reveal the potential for developing therapies involving POA that are optimized to target necrotic as well as non-necrotic granulomas as a means of achieving more complete sterilization of M. tuberculosis bacilli and preventing disease relapse when therapy ends.
Collapse
MESH Headings
- Aerosols
- Animals
- Antitubercular Agents/administration & dosage
- Antitubercular Agents/pharmacokinetics
- Bacterial Load
- Disease Models, Animal
- Drug Therapy, Combination
- Dry Powder Inhalers
- Granuloma, Respiratory Tract/drug therapy
- Granuloma, Respiratory Tract/microbiology
- Granuloma, Respiratory Tract/pathology
- Guinea Pigs
- Male
- Mycobacterium tuberculosis/drug effects
- Necrosis
- Pyrazinamide/administration & dosage
- Pyrazinamide/analogs & derivatives
- Pyrazinamide/pharmacokinetics
- Respiratory Tract Absorption
- Rifampin/administration & dosage
- Tuberculosis, Multidrug-Resistant/drug therapy
- Tuberculosis, Multidrug-Resistant/pathology
- Tuberculosis, Pulmonary/drug therapy
- Tuberculosis, Pulmonary/microbiology
- Tuberculosis, Pulmonary/pathology
Collapse
Affiliation(s)
- Stephanie A. Montgomery
- Department of Pathology and Laboratory Medicine and Lineberger Comprehensive Cancer Center, School of Medicine, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Ellen F. Young
- Department of Microbiology and Immunology, School of Medicine, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Phillip G. Durham
- RTI International, Research Triangle Park, North Carolina, United States of America
| | - Katelyn E. Zulauf
- Department of Microbiology and Immunology, School of Medicine, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Laura Rank
- Department of Microbiology and Immunology, School of Medicine, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Brittany K. Miller
- Department of Microbiology and Immunology, School of Medicine, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Jennifer D. Hayden
- Department of Microbiology and Immunology, School of Medicine, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Feng-Chang Lin
- Department of Biostatistics and North Carolina Translational and Clinical Sciences Institute, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - John T. Welch
- Department of Chemistry, University at Albany, Albany, New York, United States of America
| | - Anthony J. Hickey
- RTI International, Research Triangle Park, North Carolina, United States of America
| | - Miriam Braunstein
- Department of Microbiology and Immunology, School of Medicine, University of North Carolina, Chapel Hill, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
18
|
Ekins S. A summary of some EU funded Tuberculosis drug discovery collaborations. Drug Discov Today 2018; 22:479-480. [PMID: 28325272 DOI: 10.1016/j.drudis.2017.03.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Sean Ekins
- Collaborations Pharmaceuticals, Inc., 5616 Hilltop Needmore Road, Fuquay-Varina, NC 27526, USA
| |
Collapse
|
19
|
Mori G, Orena BS, Franch C, Mitchenall LA, Godbole AA, Rodrigues L, Aguilar-Pérez C, Zemanová J, Huszár S, Forbak M, Lane TR, Sabbah M, Deboosere N, Frita R, Vandeputte A, Hoffmann E, Russo R, Connell N, Veilleux C, Jha RK, Kumar P, Freundlich JS, Brodin P, Aínsa JA, Nagaraja V, Maxwell A, Mikušová K, Pasca MR, Ekins S. The EU approved antimalarial pyronaridine shows antitubercular activity and synergy with rifampicin, targeting RNA polymerase. Tuberculosis (Edinb) 2018; 112:98-109. [PMID: 30205975 DOI: 10.1016/j.tube.2018.08.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 08/03/2018] [Accepted: 08/05/2018] [Indexed: 12/19/2022]
Abstract
The search for compounds with biological activity for many diseases is turning increasingly to drug repurposing. In this study, we have focused on the European Union-approved antimalarial pyronaridine which was found to have in vitro activity against Mycobacterium tuberculosis (MIC 5 μg/mL). In macromolecular synthesis assays, pyronaridine resulted in a severe decrease in incorporation of 14C-uracil and 14C-leucine similar to the effect of rifampicin, a known inhibitor of M. tuberculosis RNA polymerase. Surprisingly, the co-administration of pyronaridine (2.5 μg/ml) and rifampicin resulted in in vitro synergy with an MIC 0.0019-0.0009 μg/mL. This was mirrored in a THP-1 macrophage infection model, with a 16-fold MIC reduction for rifampicin when the two compounds were co-administered versus rifampicin alone. Docking pyronaridine in M. tuberculosis RNA polymerase suggested the potential for it to bind outside of the RNA polymerase rifampicin binding pocket. Pyronaridine was also found to have activity against a M. tuberculosis clinical isolate resistant to rifampicin, and when combined with rifampicin (10% MIC) was able to inhibit M. tuberculosis RNA polymerase in vitro. All these findings, and in particular the synergistic behavior with the antitubercular rifampicin, inhibition of RNA polymerase in combination in vitro and its current use as a treatment for malaria, may suggest that pyronaridine could also be used as an adjunct for treatment against M. tuberculosis infection. Future studies will test potential for in vivo synergy, clinical utility and attempt to develop pyronaridine analogs with improved potency against M. tuberculosis RNA polymerase when combined with rifampicin.
Collapse
Affiliation(s)
- Giorgia Mori
- Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, 27100 Pavia, Italy
| | - Beatrice Silvia Orena
- Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, 27100 Pavia, Italy
| | - Clara Franch
- Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Lesley A Mitchenall
- Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Adwait Anand Godbole
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore 560012, India
| | - Liliana Rodrigues
- Departamento de Microbiología, Facultad de Medicina, and BIFI, Universidad de Zaragoza, and IIS-Aragón, 50009 Zaragoza, Spain; CIBER Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Spain; Fundación ARAID, Zaragoza, Spain
| | - Clara Aguilar-Pérez
- Departamento de Microbiología, Facultad de Medicina, and BIFI, Universidad de Zaragoza, and IIS-Aragón, 50009 Zaragoza, Spain; CIBER Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Spain
| | - Júlia Zemanová
- Department of Biochemistry, Faculty of Natural Sciences, Comenius University in Bratislava, Mlynská dolina, Ilkovičova 6, 84215, Bratislava, Slovakia
| | - Stanislav Huszár
- Department of Biochemistry, Faculty of Natural Sciences, Comenius University in Bratislava, Mlynská dolina, Ilkovičova 6, 84215, Bratislava, Slovakia
| | - Martin Forbak
- Department of Biochemistry, Faculty of Natural Sciences, Comenius University in Bratislava, Mlynská dolina, Ilkovičova 6, 84215, Bratislava, Slovakia
| | - Thomas R Lane
- Collaborations Pharmaceuticals, Inc., 840 Main Campus Drive, Lab 3510, Raleigh, NC 27606, USA
| | - Mohamad Sabbah
- Department of Chemistry, University of Cambridge, Lensfield Rd, Cambridge, CB2 1EW, UK
| | - Nathalie Deboosere
- Univ Lille, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 8204 - CIIL - Center for Infection and Immunity of Lille, 1 rue du Professeur Calmette, 59000 Lille, France
| | - Rosangela Frita
- Univ Lille, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 8204 - CIIL - Center for Infection and Immunity of Lille, 1 rue du Professeur Calmette, 59000 Lille, France
| | - Alexandre Vandeputte
- Univ Lille, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 8204 - CIIL - Center for Infection and Immunity of Lille, 1 rue du Professeur Calmette, 59000 Lille, France
| | - Eik Hoffmann
- Univ Lille, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 8204 - CIIL - Center for Infection and Immunity of Lille, 1 rue du Professeur Calmette, 59000 Lille, France
| | - Riccardo Russo
- Division of Infectious Disease, Department of Medicine and the Ruy V. Lourenço Center for the Study of Emerging and Re-emerging Pathogens, Rutgers University - New Jersey Medical School, Newark, NJ 07103, USA
| | - Nancy Connell
- Division of Infectious Disease, Department of Medicine and the Ruy V. Lourenço Center for the Study of Emerging and Re-emerging Pathogens, Rutgers University - New Jersey Medical School, Newark, NJ 07103, USA
| | - Courtney Veilleux
- Division of Infectious Disease, Department of Medicine and the Ruy V. Lourenço Center for the Study of Emerging and Re-emerging Pathogens, Rutgers University - New Jersey Medical School, Newark, NJ 07103, USA
| | - Rajiv K Jha
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore 560012, India
| | - Pradeep Kumar
- Division of Infectious Disease, Department of Medicine and the Ruy V. Lourenço Center for the Study of Emerging and Re-emerging Pathogens, Rutgers University - New Jersey Medical School, Newark, NJ 07103, USA
| | - Joel S Freundlich
- Division of Infectious Disease, Department of Medicine and the Ruy V. Lourenço Center for the Study of Emerging and Re-emerging Pathogens, Rutgers University - New Jersey Medical School, Newark, NJ 07103, USA; Department of Pharmacology, Physiology, and Neuroscience, Rutgers University - New Jersey Medical School, Newark, NJ, 07103, USA
| | - Priscille Brodin
- Univ Lille, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 8204 - CIIL - Center for Infection and Immunity of Lille, 1 rue du Professeur Calmette, 59000 Lille, France
| | - Jose Antonio Aínsa
- Departamento de Microbiología, Facultad de Medicina, and BIFI, Universidad de Zaragoza, and IIS-Aragón, 50009 Zaragoza, Spain; CIBER Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Spain
| | - Valakunja Nagaraja
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore 560012, India; Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore 560064, India
| | - Anthony Maxwell
- Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Katarína Mikušová
- Department of Biochemistry, Faculty of Natural Sciences, Comenius University in Bratislava, Mlynská dolina, Ilkovičova 6, 84215, Bratislava, Slovakia
| | - Maria Rosalia Pasca
- Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, 27100 Pavia, Italy
| | - Sean Ekins
- Collaborations Pharmaceuticals, Inc., 840 Main Campus Drive, Lab 3510, Raleigh, NC 27606, USA; Collaborative Drug Discovery, 1633 Bayshore Highway, Suite 342, Burlingame, CA 94403, USA.
| |
Collapse
|
20
|
Uddin R, Siddiqui QN, Azam SS, Saima B, Wadood A. Identification and characterization of potential druggable targets among hypothetical proteins of extensively drug resistant Mycobacterium tuberculosis (XDR KZN 605) through subtractive genomics approach. Eur J Pharm Sci 2018; 114:13-23. [DOI: 10.1016/j.ejps.2017.11.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2017] [Revised: 11/04/2017] [Accepted: 11/16/2017] [Indexed: 01/09/2023]
|
21
|
Dual Mechanism of Action of 5-Nitro-1,10-Phenanthroline against Mycobacterium tuberculosis. Antimicrob Agents Chemother 2017; 61:AAC.00969-17. [PMID: 28893784 DOI: 10.1128/aac.00969-17] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 08/25/2017] [Indexed: 12/24/2022] Open
Abstract
New chemotherapeutic agents with novel mechanisms of action are urgently required to combat the challenge imposed by the emergence of drug-resistant mycobacteria. In this study, a phenotypic whole-cell screen identified 5-nitro-1,10-phenanthroline (5NP) as a lead compound. 5NP-resistant isolates harbored mutations that were mapped to fbiB and were also resistant to the bicyclic nitroimidazole PA-824. Mechanistic studies confirmed that 5NP is activated in an F420-dependent manner, resulting in the formation of 1,10-phenanthroline and 1,10-phenanthrolin-5-amine as major metabolites in bacteria. Interestingly, 5NP also killed naturally resistant intracellular bacteria by inducing autophagy in macrophages. Structure-activity relationship studies revealed the essentiality of the nitro group for in vitro activity, and an analog, 3-methyl-6-nitro-1,10-phenanthroline, that had improved in vitro activity and in vivo efficacy in mice compared with that of 5NP was designed. These findings demonstrate that, in addition to a direct mechanism of action against Mycobacterium tuberculosis, 5NP also modulates the host machinery to kill intracellular pathogens.
Collapse
|
22
|
Emerging Approaches to Tuberculosis Drug Development: At Home in the Metabolome. Trends Pharmacol Sci 2017; 38:393-405. [PMID: 28169001 DOI: 10.1016/j.tips.2017.01.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Revised: 01/06/2017] [Accepted: 01/09/2017] [Indexed: 01/24/2023]
Abstract
Once considered a crowning achievement of modern drug development, tuberculosis (TB) chemotherapy has proven increasingly unable to keep pace with the spread of the pandemic and rise of drug resistance. Efforts to revive the TB drug development pipeline have, in the meantime, faltered. Closer analysis reveals key experimental deficiencies that have hindered our ability to 'reverse engineer' knowledge of antibiotic mechanisms into rational drug development. Here, we discuss the emerging potential of metabolomics; the systems level study of small molecule metabolites, to help overcome these gaps and serve as a unique biochemical bridge between the phenotypic properties of chemical compounds and biological targets.
Collapse
|