1
|
Liao J, Zhao W, Zhang Y, Zou Z, Zhang Q, Chen D, Du B, Li P. Dendrobium officinale Kimura et Migo polysaccharide ameliorated DNFB-induced atopic dermatitis in mice associated with suppressing MAPK/NF-κB/STAT3 signaling pathways. JOURNAL OF ETHNOPHARMACOLOGY 2024; 335:118677. [PMID: 39121927 DOI: 10.1016/j.jep.2024.118677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/28/2024] [Accepted: 08/05/2024] [Indexed: 08/12/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Dendrobium officinale Kimura et Migo as a valuable Chinese medicine has been used in China for more than 2000 years. Its main active components, polysaccharide (DOP), has been reported to have various pharmacological effects, including anti-inflammatory, antioxidant and alleviating AD effects. However, the precise mechanism underlying its therapeutic effect in AD remains largely unclear. AIM OF THE STUDY The present study sought to assess the efficacy of DOP and elucidate its intricate mechanisms in ameliorating DNFB-induced AD. MATERIALS AND METHODS Mice were sensitized with DNFB and treated with DOP application for 14 days. Treatment effects were assessed using dermatitis scores, ear thickness and scratching frequency. Epidermal thickness, mast cells and CD4+ T cells infiltration were detected by using H&E, toluidine blue staining and immunofluorescence staining respectively. Serum histamine (HIS), immunoglobulin E (IgE), thymic stromal lymphopoietin (TSLP), skin SOD, MDA, GHS, CAT, inflammatory cytokines (TNF-α, IFN-γ, IL-1β, IL-4, IL-5, IL-13) and chemokine (MIP-α, MDC, MCP-1) levels were quantify by ELISA and immunohistochemistry. Additionally, qPCR and Western blot analyses were performed to assess genes and proteins expression associated with MAPK/NF-κB/STAT3 signaling pathway. RESULTS The results indicated that DOP effectively mitigated AD-like skin lesions in mice through multiple pathways. It reduced epidermal thickness, ear thickness and scratching frequency in AD mice. Additionally, DOP mitigated inflammatory responses by decreasing the levels of inflammatory factors, as well as reducing serum levels of IgE, HIS, and TSLP. Moreover, DOP inhibited infiltration of mast cells and CD4+ T cells, suppressed the expression of skin chemokines such as MDC, MCP-1, and MIP-α, and enhanced filaggrin content in AD mice. Furthermore, DOP significantly boosted antioxidant capacity, as well as significantly reduced the expression of JAK1, STAT3, NF-κB p65, IκBα, ERK1/2, and p38 proteins and phosphorylated proteins such as p-JAK1, p-STAT3, p-NF-κB p65, p-IκBα, p-ERK1/2, and p-p38. CONCLUSIONS These findings suggested that DOP has significant anti-AD activity, primarily through reducing inflammatory responses, improving antioxidant capacity, repairing the skin barrier, and down-regulating key genes and proteins in MAPK/NF-κB/STAT3 signaling pathway, and that this study may provide valuable insights into the development of innovative therapies for the treatment of AD.
Collapse
Affiliation(s)
- Jingru Liao
- College of Food Science, South China Agricultural University, Guangzhou, Guangdong, 510640, China
| | - Wenjun Zhao
- College of Food Science, South China Agricultural University, Guangzhou, Guangdong, 510640, China
| | - Yuwei Zhang
- College of Food Science, South China Agricultural University, Guangzhou, Guangdong, 510640, China
| | - Zebin Zou
- College of Food Science, South China Agricultural University, Guangzhou, Guangdong, 510640, China
| | - Qilin Zhang
- College of Food Science, South China Agricultural University, Guangzhou, Guangdong, 510640, China
| | - Dongqiu Chen
- College of Food Science, South China Agricultural University, Guangzhou, Guangdong, 510640, China; Hua an Tang Biotech Group Co., Ltd., Guangzhou, 510000, China
| | - Bing Du
- College of Food Science, South China Agricultural University, Guangzhou, Guangdong, 510640, China
| | - Pan Li
- College of Food Science, South China Agricultural University, Guangzhou, Guangdong, 510640, China.
| |
Collapse
|
2
|
Brooks SG, Lopez LM, Mashoudy KD, Yosipovitch G, Czarnowicki T. Addressing Unmet Needs in Atopic Dermatitis: Evaluating Disease-Modifying Capabilities of Current and Emerging Therapies. Dermatitis 2024. [PMID: 39465269 DOI: 10.1089/derm.2024.0261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Atopic dermatitis (AD) is a highly burdensome inflammatory skin condition affecting nearly one-quarter of the pediatric population and often continuing into adulthood. Despite recent advancements in systemic therapies providing temporary symptom relief over the past decade, AD frequently remains difficult to control, necessitating increased dosages or alternative treatments due to recurrent disease. This review synthesizes current literature to identify unmet needs of treating AD beyond medication-related limitations and evaluates existing therapies for their efficacy in modifying underlying disease mechanisms. Key findings include variability in AD pathophysiology and phenotypes across different age groups and ethnicities, indicating a need for research into endotype-specific treatments. The literature also comprises evidence suggesting that select current drugs, such as targeted biologics and Janus Kinase (JAK) inhibitors, may offer long-term disease-modifying benefits. Future management strategies should explore novel approaches, including manipulation of the microbiome, immune response, and neural function, as these may lead to additional improvements in AD treatment and long-term symptom relief.
Collapse
Affiliation(s)
- Sarah G Brooks
- From the Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Coral Gables, Florida, USA
| | - Lourdes M Lopez
- From the Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Coral Gables, Florida, USA
| | - Kayla D Mashoudy
- From the Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Coral Gables, Florida, USA
| | - Gil Yosipovitch
- From the Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Coral Gables, Florida, USA
| | - Tali Czarnowicki
- From the Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Coral Gables, Florida, USA
| |
Collapse
|
3
|
Lee JS, Oh E, Oh H, Kim S, Ok S, Sa J, Lee JH, Shin YC, Bae YS, Choi CY, Lee S, Kwon HK, Yang S, Choi WI. Tacrolimus-loaded chitosan-based nanoparticles as an efficient topical therapeutic for the effective treatment of atopic dermatitis symptoms. Int J Biol Macromol 2024; 273:133005. [PMID: 38866268 DOI: 10.1016/j.ijbiomac.2024.133005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 06/03/2024] [Accepted: 06/06/2024] [Indexed: 06/14/2024]
Abstract
Atopic dermatitis (AD) is a chronic cutaneous disease with a complex underlying mechanism, and it cannot be completely cured. Thus, most treatment strategies for AD aim at relieving the symptoms. Although corticosteroids are topically applied to alleviate AD, adverse side effects frequently lead to the withdrawal of AD therapy. Tacrolimus (TAC), a calcineurin inhibitor, has been used to treat AD, but its high molecular weight and insolubility in water hinder its skin permeability. Herein, we developed and optimized TAC-loaded chitosan-based nanoparticles (TAC@CNPs) to improve the skin permeability of TAC by breaking the tight junctions in the skin. The prepared nanoparticles were highly loadable and efficient and exhibited appropriate characteristics for percutaneous drug delivery. TAC@CNP was stable for 4 weeks under physiological conditions. CNP released TAC in a controlled manner, with enhanced skin penetration observed. In vitro experiments showed that CNP was non-toxic to keratinocyte (HaCaT) cells, and TAC@CNP dispersed in an aqueous solution was as anti-proliferative as TAC solubilized in a good organic solvent. Importantly, an in vivo AD mouse model revealed that topical TAC@CNP containing ~1/10 of the dose of TAC found in commercially used Protopic® Ointment exhibited similar anti-inflammatory activity to that of the commercial product. TAC@CNP represents a potential therapeutic strategy for the management of AD.
Collapse
Affiliation(s)
- Jin Sil Lee
- Center for Bio-Healthcare Materials, Bio-Convergence Materials R&D Division, Korea Institute of Ceramic Engineering and Technology, 202, Osongsaengmyeong 1-ro, Osong-eup, Heungdeok-gu, Cheongju, Chungbuk 28160, Republic of Korea; School of Materials Science and Engineering, Gwangju Institute of Science and Technology, Cheomdan-gwagiro, 123, Buk-gu, Gwangju 61005, Republic of Korea
| | - Eunjeong Oh
- Department of Biological Sciences, Sungkyunkwan University, Suwon 16419, Republic of Korea; Department of Biomedical Sciences, Ajou University Graduate School of Medicine, Suwon 16499, Republic of Korea
| | - Hyeryeon Oh
- Center for Bio-Healthcare Materials, Bio-Convergence Materials R&D Division, Korea Institute of Ceramic Engineering and Technology, 202, Osongsaengmyeong 1-ro, Osong-eup, Heungdeok-gu, Cheongju, Chungbuk 28160, Republic of Korea; School of Materials Science and Engineering, Gwangju Institute of Science and Technology, Cheomdan-gwagiro, 123, Buk-gu, Gwangju 61005, Republic of Korea
| | - Sunghyun Kim
- Center for Bio-Healthcare Materials, Bio-Convergence Materials R&D Division, Korea Institute of Ceramic Engineering and Technology, 202, Osongsaengmyeong 1-ro, Osong-eup, Heungdeok-gu, Cheongju, Chungbuk 28160, Republic of Korea
| | - Subin Ok
- Department of Biological Sciences, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Junseo Sa
- Department of Biological Sciences, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | | | - Yong Chul Shin
- SKINMED Co Ltd., Daejeon 34028, Republic of Korea; Amicogen Inc, 64 Dongburo 1259, Jinsung, Jinju 52621, Republic of Korea
| | - Yong-Soo Bae
- Department of Biological Sciences, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Cheol Yong Choi
- Department of Biological Sciences, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Sangho Lee
- Department of Biological Sciences, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Ho-Keun Kwon
- Department of Microbiology and Immunology, Institute for Immunology and Immunological Diseases, Brain Korea 21 PLUS Project for Medical Sciences, Yonsei University College of Medicine, Seoul 03722, Republic of Korea.
| | - Siyoung Yang
- Department of Biological Sciences, Sungkyunkwan University, Suwon 16419, Republic of Korea.
| | - Won Il Choi
- Center for Bio-Healthcare Materials, Bio-Convergence Materials R&D Division, Korea Institute of Ceramic Engineering and Technology, 202, Osongsaengmyeong 1-ro, Osong-eup, Heungdeok-gu, Cheongju, Chungbuk 28160, Republic of Korea.
| |
Collapse
|
4
|
Wu J, Li L, Zhang T, Lu J, Tai Z, Zhu Q, Chen Z. The epidermal lipid-microbiome loop and immunity: Important players in atopic dermatitis. J Adv Res 2024:S2090-1232(24)00088-2. [PMID: 38460775 DOI: 10.1016/j.jare.2024.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 02/10/2024] [Accepted: 03/04/2024] [Indexed: 03/11/2024] Open
Abstract
BACKGROUND The promotion of epidermal barrier dysfunction is attributed to abnormalities in the lipid-microbiome positive feedback loop which significantly influences the imbalance of the epithelial immune microenvironment (EIME) in atopic dermatitis (AD). This imbalance encompasses impaired lamellar membrane integrity, heightened exposure to epidermal pathogens, and the regulation of innate and adaptive immunity. The lipid-microbiome loop is substantially influenced by intense adaptive immunity which is triggered by abnormal loop activity and affects the loop's integrity through the induction of atypical lipid composition and responses to dysregulated epidermal microbes. Immune responses participate in lipid abnormalities within the EIME by downregulating barrier gene expression and are further cascade-amplified by microbial dysregulation which is instigated by barrier impairment. AIM OF REVIEW This review examines the relationship between abnormal lipid composition, microbiome disturbances, and immune responses in AD while progressively substantiating the crosstalk mechanism among these factors. Based on this analysis, the "lipid-microbiome" positive feedback loop, regulated by immune responses, is proposed. KEY SCIENTIFIC CONCEPTS OF REVIEW The review delves into the impact of adaptive immune responses that regulate the EIME, driving AD, and investigates potential mechanisms by which lipid supplementation and probiotics may alleviate AD through the up-regulation of the epidermal barrier and modulation of immune signaling. This exploration offers support for targeting the EIME to attenuate AD.
Collapse
Affiliation(s)
- Junchao Wu
- School of Medicine, Shanghai University, Shanghai 200444, China; Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200443, China
| | - Lisha Li
- School of Medicine, Shanghai University, Shanghai 200444, China; Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200443, China
| | - Tingrui Zhang
- School of Medicine, Shanghai University, Shanghai 200444, China; Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200443, China
| | - Jiaye Lu
- School of Medicine, Shanghai University, Shanghai 200444, China; Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200443, China
| | - Zongguang Tai
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200443, China; Shanghai Engineering Research Center for Topical Chinese Medicine, Shanghai, 200443, China.
| | - Quangang Zhu
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200443, China; Shanghai Engineering Research Center for Topical Chinese Medicine, Shanghai, 200443, China.
| | - Zhongjian Chen
- School of Medicine, Shanghai University, Shanghai 200444, China; Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200443, China; Shanghai Engineering Research Center for Topical Chinese Medicine, Shanghai, 200443, China.
| |
Collapse
|
5
|
Liu Y, Zhang Y, Chang X, Liu X. MDIC3: Matrix decomposition to infer cell-cell communication. PATTERNS (NEW YORK, N.Y.) 2024; 5:100911. [PMID: 38370122 PMCID: PMC10873161 DOI: 10.1016/j.patter.2023.100911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 05/31/2023] [Accepted: 12/08/2023] [Indexed: 02/20/2024]
Abstract
Crosstalk among cells is vital for maintaining the biological function and intactness of systems. Most existing methods for investigating cell-cell communications are based on ligand-receptor (L-R) expression, and they focus on the study between two cells. Thus, the final communication inference results are particularly sensitive to the completeness and accuracy of the prior biological knowledge. Because existing L-R research focuses mainly on humans, most existing methods can only examine cell-cell communication for humans. As far as we know, there is currently no effective method to overcome this species limitation. Here, we propose MDIC3 (matrix decomposition to infer cell-cell communication), an unsupervised tool to investigate cell-cell communication in any species, and the results are not limited by specific L-R pairs or signaling pathways. By comparing it with existing methods for the inference of cell-cell communication, MDIC3 obtained better performance in both humans and mice.
Collapse
Affiliation(s)
- Yi Liu
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
- School of Mathematics and Statistics, Shandong University, Weihai 364209, China
| | - Yuelei Zhang
- School of Mathematics and Statistics, Shandong University, Weihai 364209, China
| | - Xiao Chang
- Institute of Statistics and Applied Mathematics, Anhui University of Finance and Economics, Bengbu 233030, China
| | - Xiaoping Liu
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| |
Collapse
|
6
|
Ren J, Liu T, Bi B, Sohail S, Din FU. Development and Evaluation of Tacrolimus Loaded Nano-Transferosomes for Skin Targeting and Dermatitis Treatment. J Pharm Sci 2024; 113:471-485. [PMID: 37898166 DOI: 10.1016/j.xphs.2023.10.033] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 10/23/2023] [Accepted: 10/23/2023] [Indexed: 10/30/2023]
Abstract
Tacrolimus (TRL) is used for the treatment of atopic dermatitis (AD) due to its T-cell stimulation effect. However, its significantly poor water solubility, low penetration and cytotoxicity have reduced its topical applications. Herein, tacrolimus loaded nano transfersomes (TRL-NTs) were prepared, followed by their incorporation into chitosan gel to prepare tacrolimus loaded nano transfersomal gel (TRL-NTsG). TEM analysis of the TRL-NTs was performed to check their morphology. DSC, XRD and FTIR analysis of the TRL-NTs were executed after lyophilization. Similarly, rheology, spreadability and deformability of the TRL-NTsG were investigated. In vitro release, ex vivo permeation and in vitro interaction of TRL-NTsG with keratinocytes and fibroblasts as well as their co-cultures were investigated along with their in vitro cell viability analysis. Moreover, in vivo skin deposition, ear thickness, histopathology and IgE level were also determined. Besides, 6 months stability study was also performed. Results demonstrated the uniformly distributed negatively charged nanovesicles with a mean particle size distribution of 163 nm and zeta potential of -27 mV. DSC and XRD exhibited the thermal stability and amorphous form of the drug, respectively. The TRL-NTsG showed excellent deformability, spreadability and rheological behavior. In vitro release studies exhibited an 8-fold better release of TRL from the TRL-NTsG. Similarly, 6-fold better permeation and stability of the TRL-NTsG with keratinocytes and fibroblasts as well as their co-cultures was observed. Furthermore, the ear thickness (0.6 mm) of the TRL-NTsG was found significantly reduced when compared with the untreated (1.7 mm) and TRL conventional gel treated mice (1.3 mm). The H&E staining showed no toxicity of the TRL-NTsG with significantly reduced IgE levels (120 ng/mL). The formulation was found stable for at least 6 months. These results suggested the efficacy of TRL in AD-induced animal models most importantly when incorporated in NTsG.
Collapse
Affiliation(s)
- Jingyu Ren
- Department of Dermatology, The First Hospital of Shanxi Medical University, Taiyuan City, Shanxi Province, 030001, China
| | - Tao Liu
- Shanxi Provincial Inspection and Testing Center, Taiyuan City, Shanxi Province, 030001, China
| | - Bo Bi
- Department of Dermatology, Yangquan Coalmine Group General Hospital, Yangquan City, Shanxi Province, 045000, China.
| | - Saba Sohail
- Nanomedicine Research Group, Department of Pharmacy, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Fakhar Ud Din
- Nanomedicine Research Group, Department of Pharmacy, Quaid-i-Azam University, Islamabad 45320, Pakistan
| |
Collapse
|
7
|
Steinhoff M, Ahmad F, Pandey A, Datsi A, AlHammadi A, Al-Khawaga S, Al-Malki A, Meng J, Alam M, Buddenkotte J. Neuro-immune communication regulating pruritus in atopic dermatitis. J Allergy Clin Immunol 2022; 149:1875-1898. [PMID: 35337846 DOI: 10.1016/j.jaci.2022.03.010] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 02/13/2022] [Accepted: 03/10/2022] [Indexed: 11/26/2022]
Abstract
Atopic dermatitis (AD) is a common, chronic-relapsing inflammatory skin disease with significant disease burden. Genetic and environmental trigger factors contribute to AD, activating two of our largest organs, the nervous and immune system. Dysregulation of neuro-immune circuits plays a key role in the pathophysiology of AD causing inflammation, pruritus, pain, and barrier dysfunction. Sensory nerves can be activated by environmental or endogenous trigger factors transmitting itch stimuli to the brain. Upon stimulation, sensory nerve endings also release neuromediators into the skin contributing again to inflammation, barrier dysfunction and itch. Additionally, dysfunctional peripheral and central neuronal structures contribute to neuroinflammation, sensitization, nerve elongation, neuropathic itch, thus chronification and therapy-resistance. Consequently, neuro-immune circuits in skin and central nervous system may be targets to treat pruritus in AD. Cytokines, chemokines, proteases, lipids, opioids, ions excite/sensitize sensory nerve endings not only induce itch but further aggravate/perpetuate inflammation, skin barrier disruption, and pruritus. Thus, targeted therapies for neuro-immune circuits as well as pathway inhibitors (e.g., kinase inhibitors) may be beneficial to control pruritus in AD either in systemic and/or topical form. Understanding neuro-immune circuits and neuronal signaling will optimize our approach to control all pathological mechanisms in AD, inflammation, barrier dysfunction and pruritus.
Collapse
Affiliation(s)
- Martin Steinhoff
- Department of Dermatology and Venereology, Hamad Medical Corporation, Doha, Qatar; Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar; Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar; Department of Dermatology, Weill Cornell Medicine-Qatar, Doha, Qatar; Qatar University, College of Medicine, Doha, Qatar; Department of Dermatology, Weill Cornell Medicine, New York, USA.
| | - Fareed Ahmad
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar; Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Atul Pandey
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar; Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Angeliki Datsi
- Institute for Transplantational Diagnostics and Cell Therapeutics, University Hospital Düsseldorf, Düsseldorf, Germany
| | - Ayda AlHammadi
- Department of Dermatology and Venereology, Hamad Medical Corporation, Doha, Qatar
| | - Sara Al-Khawaga
- Department of Dermatology and Venereology, Hamad Medical Corporation, Doha, Qatar
| | - Aysha Al-Malki
- Department of Dermatology and Venereology, Hamad Medical Corporation, Doha, Qatar
| | - Jianghui Meng
- National Institute for Cellular Biotechnology, Dublin City University, Dublin, Ireland
| | - Majid Alam
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar; Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Joerg Buddenkotte
- Department of Dermatology and Venereology, Hamad Medical Corporation, Doha, Qatar; Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar; Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| |
Collapse
|
8
|
Harms M, Habib MM, Nemska S, Nicolò A, Gilg A, Preising N, Sokkar P, Carmignani S, Raasholm M, Weidinger G, Kizilsavas G, Wagner M, Ständker L, Abadi AH, Jumaa H, Kirchhoff F, Frossard N, Sanchez-Garcia E, Münch J. An optimized derivative of an endogenous CXCR4 antagonist prevents atopic dermatitis and airway inflammation. Acta Pharm Sin B 2021; 11:2694-2708. [PMID: 34589390 PMCID: PMC8463264 DOI: 10.1016/j.apsb.2020.12.005] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 11/10/2020] [Accepted: 12/01/2020] [Indexed: 02/07/2023] Open
Abstract
Aberrant CXCR4/CXCL12 signaling is involved in many pathophysiological processes such as cancer and inflammatory diseases. A natural fragment of serum albumin, named EPI-X4, has previously been identified as endogenous peptide antagonist and inverse agonist of CXCR4 and is a promising compound for the development of improved analogues for the therapy of CXCR4-associated diseases. To generate optimized EPI-X4 derivatives we here performed molecular docking analysis to identify key interaction motifs of EPI-X4/CXCR4. Subsequent rational drug design allowed to increase the anti-CXCR4 activity of EPI-X4. The EPI-X4 derivative JM#21 bound CXCR4 and suppressed CXCR4-tropic HIV-1 infection more efficiently than the clinically approved small molecule CXCR4 antagonist AMD3100. EPI-X4 JM#21 did not exert toxic effects in zebrafish embryos and suppressed allergen-induced infiltration of eosinophils and other immune cells into the airways of animals in an asthma mouse model. Moreover, topical administration of the optimized EPI-X4 derivative efficiently prevented inflammation of the skin in a mouse model of atopic dermatitis. Thus, rationally designed EPI-X4 JM#21 is a novel potent antagonist of CXCR4 and the first CXCR4 inhibitor with therapeutic efficacy in atopic dermatitis. Further clinical development of this new class of CXCR4 antagonists for the therapy of atopic dermatitis, asthma and other CXCR4-associated diseases is highly warranted.
Collapse
|
9
|
Bieber T. Atopic dermatitis: an expanding therapeutic pipeline for a complex disease. Nat Rev Drug Discov 2021; 21:21-40. [PMID: 34417579 PMCID: PMC8377708 DOI: 10.1038/s41573-021-00266-6] [Citation(s) in RCA: 288] [Impact Index Per Article: 72.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/06/2021] [Indexed: 02/07/2023]
Abstract
Atopic dermatitis (AD) is a common chronic inflammatory skin disease with a complex pathophysiology that underlies a wide spectrum of clinical phenotypes. AD remains challenging to treat owing to the limited response to available therapies. However, recent advances in understanding of disease mechanisms have led to the discovery of novel potential therapeutic targets and drug candidates. In addition to regulatory approval for the IL-4Ra inhibitor dupilumab, the anti-IL-13 inhibitor tralokinumab and the JAK1/2 inhibitor baricitinib in Europe, there are now more than 70 new compounds in development. This Review assesses the various strategies and novel agents currently being investigated for AD and highlights the potential for a precision medicine approach to enable prevention and more effective long-term control of this complex disease. Recent advances in understanding of the complex phenotype and mechanisms underlying atopic dermatitis (AD) have revealed multiple new potential targets for pharmacological intervention. Here, Bieber reviews therapeutic strategies and assesses the expanding pipeline for the therapy of AD, highlighting the potential for a precision medicine approach to the management of this complex disorder.
Collapse
Affiliation(s)
- Thomas Bieber
- Department of Dermatology and Allergy, University Hospital, Bonn, Germany. .,Christine Kühne-Center for Allergy Research and Education, Davos, Switzerland. .,Davos Biosciences, Davos, Switzerland.
| |
Collapse
|
10
|
Lee YS, Ryu HW, Yang WK, Park MH, Park YC, Kim DY, Kwon HJ, Kim SY, Oh SR, Kim SH. A combination of Olea europaea leaf extract and Spirodela polyrhiza extract alleviates atopic dermatitis by modulating immune balance and skin barrier function in a 1-chloro-2,4-dinitrobenzene-induced murine model. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2021; 82:153407. [PMID: 33571899 DOI: 10.1016/j.phymed.2020.153407] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 10/19/2020] [Accepted: 11/03/2020] [Indexed: 06/12/2023]
Abstract
BACKGROUND Atopic dermatitis is a chronic inflammatory skin disease in humans. Although Olea europaea leaf extract (OLE) and Spirodela polyrhiza extract (SPE) have been used to protect against skin damage, the effects of their combined administration on atopic dermatitis have yet to studied. PURPOSE In this study, we evaluated the potential therapeutic effects of an OLE and SPE combination on the progression of atopic dermatitis and the possible mechanisms underlying these effects in 1-chloro-2,4-dinitrobenzene (DNCB)-treated NC/Nga mice. METHODS Atopic dermatitis was induced by topical application of 0.2% w/v DNCB prepared in an olive oil:acetone solution (1:3), and thereafter OLE, SPE and OLE + SPE were administered orally for 5 weeks. We determined atopic dermatitis symptoms, serum IgE levels, and levels of cytokine- and gene expression in the dorsal skin and splenocytes, and performed histological and immune cell subtype analyses. The expression of skin barrier-related proteins (filaggrin, sirtuin 1, and claudin 1) was also evaluated. RESULTS The OLE + SPE combination significantly ameliorated atopic dermatitis symptoms, including dermatitis scores, and reduced epidermal thickness and infiltration of different inflammatory cells in mice with DNCB-induced atopic dermatitis. It also significantly reduced the number of CD4+, CD8+, and CD4+/CD69+ T cells; immunoglobulin E-producing B cells (CD23+/B220+) in the axillary lymph nodes; CD3+ T-cell eosinophils (chemokine-chemokine receptor 3+/CD11b+) in the skin; and CD3+ T cells, immunoglobulin E-producing B cells (CD23+/B220+), and eosinophils in peripheral blood mononuclear cells. Additionally, the experimental combination lowered levels of serum immunoglobulin E and histamine, as well as Th2-mediated cytokines, and interleukin-4, -5, and -13, whereas it increased the levels of Th1-mediated cytokine interferon-γ in splenocytes. Furthermore, the preparation significantly restored expression of the skin barrier-related proteins filaggrin, sirtuin 1, and claudin 1, and also reduced the expression of the inflammatory cytokine interleukin-6 and chemokine-chemokine receptor 3, as well as the pruritus-related cytokine interleukin-31 and interleukin-31 receptor, in atopic dermatitis skin lesions. CONCLUSION Taken together, our findings indicate that administration of a combination of OLE and SPE can alleviate atopic dermatitis symptoms by regulating immune balance and skin barrier function and may be an effective therapeutic option for the treatment of atopic dermatitis.
Collapse
Affiliation(s)
- Young-Sil Lee
- Herbal Medicine Research Division, Korea Institute of Oriental Medicine, 1672 Yuseong-daero, Yuseong-gu, Daejeon 34054, Republic of Korea
| | - Hyung Won Ryu
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheonju-si, Chungcheongbuk-do 28116, Republic of Korea
| | - Won-Kyung Yang
- Division of Respiratory Systems, Department of Internal Medicine, College of Korean Medicine, Daejeon University, Daejeon 34520, Republic of Korea
| | - Mi Hyeon Park
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheonju-si, Chungcheongbuk-do 28116, Republic of Korea
| | - Yang-Chun Park
- Division of Respiratory Systems, Department of Internal Medicine, College of Korean Medicine, Daejeon University, Daejeon 34520, Republic of Korea
| | - Doo-Young Kim
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheonju-si, Chungcheongbuk-do 28116, Republic of Korea
| | - Hyuk Joon Kwon
- National Institute of Biological Resources, Environmental Research Complex, Gyoungseo-dong, Seo-gu, Incheon 22689, Republic of Korea
| | - Soo-Young Kim
- National Institute of Biological Resources, Environmental Research Complex, Gyoungseo-dong, Seo-gu, Incheon 22689, Republic of Korea
| | - Sei-Ryang Oh
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheonju-si, Chungcheongbuk-do 28116, Republic of Korea.
| | - Seung-Hyung Kim
- Institute of Traditional Medicine & Bioscience, Daejeon University, Daejeon 34520, Republic of Korea.
| |
Collapse
|
11
|
Nam JH, Kim WK. The Role of TRP Channels in Allergic Inflammation and its Clinical Relevance. Curr Med Chem 2020; 27:1446-1468. [PMID: 30474526 DOI: 10.2174/0929867326666181126113015] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 09/03/2018] [Accepted: 11/07/2018] [Indexed: 12/24/2022]
Abstract
Allergy refers to an abnormal adaptive immune response to non-infectious environmental substances (allergen) that can induce various diseases such as asthma, atopic dermatitis, and allergic rhinitis. In this allergic inflammation, various immune cells, such as B cells, T cells, and mast cells, are involved and undergo complex interactions that cause a variety of pathophysiological conditions. In immune cells, calcium ions play a crucial role in controlling intracellular Ca2+ signaling pathways. Cations, such as Na+, indirectly modulate the calcium signal generation by regulating cell membrane potential. This intracellular Ca2+ signaling is mediated by various cation channels; among them, the Transient Receptor Potential (TRP) family is present in almost all immune cell types, and each channel has a unique function in regulating Ca2+ signals. In this review, we focus on the role of TRP ion channels in allergic inflammatory responses in T cells and mast cells. In addition, the TRP ion channels, which are attracting attention in clinical practice in relation to allergic diseases, and the current status of the development of therapeutic agents that target TRP channels are discussed.
Collapse
Affiliation(s)
- Joo Hyun Nam
- Department of Physiology, Dongguk University College of Medicine, 123 Dongdae-ro, Gyeongju 38066, Korea.,Channelopathy Research Center (CRC), Dongguk University College of Medicine, 32 Dongguk-ro, Ilsan Dong-gu, Goyang, Gyeonggi-do 10326, Korea
| | - Woo Kyung Kim
- Channelopathy Research Center (CRC), Dongguk University College of Medicine, 32 Dongguk-ro, Ilsan Dong-gu, Goyang, Gyeonggi-do 10326, Korea.,Department of Internal Medicine Graduate School of Medicine, Dongguk University, 27 Dongguk-ro, Ilsan Dong-gu, Goyang, Gyeonggi-do 10326, Korea
| |
Collapse
|
12
|
Enhancement of Chemokine mRNA Expression by Toll-Like Receptor 2 Stimulation in Human Peripheral Blood Mononuclear Cells of Patients with Atopic Dermatitis. BIOMED RESEARCH INTERNATIONAL 2020; 2020:1497175. [PMID: 32280674 PMCID: PMC7115052 DOI: 10.1155/2020/1497175] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 03/09/2020] [Indexed: 11/18/2022]
Abstract
Atopic dermatitis (AD) is a chronic inflammatory skin disease which is often associated with Staphylococcus aureus (S. aureus) colonization. S. aureus ingredients are potential ligands to activate the Toll-like receptor 2 (TLR2) and drive inflammatory cytokine or chemokine production. However, the role of TLR2-mediated chemokine expression in AD development has not been systematically investigated. In this study, we sought to determine the mode of TLR2-mediated chemokine expression in AD patients. Human peripheral blood mononuclear cells (PBMCs) were isolated from AD patients and healthy controls. Upon incubation with TLR2 ligands Pam3CSK4 and PGN, mRNA expression of chemokines, including CCL1, CCL5, CCL8, CCL13, CCL17, CCL18, CCL22, and CCL27, were determined by quantitative real-time polymerase chain reaction (qRT-PCR) analysis. The results showed that basal mRNA expression of CCL17 in PBMCs from AD patients was upregulated compared with healthy controls, while those of CCL8 and CCL13 were downregulated. When stimulated with TLR2 ligands, the mRNA expression of CCL5, CCL8, CCL13, CCL18, and CCL22 in PBMCs from AD patients was significantly higher than those from healthy controls. The different basal chemokine mRNA expression profiles indicate the different immune status in patients with AD compared with healthy controls. Excessive chemokine mRNA expression induced by TLR2 activation is associated with the development of AD.
Collapse
|
13
|
Inagaki‐Katashiba N, Ito T, Inaba M, Azuma Y, Tanaka A, Phan V, Kibata K, Satake A, Nomura S. Statins can suppress DC-mediated Th2 responses through the repression of OX40-ligand and CCL17 expression. Eur J Immunol 2019; 49:2051-2062. [PMID: 31269241 PMCID: PMC6899642 DOI: 10.1002/eji.201847992] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 05/16/2019] [Accepted: 06/28/2019] [Indexed: 12/20/2022]
Abstract
DCs and epithelial cell-derived thymic stromal lymphopoietin (TSLP) have pivotal roles in allergic inflammation. TSLP stimulates myeloid DCs to express OX40-ligand (OX40L) and CCL17, which trigger and maintain Th2 cell responses. We have previously shown that statins, which are HMG-CoA reductase inhibitors, have the ability to suppress type I IFN production by plasmacytoid DCs. Here, we extended our previous work to examine the immunomodulatory effect of statins on allergic responses, particularly the TSLP-dependent Th2 pathway induced by myeloid DCs. We found that treatment of TSLP-stimulated DCs with either pitavastatin or simvastatin suppressed both the DC-mediated inflammatory Th2 cell differentiation and CRTH2+ CD4+ memory Th2 cell expansion and also repressed the expressions of OX40L and CCL17 by DCs. These inhibitory effects of statins were mimicked by treatment with either a geranylgeranyl-transferase inhibitor or Rho-kinase inhibitor and were counteracted by the addition of mevalonate, suggesting that statins induce geranylgeranylated Rho inactivation through a mevalonate-dependent pathway. We also found that statins inhibited the expressions of phosphorylated STA6 and NF-κB-p50 in TSLP-stimulated DCs. This study identified a specific ability of statins to control DC-mediated Th2 responses, suggesting their therapeutic potential for treating allergic diseases.
Collapse
Affiliation(s)
| | - Tomoki Ito
- First Department of Internal MedicineKansai Medical UniversityHirakataOsaka573–1191Japan
| | - Muneo Inaba
- First Department of Internal MedicineKansai Medical UniversityHirakataOsaka573–1191Japan
| | - Yoshiko Azuma
- First Department of Internal MedicineKansai Medical UniversityHirakataOsaka573–1191Japan
| | - Akihiro Tanaka
- First Department of Internal MedicineKansai Medical UniversityHirakataOsaka573–1191Japan
| | - Vien Phan
- First Department of Internal MedicineKansai Medical UniversityHirakataOsaka573–1191Japan
| | - Kayoko Kibata
- First Department of Internal MedicineKansai Medical UniversityHirakataOsaka573–1191Japan
| | - Atsushi Satake
- First Department of Internal MedicineKansai Medical UniversityHirakataOsaka573–1191Japan
| | - Shosaku Nomura
- First Department of Internal MedicineKansai Medical UniversityHirakataOsaka573–1191Japan
| |
Collapse
|
14
|
Yu K, Wang Y, Wan T, Zhai Y, Cao S, Ruan W, Wu C, Xu Y. Tacrolimus nanoparticles based on chitosan combined with nicotinamide: enhancing percutaneous delivery and treatment efficacy for atopic dermatitis and reducing dose. Int J Nanomedicine 2017; 13:129-142. [PMID: 29317821 PMCID: PMC5743175 DOI: 10.2147/ijn.s150319] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Background Topical application of tacrolimus (FK506) was effective in the treatment of atopic dermatitis (AD); however, adverse effects frequently occurred with the increase of FK506 dose during long–term treatment. Objective The objective of this project was to develop a hybrid skin targeting system encapsulating FK506 based on nicotinamide (NIC) and chitosan nanoparticles (CS–NPs), ie, FK506–NIC–CS–NPs, which took advantages of both of NIC and CS–NPs to obtain the synergetic effects of percutaneous delivery and treatment efficacy enhancement along with dose reduction. Methods The formulation of FK506–NIC–CS–NPs was optimized and characterized. In vitro and in vivo skin permeation studies were performed. AD–like skin lesions were constructed with BALB/c mice by 1–chloro–2, 4–dinitrobenzene (DNCB)–induced, and FK506–NIC–CS–NPs containing different dose of FK506 were topically administered to treat AD–like skin lesions in comparison with Protopic. Results NIC was found to significantly increase the FK506 EE to 92.2% by CS–NPs. In comparison with commercial FK506 ointment (Protopic), in vitro and in vivo skin permeation studies demonstrated that NIC–CS–NPs system significantly enhanced FK506 permeation through and into the skin, and deposited more FK506 into the skin. The treatment efficacy on clinical symptoms, histological analysis, and molecular biology of the AD–mice demonstrated that NIC–CS–NPs with ~1/3 dose of FK506 of Protopic was superior to that of Protopic, and NIC–CS–NPs vehicle exhibited the adjuvant therapy and moderate anti–AD effects. Conclusion The system of NIC–CS–NPs enhances the permeability of FK506, plays an adjuvant role in anti-AD, reduces the dose of FK506 in treating AD, and is therefore a promising nanoscale system of FK506 for the effective treatment of AD.
Collapse
Affiliation(s)
- Kaiyue Yu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Yixuan Wang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Tao Wan
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Yuanhao Zhai
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Sisi Cao
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Wenyi Ruan
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Chuanbin Wu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Yuehong Xu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, People's Republic of China
| |
Collapse
|
15
|
Anwaier G, Chen C, Cao Y, Qi R. A review of molecular imaging of atherosclerosis and the potential application of dendrimer in imaging of plaque. Int J Nanomedicine 2017; 12:7681-7693. [PMID: 29089763 PMCID: PMC5656339 DOI: 10.2147/ijn.s142385] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Despite the fact that technological advancements have been made in diagnosis and treatment, cardiovascular diseases (CVDs) remain the leading cause of mortality and morbidity worldwide. Early detection of atherosclerosis (AS), especially vulnerable plaques, plays a crucial role in the prevention of acute coronary syndrome (ACS). Targeting the critical cytokines and molecules that are upregulated during the biological process of AS by in vivo molecular imaging has been widely used in plaque imaging. With their three-dimensional architecture, composition, and abundant terminal functional groups, dendrimers provide a platform for multitargeting and multimodal imaging. Thus, modified dendrimers with the key molecules upregulated in AS plaques will be an innovative attempt to achieve targeted imaging of AS plaques specifically and efficiently. This review was aimed to address some recent works on imaging of AS plaques using various types of image technology and further discuss the applications of dendrimers, an innovative yet seldom used method in imaging of AS plaques due to some limitations and challenges, and we highlight the bright future of the modified dendrimers in characterizing AS plaques.
Collapse
Affiliation(s)
- Gulinigaer Anwaier
- Peking University Institute of Cardiovascular Sciences, Key Laboratory of Molecular Cardiovascular Sciences, Ministry of education, Peking University Health Science Center.,Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, Beijing.,School of Basic Medical Science, Shihezi University, Shihezi, Xinjiang, People's Republic of China
| | - Cong Chen
- Peking University Institute of Cardiovascular Sciences, Key Laboratory of Molecular Cardiovascular Sciences, Ministry of education, Peking University Health Science Center.,Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, Beijing
| | - Yini Cao
- Peking University Institute of Cardiovascular Sciences, Key Laboratory of Molecular Cardiovascular Sciences, Ministry of education, Peking University Health Science Center.,Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, Beijing
| | - Rong Qi
- Peking University Institute of Cardiovascular Sciences, Key Laboratory of Molecular Cardiovascular Sciences, Ministry of education, Peking University Health Science Center.,Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, Beijing.,School of Basic Medical Science, Shihezi University, Shihezi, Xinjiang, People's Republic of China
| |
Collapse
|