1
|
Shrivastava A, Nikita S, Rathore AS. Machine learning tool as an enabler for rapid quantification of monoclonal antibodies N-glycans using fluorescence detector. Int J Biol Macromol 2024; 271:132694. [PMID: 38810859 DOI: 10.1016/j.ijbiomac.2024.132694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 05/19/2024] [Accepted: 05/25/2024] [Indexed: 05/31/2024]
Abstract
Liquid chromatography-mass spectrometry (LC-MS) is widely used for identification and quantification of N-glycans of monoclonal antibodies (mAbs), owing to its high sensitivity and accuracy. However, its resource-intensive nature necessitates the development of rapid and cost-effective orthogonal analysis approaches. This study aims to develop an online method utilizing the Extreme Gradient Boosting (XGBoost) machine learning (ML) algorithm for real time quantification of InstantPC labelled N-glycans by Liquid Chromatography (LC) - fluorescence detector (FLD). The LC-FLD profile is pre-processed for baseline correction and noise reduction prior to fed to the machine learning (ML) algorithm. The algorithm has been successfully tested for commercial and inhouse developed mAbs and validated using LC-MS quantification as reference. The LC-FLD-ML model predicted values were at par with the LC-MS values with root mean square error of <0.5 and R2 of >0.95. The average errors using ML model (1.80 %) was reduced by a minimum of 28 % and 40 % for origin (1.5 %) and manual (1.07 %) based integration, respectively. The approach reduces the data analysis time per sample by ~70 % (from ~5 min to ~1.5 min), thereby offering a time and resource efficient orthogonality with LC-MS for quantification of N-glycans in mAbs.
Collapse
Affiliation(s)
- Anuj Shrivastava
- Department of Chemical Engineering, IIT Delhi, Hauz Khas, New Delhi 110016, India
| | - Saxena Nikita
- Department of Chemical Engineering, IIT Delhi, Hauz Khas, New Delhi 110016, India
| | - Anurag S Rathore
- Department of Chemical Engineering, IIT Delhi, Hauz Khas, New Delhi 110016, India.
| |
Collapse
|
2
|
Urbano A, Plaza J, Picado C, de Mora F. Combined analytical assays for the characterization of drugs binding to human IgE: Applicability to omalizumab-bearing biosimilar candidates assessment. Biomed Pharmacother 2023; 169:115848. [PMID: 37976893 DOI: 10.1016/j.biopha.2023.115848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 10/25/2023] [Accepted: 11/05/2023] [Indexed: 11/19/2023] Open
Abstract
Analytical and functional comparison is key for substantiating the level of convergence (essential sameness) or divergence between versions or variants of a given biological medicine. Accordingly, an overlapping biological activity between products meant to be equal probably reflects a highly similar structure and anticipates a comparable pharmacodynamic behavior. We developed an orthogonal approach to compare the human IgE binding features of different lots and versions of Xolair® (omalizumab), an anti-human IgE monoclonal antibody. The IgE binding affinity and kinetics were measured by surface plasmon resonance. Ability to prevent mast cell activity was assessed in vitro and in vivo in mast cell-based models. The variability of monoclonal antibodies with identical amino acid sequences produced either in Chinese hamster ovarian cells or in human HEK293 cells, was compared. Monoclonal antibodies from the two sources exhibited slightly different human IgE binding and neutralizing features. A known variant exhibiting a three amino acid replacement in the Fab region had lower IgE binding affinity than the original omalizumab. The lower binding affinity translated into reduced IgE neutralizing capacity and, in turn, a difference in the ability to prevent mast cell activation in vitro and in vivo. The proposed set of analytical and functional assays was sensitive enough to detect Fab-linked differences between anti-IgE antibody versions exhibiting an identical aminoacid sequence. In addition to add value to the comparative assessment of biosimilar candidates bearing omalizumab, these methods can aid pre-assessments of new anti-IgE agents that aim to improve therapeutic performance.
Collapse
Affiliation(s)
- Adrián Urbano
- Department of Pharmacology, Therapeutics and Toxicology, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Judith Plaza
- Department of Pharmacology, Therapeutics and Toxicology, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - César Picado
- Department of Pneumology and Respiratory Allergy, Hospital Clínic, IDIBAPS (Institut d'Investigacions Biomèdiques Agust Pi i Sunyer), Universitat de Barcelona, Barcelona, Spain; CIBERES (Centro de Investigación Biomédica en Red de Enfermedades Respiratorias), Barcelona, Spain
| | - Fernando de Mora
- Department of Pharmacology, Therapeutics and Toxicology, Universitat Autònoma de Barcelona, Barcelona, Spain.
| |
Collapse
|
3
|
Reddy JV, Raudenbush K, Papoutsakis ET, Ierapetritou M. Cell-culture process optimization via model-based predictions of metabolism and protein glycosylation. Biotechnol Adv 2023; 67:108179. [PMID: 37257729 DOI: 10.1016/j.biotechadv.2023.108179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 05/18/2023] [Accepted: 05/21/2023] [Indexed: 06/02/2023]
Abstract
In order to meet the rising demand for biologics and become competitive on the developing biosimilar market, there is a need for process intensification of biomanufacturing processes. Process development of biologics has historically relied on extensive experimentation to develop and optimize biopharmaceutical manufacturing. Experimentation to optimize media formulations, feeding schedules, bioreactor operations and bioreactor scale up is expensive, labor intensive and time consuming. Mathematical modeling frameworks have the potential to enable process intensification while reducing the experimental burden. This review focuses on mathematical modeling of cellular metabolism and N-linked glycosylation as applied to upstream manufacturing of biologics. We review developments in the field of modeling cellular metabolism of mammalian cells using kinetic and stoichiometric modeling frameworks along with their applications to simulate, optimize and improve mechanistic understanding of the process. Interest in modeling N-linked glycosylation has led to the creation of various types of parametric and non-parametric models. Most published studies on mammalian cell metabolism have performed experiments in shake flasks where the pH and dissolved oxygen cannot be controlled. Efforts to understand and model the effect of bioreactor-specific parameters such as pH, dissolved oxygen, temperature, and bioreactor heterogeneity are critically reviewed. Most modeling efforts have focused on the Chinese Hamster Ovary (CHO) cells, which are most commonly used to produce monoclonal antibodies (mAbs). However, these modeling approaches can be generalized and applied to any mammalian cell-based manufacturing platform. Current and potential future applications of these models for Vero cell-based vaccine manufacturing, CAR-T cell therapies, and viral vector manufacturing are also discussed. We offer specific recommendations for improving the applicability of these models to industrially relevant processes.
Collapse
Affiliation(s)
- Jayanth Venkatarama Reddy
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19716-3196, USA
| | - Katherine Raudenbush
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19716-3196, USA
| | - Eleftherios Terry Papoutsakis
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19716-3196, USA; Delaware Biotechnology Institute, Department of Biological Sciences, University of Delaware, USA.
| | - Marianthi Ierapetritou
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19716-3196, USA.
| |
Collapse
|
4
|
Feng X, Shi Q, Jian Q, Li F, Li Z, Cheng K. Alterations in mitochondrial protein glycosylation in myocardial ischaemia reperfusion injury. Biochem Biophys Rep 2023; 35:101509. [PMID: 37601448 PMCID: PMC10439394 DOI: 10.1016/j.bbrep.2023.101509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 05/14/2023] [Accepted: 06/29/2023] [Indexed: 08/22/2023] Open
Abstract
The alterations in mitochondrial protein glycosylation in myocardial ischaemia reperfusion (I/R) injury are still unclear. Therefore, based on a lectin microarray and liquid chromatograph-mass spectrometer/mass spectrometer (LC‒MS/MS) technology combined with a bioinformatics analysis, we studied the changes in mitochondrial protein glycosylation during I/R injury. This study revealed significant differences in mitochondrial glycoprotein during I/R injury. Compared with the sham operation group, the model group, which underwent ischaemia for 30 min, showed a high expression of glycan structures recognized by lectins, such as WFA, PTL-I, LTL, GSL-I, SBA and SNA, and a low expression of glycan structures recognized by ConA, VVA and RCA120. The model group, which underwent ischaemia for 45 min, showed a high expression of glycan structures recognized by LTL and SNA and a low expression of glycan structures recognized by ECA. Further analysis showed that the Siaα2-6Gal/N-acetylgalactosamine (GalNAc) structures recognized by SNA were significantly increased. In total, 91 differential proteins were identified by LC‒MS/MS, and 8 hub genes were screened by Gene Ontology (GO) enrichment, Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment and protein interaction analyses. Compared with the Gene Expression Omnibus (GEO) database genes, two differential genes, Pros1 and Vtn, were obtained. Pros1 is a key regulator of the inflammatory response and vascular injury response. The Vtn gene variant is associated with the risk of myocardial infarction. This study is expected to provide a new method for the treatment of I/R injury and could provide new ideas for the postoperative prognosis of patients.
Collapse
Affiliation(s)
- Xinyu Feng
- Department of Cardiac and Pan-Vascular Diseases, Xi'an People's Hospital (Xi'an Fourth Hospital), Xi'an, China
| | - Qing Shi
- Xi'an Satellite Control Center, Xi'an, China
| | - Qiang Jian
- Department of Scientific Research, Xi'an People's Hospital (Xi'an Fourth Hospital), Xi'an, China
| | - Fan Li
- Laboratory for Functional Glycomics, College of Life Sciences, Northwest University, Xi'an, China
| | - Zheng Li
- Laboratory for Functional Glycomics, College of Life Sciences, Northwest University, Xi'an, China
| | - Kang Cheng
- Department of Cardiac and Pan-Vascular Diseases, Xi'an People's Hospital (Xi'an Fourth Hospital), Xi'an, China
| |
Collapse
|
5
|
Recent capillary electrophoresis applications for upstream and downstream biopharmaceutical process monitoring. Trends Analyt Chem 2023. [DOI: 10.1016/j.trac.2023.116975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
|
6
|
Glinšek K, Kramer L, Krajnc A, Kranjc E, Pirher N, Marušič J, Hellmann L, Podobnik B, Štrukelj B, Ausländer D, Gaber R. Coupling CRISPR interference with FACS enrichment: New approach in glycoengineering of CHO cell lines for therapeutic glycoprotein production. Biotechnol J 2022; 17:e2100499. [PMID: 35481906 DOI: 10.1002/biot.202100499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 04/10/2022] [Accepted: 04/23/2022] [Indexed: 11/05/2022]
Abstract
Difficulties in obtaining and maintaining the desired level of the critical quality attributes (CQAs) of therapeutic proteins as well as the pace of the development are major challenges of current biopharmaceutical development. Therapeutic proteins, both innovative and biosimilars, are mostly glycosylated. Glycans directly influence the stability, potency, plasma half-life, immunogenicity, and effector functions of the therapeutic. Hence, glycosylation is widely recognized as a process-dependent CQA of therapeutic glycoproteins. Due to the typically high heterogeneity of glycoforms attached to the proteins, control of glycosylation represents one of the most challenging aspects of biopharmaceutical development. Here, we explored a new glycoengineering approach in therapeutic glycoproteins development, which enabled us to achieve the targeted glycoprofile of the Fc-fusion protein in a fast manner. Coupling CRISPRi technology with lectin-FACS sorting enabled downregulation of the endogenous gene involved in fucosylation and further enrichment of CHO cells producing Fc-fusion proteins with reduced fucosylation levels. Enrichment of cells with targeted glycoprofile can lead to time-optimized clone screening and speed up cell line development. Moreover, the presented approach allows isolation of clones with varying levels of fucosylation, which makes it applicable to a broad range of glycoproteins differing in target fucosylation level. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Katja Glinšek
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva 7, Ljubljana, SI-1000, Slovenia
| | - Lovro Kramer
- Novartis Technical Research & Development, Biologics Technical Development, Lek Pharmaceuticals d.d., Kolodvorska 27, Mengeš, SI-1234, Slovenia
| | - Aleksander Krajnc
- Novartis Technical Research & Development, Biologics Technical Development, Lek Pharmaceuticals d.d., Kolodvorska 27, Mengeš, SI-1234, Slovenia
| | - Eva Kranjc
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva 7, Ljubljana, SI-1000, Slovenia
| | - Nina Pirher
- Novartis Technical Research & Development, Biologics Technical Development, Lek Pharmaceuticals d.d., Kolodvorska 27, Mengeš, SI-1234, Slovenia
| | - Jaka Marušič
- Novartis Technical Research & Development, Biologics Technical Development, Lek Pharmaceuticals d.d., Kolodvorska 27, Mengeš, SI-1234, Slovenia
| | - Leon Hellmann
- Novartis Institutes for Biomedical Research, Klybeckstrasse 141, Basel, CH-4057, Switzerland
| | - Barbara Podobnik
- Novartis Technical Research & Development, Biologics Technical Development, Lek Pharmaceuticals d.d., Kolodvorska 27, Mengeš, SI-1234, Slovenia
| | - Borut Štrukelj
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva 7, Ljubljana, SI-1000, Slovenia
| | - David Ausländer
- Novartis Institutes for Biomedical Research, Klybeckstrasse 141, Basel, CH-4057, Switzerland
| | - Rok Gaber
- Novartis Technical Research & Development, Biologics Technical Development, Lek Pharmaceuticals d.d., Kolodvorska 27, Mengeš, SI-1234, Slovenia
| |
Collapse
|
7
|
Abstract
Native mass spectrometry (MS) involves the analysis and characterization of macromolecules, predominantly intact proteins and protein complexes, whereby as much as possible the native structural features of the analytes are retained. As such, native MS enables the study of secondary, tertiary, and even quaternary structure of proteins and other biomolecules. Native MS represents a relatively recent addition to the analytical toolbox of mass spectrometry and has over the past decade experienced immense growth, especially in enhancing sensitivity and resolving power but also in ease of use. With the advent of dedicated mass analyzers, sample preparation and separation approaches, targeted fragmentation techniques, and software solutions, the number of practitioners and novel applications has risen in both academia and industry. This review focuses on recent developments, particularly in high-resolution native MS, describing applications in the structural analysis of protein assemblies, proteoform profiling of─among others─biopharmaceuticals and plasma proteins, and quantitative and qualitative analysis of protein-ligand interactions, with the latter covering lipid, drug, and carbohydrate molecules, to name a few.
Collapse
Affiliation(s)
- Sem Tamara
- Biomolecular
Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular
Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Padualaan 8, 3584
CH Utrecht, The Netherlands
- Netherlands
Proteomics Center, Padualaan
8, 3584 CH Utrecht, The Netherlands
| | - Maurits A. den Boer
- Biomolecular
Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular
Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Padualaan 8, 3584
CH Utrecht, The Netherlands
- Netherlands
Proteomics Center, Padualaan
8, 3584 CH Utrecht, The Netherlands
| | - Albert J. R. Heck
- Biomolecular
Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular
Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Padualaan 8, 3584
CH Utrecht, The Netherlands
- Netherlands
Proteomics Center, Padualaan
8, 3584 CH Utrecht, The Netherlands
| |
Collapse
|
8
|
N-Glycosylation of monoclonal antibody therapeutics: A comprehensive review on significance and characterization. Anal Chim Acta 2022; 1209:339828. [DOI: 10.1016/j.aca.2022.339828] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 04/06/2022] [Accepted: 04/09/2022] [Indexed: 01/02/2023]
|
9
|
Bharti R, Roy T, Verma S, Reddy DS, Shafi H, Verma K, Raman SK, Pal S, Azmi L, Singh AK, Ray L, Mugale MN, Misra A. Transient, inhaled gene therapy with gamma interferon mitigates pathology induced by host response in a mouse model of tuberculosis. Tuberculosis (Edinb) 2022; 134:102198. [DOI: 10.1016/j.tube.2022.102198] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 03/10/2022] [Accepted: 03/15/2022] [Indexed: 12/13/2022]
|
10
|
Narayanan H, Sponchioni M, Morbidelli M. Integration and digitalization in the manufacturing of therapeutic proteins. Chem Eng Sci 2022. [DOI: 10.1016/j.ces.2021.117159] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
11
|
Dash R, Singh SK, Chirmule N, Rathore AS. Assessment of Functional Characterization and Comparability of Biotherapeutics: a Review. AAPS J 2021; 24:15. [PMID: 34931298 DOI: 10.1208/s12248-021-00671-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 11/30/2021] [Indexed: 11/30/2022] Open
Abstract
The development of monoclonal antibody (mAb) biosimilars is a complex process. The key to their successful development and commercialization is an in-depth understanding of the key product attributes that impact safety and efficacy and the strategies to control them. Functional assessment of mAb is a crucial part of the comparability of biopharmaceutical drugs. The development of a relevant and robust functional assay requires an interdisciplinary approach and sufficient flexibility to balance regulatory concerns as well as dynamics and variability during the manufacturing process. Although many advanced tools are available to study and compare the potency and bioactivity of the protein, most of these techniques suffer from major shortcomings that limit their routine use. These include the complexity of the task, establishment of the relevance of the chosen method with the mechanism of action (MOA) of the biosimilar, cost and extended time of analysis, and often the ambiguity in interpretation of the resulting data. To overcome or to address these challenges, the use of multiple orthogonal state-of-the-art techniques is a necessary prerequisite.
Collapse
Affiliation(s)
- Rozaleen Dash
- Department of Chemical Engineering, DBT Center of Excellence for Biopharmaceutical Technology, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India
| | - Sumit Kumar Singh
- Department of Chemical Engineering, DBT Center of Excellence for Biopharmaceutical Technology, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India.,School of Biochemical Engineering, IIT-BHU, Varanasi, India
| | | | - Anurag S Rathore
- Department of Chemical Engineering, DBT Center of Excellence for Biopharmaceutical Technology, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India.
| |
Collapse
|
12
|
Chen X, Wu L, Lan H, Sun R, Wen M, Ruan D, Zhang M, Wang S. Histone acetyltransferases MystA and MystB contribute to morphogenesis and aflatoxin biosynthesis by regulating acetylation in fungus Aspergillus flavus. Environ Microbiol 2021; 24:1340-1361. [PMID: 34863014 DOI: 10.1111/1462-2920.15856] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 11/19/2021] [Indexed: 11/28/2022]
Abstract
Myst family is highly conserved histone acetyltransferases in eukaryotic cells and is known to play crucial roles in various cellular processes; however, acetylation catalysed by acetyltransferases is unclear in filamentous fungi. Here, we identified two classical nonessential Myst enzymes and analysed their functions in Aspergillus flavus, which generates aflatoxin B1, one of the most carcinogenic secondary metabolites. MystA and MystB located in nuclei and cytoplasm, and mystA could acetylate H4K16ac, while mystB acetylates H3K14ac, H3K18ac and H3K23ac. Deletion mystA resulted in decreased conidiation, increased sclerotia formation and aflatoxin production. Deletion of mystB leads to significant defects in conidiation, sclerotia formation and aflatoxin production. Additionally, double-knockout mutant (ΔmystA/mystB) display a stronger and similar defect to ΔmystB mutant, indicating that mystB plays a major role in regulating development and aflatoxin production. Both mystA and mystB play important role in crop colonization. Moreover, catalytic domain MOZ and the catalytic site E199/E243 were important for the acetyltransferase function of Myst. Notably, chromatin immunoprecipitation results indicated that mystB participated in oxidative detoxification by regulating the acetylation level of H3K14, and further regulated nsdD to affect sclerotia formation and aflatoxin production. This study provides new evidences to discover the biological functions of histone acetyltransferase in A. flavus.
Collapse
Affiliation(s)
- Xuan Chen
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, and School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Lianghuan Wu
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, and School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Huahui Lan
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, and School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Ruilin Sun
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, and School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Meifang Wen
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, and School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Danrui Ruan
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, and School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Mengjuan Zhang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, and School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Shihua Wang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, and School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| |
Collapse
|
13
|
Rathore A, Malani H. Need for a risk-based control strategy for managing glycosylation profile for biosimilar products. Expert Opin Biol Ther 2021; 22:123-131. [PMID: 34431439 DOI: 10.1080/14712598.2021.1973425] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
INTRODUCTION Monoclonal antibodies, though a popular class of therapeutics, are complex molecules that are manufactured using complex processes, making it nontrivial to maintain high level of batch-to-batch consistency in product quality. Glycosylation is a posttranslation modification that is widely considered a critical quality attribute (CQA) as its variations are known to impact the Fc effector functions of mAbs. With continuing rise of biosimilars, comparability of these products to the reference product with respect to glycosylation is a topic of immense interest. AREAS COVERED In this article, we focus on the various aspects related to this topic including criticality of the various glycosylated forms, as well as comparability of biosimilars with respect to glycosylation. EXPERT OPINION We propose that manufacturers should focus on those glycoforms that are present in larger amounts and are known to be critical with respect to the biotherapeutic's safety and efficacy. Such risk-based evaluation of glycoforms and their control would offer an optimal route to biosimilar manufacturers for a cost-effective approach toward product development without compromising on the safety and efficacy characteristics of the therapeutic. For mAbs lacking Fc effector function, devising stringent glycosylation control strategies can be bypassed, thereby simplifying process and product development.
Collapse
Affiliation(s)
- Anurag Rathore
- Department of Chemical Engineering, Indian Institute of Technology Delhi, New Delhi, India
| | - Himanshu Malani
- Department of Chemical Engineering, Indian Institute of Technology Delhi, New Delhi, India
| |
Collapse
|
14
|
Čaval T, Buettner A, Haberger M, Reusch D, Heck AJ. Discrepancies between High-Resolution Native and Glycopeptide-Centric Mass Spectrometric Approaches: A Case Study into the Glycosylation of Erythropoietin Variants. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2021; 32:2099-2104. [PMID: 33856811 PMCID: PMC8343523 DOI: 10.1021/jasms.1c00060] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 03/31/2021] [Accepted: 04/05/2021] [Indexed: 05/04/2023]
Abstract
Glycosylation represents a critical quality attribute modulating a myriad of physiochemical properties and effector functions of biotherapeutics. Furthermore, a rising landscape of glycosylated biotherapeutics including biosimilars, biobetters, and fusion proteins harboring complicated and dynamic glycosylation profiles requires tailored analytical approaches capable of characterizing their heterogeneous nature. In this work, we perform in-depth evaluation of the glycosylation profiles of three glycoengineered variants of the widely used biotherapeutic erythropoietin. We analyzed these samples in parallel using a glycopeptide-centric liquid chromatography/mass spectrometry approach and high-resolution native mass spectrometry. Although for all of the studied variants the glycopeptide and native mass spectrometry data were in good qualitative agreement, we observed substantial quantitative differences arising from ionization deficiencies and unwanted neutral losses, in particular, for sialylated glycopeptides in the glycoproteomics approach. However, the latter provides direct information about glycosite localization. We conclude that the combined parallel use of native mass spectrometry and bottom-up glycoproteomics offers superior characterization of glycosylated biotherapeutics and thus provides a valuable attribute in the characterization of glycoengineered proteins and other complex biotherapeutics.
Collapse
Affiliation(s)
- Tomislav Čaval
- Biomolecular
Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular
Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Padualaan 8, Utrecht 3584 CH, The Netherlands
- Netherlands
Proteomics Center, Padualaan
8, Utrecht 3584 CH, The Netherlands
| | - Alexander Buettner
- Pharma
Technical Development, Roche Diagnostics
GmbH, Penzberg 82377, Germany
| | - Markus Haberger
- Pharma
Technical Development, Roche Diagnostics
GmbH, Penzberg 82377, Germany
| | - Dietmar Reusch
- Pharma
Technical Development, Roche Diagnostics
GmbH, Penzberg 82377, Germany
| | - Albert J.R. Heck
- Biomolecular
Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular
Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Padualaan 8, Utrecht 3584 CH, The Netherlands
- Netherlands
Proteomics Center, Padualaan
8, Utrecht 3584 CH, The Netherlands
| |
Collapse
|
15
|
Štor J, Ruckerbauer DE, Széliová D, Zanghellini J, Borth N. Towards rational glyco-engineering in CHO: from data to predictive models. Curr Opin Biotechnol 2021; 71:9-17. [PMID: 34048995 DOI: 10.1016/j.copbio.2021.05.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 04/26/2021] [Accepted: 05/07/2021] [Indexed: 12/22/2022]
Abstract
Metabolic modelling strives to develop modelling approaches that are robust and highly predictive. To achieve this, various modelling designs, including hybrid models, and parameter estimation methods that define the type and number of parameters used in the model, are adapted. Accurate input data play an important role so that the selection of experimental methods that provide input data of the required precision with low measurement errors is crucial. For the biopharmaceutically relevant protein glycosylation, the most prominent available models are kinetic models which are able to capture the dynamic nature of protein N-glycosylation. In this review we focus on how to choose the most suitable model for a specific research question, as well as on parameters and considerations to take into account before planning relevant experiments.
Collapse
Affiliation(s)
- Jerneja Štor
- Department of Biotechnology, University of Natural Resources and Life Sciences Vienna, A-1190 Vienna, Austria; acib - Austrian Centre of Industrial Biotechnology, A-8010 Graz, Austria
| | - David E Ruckerbauer
- acib - Austrian Centre of Industrial Biotechnology, A-8010 Graz, Austria; Department of Analytical Chemistry, University of Vienna, A-1090 Vienna, Austria
| | - Diana Széliová
- acib - Austrian Centre of Industrial Biotechnology, A-8010 Graz, Austria; Department of Analytical Chemistry, University of Vienna, A-1090 Vienna, Austria
| | - Jürgen Zanghellini
- acib - Austrian Centre of Industrial Biotechnology, A-8010 Graz, Austria; Department of Analytical Chemistry, University of Vienna, A-1090 Vienna, Austria.
| | - Nicole Borth
- Department of Biotechnology, University of Natural Resources and Life Sciences Vienna, A-1190 Vienna, Austria; acib - Austrian Centre of Industrial Biotechnology, A-8010 Graz, Austria.
| |
Collapse
|
16
|
Segu Z, Stone T, Berdugo C, Roberts A, Doud E, Li Y. A rapid method for relative quantification of N-glycans from a therapeutic monoclonal antibody during trastuzumab biosimilar development. MAbs 2021; 12:1750794. [PMID: 32249667 PMCID: PMC7188402 DOI: 10.1080/19420862.2020.1750794] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Glycosylation is a common post-translational modification and critical quality attribute that can modulate the efficacy of therapeutic proteins. In the production of monoclonal antibodies (mAbs), quantifying the glycoform profile is a vital characterization step. Traditional glycan analysis is time consuming and involves steps at extreme temperature or pH, which may alter glycans. Here, we describe a rapid method for glycan analysis in which glycans are released from mAb samples that are bound to protein A columns. Since host cell proteins, which may also contain glycans, were already removed, this step enables analysis of cell culture products. Glycans released from the mAb samples are then derivatized with InstantPC™ labeling agent and analyzed by HILIC-FLD-MS. To illustrate the method, the glycan profiles of six trastuzumab (Herceptin®) antibody lots and four biosimilar developmental lots were analyzed. The results derived from our novel method, which takes less than 90 min, are compared with those from a typical glycan preparation approach.
Collapse
Affiliation(s)
- Zaneer Segu
- Process Development, Catalent Biologics, Bloomington, IN, USA
| | - Todd Stone
- Process Development, Catalent Biologics, Bloomington, IN, USA
| | - Claudia Berdugo
- Process Development, Catalent Biologics, Bloomington, IN, USA
| | - Anthony Roberts
- Process Development, Catalent Biologics, Bloomington, IN, USA
| | | | - Yunsong Li
- Process Development, Catalent Biologics, Bloomington, IN, USA
| |
Collapse
|
17
|
Abstract
Glycosylation is a common posttranslational modification of therapeutic proteins. The glycosylation pattern is dependent on many parameters such as the host cell line or the culture conditions. N- and O-linked glycans usually play a great role on the stability, safety, and efficacy of the drug. For this reason, glycosylation is considered as a critical quality attribute of therapeutic glycoproteins, and a thorough characterization should be performed, as well as a systematic control for each batch produced. This chapter gives a short presentation of the structure of glycans commonly found on recombinant therapeutic proteins, and their role on the properties of the drug, in terms of stability, pharmacokinetics, safety, and efficacy. Lastly, the use of mass spectrometry for the analysis of glycoproteins is briefly described.
Collapse
|
18
|
Oh MJ, Seo Y, Kim U, An HJ. In-Depth Glycan Characterization of Therapeutic Glycoproteins by Stepwise PGC SPE and LC-MS/MS. Methods Mol Biol 2021; 2271:121-131. [PMID: 33908004 DOI: 10.1007/978-1-0716-1241-5_9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Glycosylation of biologics, an important factor in pharmacological functions such as efficacy, safety, and biological activity, is easily affected by subtle changes in the cellular environment. Therefore, comprehensive and in-depth glycan characterization of therapeutic glycoproteins should be performed to ensure product quality and process consistency, but it is analytically challenging due to glycan microheterogeneity occurring in the glycan biosynthesis pathway. LC-based chromatographic separation combined with mass spectrometry (MS) has been widely used as a prominent tool for the qualitative and quantitative analysis of glycosylation of therapeutic glycoproteins. However, prior to LC/MS analysis, glycans are selectively captured and fractionated by solid-phase extraction (SPE) utilizing physicochemical characteristics for comprehensive characterization of a wide range of glycan heterogeneity on glycoengineered therapeutic proteins. In particular, porous graphitized carbon (PGC) SPE has been employed as a useful technique for the fractionation of native glycans having different sizes and polarities. Here, we describe a systematic method for comprehensive glycan characterization of therapeutic proteins using stepwise PGC SPE and LC/MS.
Collapse
Affiliation(s)
- Myung Jin Oh
- Asia-Pacific Glycomics Reference Site, Chungnam National University, Daejeon, South Korea.,Graduate School of Analytical Science and Technology, Chungnam National University, Daejeon, South Korea
| | - Youngsuk Seo
- Asia-Pacific Glycomics Reference Site, Chungnam National University, Daejeon, South Korea.,Graduate School of Analytical Science and Technology, Chungnam National University, Daejeon, South Korea
| | | | - Hyun Joo An
- Asia-Pacific Glycomics Reference Site, Chungnam National University, Daejeon, South Korea. .,Graduate School of Analytical Science and Technology, Chungnam National University, Daejeon, South Korea.
| |
Collapse
|
19
|
Al-Kinani KK, Ibrahim MJ, Al-Zubaidi RF, Younus MM, Ramadhan SH, Kadhim HJ, Challand R. Iraqi regulatory authority current system and experience with biosimilars. Regul Toxicol Pharmacol 2020; 117:104768. [DOI: 10.1016/j.yrtph.2020.104768] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 08/20/2020] [Accepted: 08/24/2020] [Indexed: 12/18/2022]
|
20
|
Pralow A, Cajic S, Alagesan K, Kolarich D, Rapp E. State-of-the-Art Glycomics Technologies in Glycobiotechnology. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2020; 175:379-411. [PMID: 33112988 DOI: 10.1007/10_2020_143] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Glycosylation affects the properties of biologics; thus regulatory bodies classified it as critical quality attribute and force biopharma industry to capture and control it throughout all phases, from R&D till end of product lifetime. The shift from originators to biosimilars further increases importance and extent of glycoanalysis, which thus increases the need for technology platforms enabling reliable high-throughput and in-depth glycan analysis. In this chapter, we will first summarize on established glycoanalytical methods based on liquid chromatography focusing on hydrophilic interaction chromatography, capillary electrophoresis focusing on multiplexed capillary gel electrophoresis, and mass spectrometry focusing on matrix-assisted laser desorption; we will then highlight two emerging technologies based on porous graphitized carbon liquid chromatography and on ion-mobility mass spectrometry as both are highly promising tools to deliver an additional level of information for in-depth glycan analysis; additionally we elaborate on the advantages and challenges of different glycoanalytical technologies and their complementarity; finally, we briefly review applications thereof to biopharmaceutical products. This chapter provides an overview of current state-of-the-art analytical approaches for glycan characterization of biopharmaceuticals that can be employed to capture glycoprotein heterogeneity in a biopharmaceutical context.
Collapse
Affiliation(s)
- Alexander Pralow
- Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg, Germany
| | - Samanta Cajic
- Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg, Germany
| | - Kathirvel Alagesan
- Institute for Glycomics, Griffith University, Gold Coast, QLD, Australia
| | - Daniel Kolarich
- Institute for Glycomics, Griffith University, Gold Coast, QLD, Australia
- ARC Centre of Excellence in Nanoscale Biophotonics, Griffith University, Gold Coast, QLD, Australia
| | - Erdmann Rapp
- Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg, Germany.
- glyXera GmbH, Magdeburg, Germany.
| |
Collapse
|
21
|
Esser-Skala W, Wohlschlager T, Regl C, Huber CG. A Simple Strategy to Eliminate Hexosylation Bias in the Relative Quantification of N-Glycosylation in Biopharmaceuticals. Angew Chem Int Ed Engl 2020; 59:16225-16232. [PMID: 32496655 PMCID: PMC7539909 DOI: 10.1002/anie.202002147] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Indexed: 01/04/2023]
Abstract
N‐glycosylation may affect the safety and efficacy of biopharmaceuticals and is thus monitored during manufacturing. Mass spectrometry of the intact protein is increasingly used to reveal co‐existing glycosylation variants. However, quantification of N‐glycoforms via this approach may be biased by single hexose residues as introduced by glycation or O‐glycosylation. Herein, we describe a simple strategy to reveal actual N‐glycoform abundances of therapeutic antibodies, involving experimental determination of glycation levels followed by computational elimination of the “hexosylation bias”. We show that actual N‐glycoform abundances may significantly deviate from initially determined values. Indeed, glycation may even obscure considerable differences in N‐glycosylation patterns of drug product batches. Our observations may thus have implications for biopharmaceutical quality control. Moreover, we solve an instance of the problem of isobaricity, which is fundamental to mass spectrometry.
Collapse
Affiliation(s)
- Wolfgang Esser-Skala
- Department of Biosciences, Bioanalytical Research Labs, University of Salzburg, Hellbrunner Strasse 34, 5020, Salzburg, Austria.,Christian Doppler Laboratory for Innovative Tools for Biosimilar Characterization, University of Salzburg, Hellbrunner Strasse 34, 5020, Salzburg, Austria
| | - Therese Wohlschlager
- Department of Biosciences, Bioanalytical Research Labs, University of Salzburg, Hellbrunner Strasse 34, 5020, Salzburg, Austria.,Christian Doppler Laboratory for Innovative Tools for Biosimilar Characterization, University of Salzburg, Hellbrunner Strasse 34, 5020, Salzburg, Austria
| | - Christof Regl
- Department of Biosciences, Bioanalytical Research Labs, University of Salzburg, Hellbrunner Strasse 34, 5020, Salzburg, Austria.,Christian Doppler Laboratory for Innovative Tools for Biosimilar Characterization, University of Salzburg, Hellbrunner Strasse 34, 5020, Salzburg, Austria
| | - Christian G Huber
- Department of Biosciences, Bioanalytical Research Labs, University of Salzburg, Hellbrunner Strasse 34, 5020, Salzburg, Austria.,Christian Doppler Laboratory for Innovative Tools for Biosimilar Characterization, University of Salzburg, Hellbrunner Strasse 34, 5020, Salzburg, Austria
| |
Collapse
|
22
|
Esser‐Skala W, Wohlschlager T, Regl C, Huber CG. Eine einfache Strategie zur Korrektur des Fehlers aufgrund von Hexosylierung bei relativer Quantifizierung der N‐Glykosylierungsvarianten von Biopharmazeutika. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202002147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Wolfgang Esser‐Skala
- Fachbereich Biowissenschaften Bioanalytical Research Labs Universität Salzburg Hellbrunner Straße 34 5020 Salzburg Österreich
- Christian-Doppler-Labor für Innovative Werkzeuge zur Charakterisierung von Biosimilars Universität Salzburg Hellbrunner Straße 34 5020 Salzburg Österreich
| | - Therese Wohlschlager
- Fachbereich Biowissenschaften Bioanalytical Research Labs Universität Salzburg Hellbrunner Straße 34 5020 Salzburg Österreich
- Christian-Doppler-Labor für Innovative Werkzeuge zur Charakterisierung von Biosimilars Universität Salzburg Hellbrunner Straße 34 5020 Salzburg Österreich
| | - Christof Regl
- Fachbereich Biowissenschaften Bioanalytical Research Labs Universität Salzburg Hellbrunner Straße 34 5020 Salzburg Österreich
- Christian-Doppler-Labor für Innovative Werkzeuge zur Charakterisierung von Biosimilars Universität Salzburg Hellbrunner Straße 34 5020 Salzburg Österreich
| | - Christian G. Huber
- Fachbereich Biowissenschaften Bioanalytical Research Labs Universität Salzburg Hellbrunner Straße 34 5020 Salzburg Österreich
- Christian-Doppler-Labor für Innovative Werkzeuge zur Charakterisierung von Biosimilars Universität Salzburg Hellbrunner Straße 34 5020 Salzburg Österreich
| |
Collapse
|
23
|
Barolo L, Abbriano RM, Commault AS, George J, Kahlke T, Fabris M, Padula MP, Lopez A, Ralph PJ, Pernice M. Perspectives for Glyco-Engineering of Recombinant Biopharmaceuticals from Microalgae. Cells 2020; 9:E633. [PMID: 32151094 PMCID: PMC7140410 DOI: 10.3390/cells9030633] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 02/28/2020] [Accepted: 02/28/2020] [Indexed: 12/15/2022] Open
Abstract
Microalgae exhibit great potential for recombinant therapeutic protein production, due to lower production costs, immunity to human pathogens, and advanced genetic toolkits. However, a fundamental aspect to consider for recombinant biopharmaceutical production is the presence of correct post-translational modifications. Multiple recent studies focusing on glycosylation in microalgae have revealed unique species-specific patterns absent in humans. Glycosylation is particularly important for protein function and is directly responsible for recombinant biopharmaceutical immunogenicity. Therefore, it is necessary to fully characterise this key feature in microalgae before these organisms can be established as industrially relevant microbial biofactories. Here, we review the work done to date on production of recombinant biopharmaceuticals in microalgae, experimental and computational evidence for N- and O-glycosylation in diverse microalgal groups, established approaches for glyco-engineering, and perspectives for their application in microalgal systems. The insights from this review may be applied to future glyco-engineering attempts to humanize recombinant therapeutic proteins and to potentially obtain cheaper, fully functional biopharmaceuticals from microalgae.
Collapse
Affiliation(s)
- Lorenzo Barolo
- Climate Change Cluster, University of Technology Sydney, Broadway Campus, Ultimo NSW 2007, Sydney, Australia; (R.M.A.); (A.S.C.); (J.G.); (T.K.); (M.F.); (P.J.R.)
| | - Raffaela M. Abbriano
- Climate Change Cluster, University of Technology Sydney, Broadway Campus, Ultimo NSW 2007, Sydney, Australia; (R.M.A.); (A.S.C.); (J.G.); (T.K.); (M.F.); (P.J.R.)
| | - Audrey S. Commault
- Climate Change Cluster, University of Technology Sydney, Broadway Campus, Ultimo NSW 2007, Sydney, Australia; (R.M.A.); (A.S.C.); (J.G.); (T.K.); (M.F.); (P.J.R.)
| | - Jestin George
- Climate Change Cluster, University of Technology Sydney, Broadway Campus, Ultimo NSW 2007, Sydney, Australia; (R.M.A.); (A.S.C.); (J.G.); (T.K.); (M.F.); (P.J.R.)
| | - Tim Kahlke
- Climate Change Cluster, University of Technology Sydney, Broadway Campus, Ultimo NSW 2007, Sydney, Australia; (R.M.A.); (A.S.C.); (J.G.); (T.K.); (M.F.); (P.J.R.)
| | - Michele Fabris
- Climate Change Cluster, University of Technology Sydney, Broadway Campus, Ultimo NSW 2007, Sydney, Australia; (R.M.A.); (A.S.C.); (J.G.); (T.K.); (M.F.); (P.J.R.)
- CSIRO Synthetic Biology Future Science Platform, Brisbane, QLD 4001, Australia
| | - Matthew P. Padula
- School of Life Sciences and Proteomics Core Facility, Faculty of Science, University of Technology Sydney, Ultimo NSW 2007, Sydney, Australia;
| | - Angelo Lopez
- Department of Chemistry, University of York, York, YO10 5DD, UK;
| | - Peter J. Ralph
- Climate Change Cluster, University of Technology Sydney, Broadway Campus, Ultimo NSW 2007, Sydney, Australia; (R.M.A.); (A.S.C.); (J.G.); (T.K.); (M.F.); (P.J.R.)
| | - Mathieu Pernice
- Climate Change Cluster, University of Technology Sydney, Broadway Campus, Ultimo NSW 2007, Sydney, Australia; (R.M.A.); (A.S.C.); (J.G.); (T.K.); (M.F.); (P.J.R.)
| |
Collapse
|
24
|
Quantitative comparison of the N-glycosylation of therapeutic glycoproteins using the Glycosimilarity Index. A tutorial. Trends Analyt Chem 2020. [DOI: 10.1016/j.trac.2019.115728] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
25
|
Haymond A, Davis JB, Espina V. Proteomics for cancer drug design. Expert Rev Proteomics 2019; 16:647-664. [PMID: 31353977 PMCID: PMC6736641 DOI: 10.1080/14789450.2019.1650025] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2019] [Accepted: 07/26/2019] [Indexed: 12/29/2022]
Abstract
Introduction: Signal transduction cascades drive cellular proliferation, apoptosis, immune, and survival pathways. Proteins have emerged as actionable drug targets because they are often dysregulated in cancer, due to underlying genetic mutations, or dysregulated signaling pathways. Cancer drug development relies on proteomic technologies to identify potential biomarkers, mechanisms-of-action, and to identify protein binding hot spots. Areas covered: Brief summaries of proteomic technologies for drug discovery include mass spectrometry, reverse phase protein arrays, chemoproteomics, and fragment based screening. Protein-protein interface mapping is presented as a promising method for peptide therapeutic development. The topic of biosimilar therapeutics is presented as an opportunity to apply proteomic technologies to this new class of cancer drug. Expert opinion: Proteomic technologies are indispensable for drug discovery. A suite of technologies including mass spectrometry, reverse phase protein arrays, and protein-protein interaction mapping provide complimentary information for drug development. These assays have matured into well controlled, robust technologies. Recent regulatory approval of biosimilar therapeutics provides another opportunity to decipher the molecular nuances of their unique mechanisms of action. The ability to identify previously hidden protein hot spots is expanding the gamut of potential drug targets. Proteomic profiling permits lead compound evaluation beyond the one drug, one target paradigm.
Collapse
Affiliation(s)
- Amanda Haymond
- Center for Applied Proteomics and Molecular Medicine, George Mason University , Manassas , VA , USA
| | - Justin B Davis
- Center for Applied Proteomics and Molecular Medicine, George Mason University , Manassas , VA , USA
| | - Virginia Espina
- Center for Applied Proteomics and Molecular Medicine, George Mason University , Manassas , VA , USA
| |
Collapse
|
26
|
Krenkova J, Kleparnik K, Luksch J, Foret F. Microfabricated liquid junction hybrid capillary electrophoresis-mass spectrometry interface for fully automated operation. Electrophoresis 2019; 40:2263-2270. [PMID: 30794321 DOI: 10.1002/elps.201900049] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 02/18/2019] [Accepted: 02/19/2019] [Indexed: 11/07/2022]
Abstract
One of the challenging instrumental aspects in coupling an automated CE instrument with ESI mass spectrometry (CE-MS) is finding the balance between the stability, reproducibility and sensitivity of the analysis and compatibility with the standard CE instrumentation. Here, we present a development of a new liquid junction based electrospray interface for automated CE-MS, with a focus on the technical design followed by computer modeling of transport conditions as well as characterization of basic performance of the interface. This hybrid arrangement designed as a microfabricated unit attachable to the automated CE instrument allows using of a wide range of separation capillaries with respect to their diameter, length or internal coating (e.g., for suppressed electroosmotic flow). Different compositions of the ESI liquid and background electrolyte solutions can be used if needed. The microfabricated part, prepared by laser machining from polyimide, includes a self-aligning liquid junction, a short transport channel, and a pointed sprayer for the electrospray ionization. This microfabricated part is positioned in a plastic connection block securing the separation capillary and flushing ports. Transport conditions were modelled using computer simulation and the real life performance of the interface was compared to that of a commercial sheath liquid interface. The basic performance of the interface was demonstrated by separations of peptides, proteins, and oligosaccharides.
Collapse
Affiliation(s)
- Jana Krenkova
- Institute of Analytical Chemistry of the Czech Academy of Sciences, Brno, Czech Republic
| | - Karel Kleparnik
- Institute of Analytical Chemistry of the Czech Academy of Sciences, Brno, Czech Republic
| | - Jaroslav Luksch
- Institute of Analytical Chemistry of the Czech Academy of Sciences, Brno, Czech Republic
| | - Frantisek Foret
- Institute of Analytical Chemistry of the Czech Academy of Sciences, Brno, Czech Republic.,CEITEC Masaryk University, Brno, Czech Republic
| |
Collapse
|
27
|
Zhong X, Ma W, Meade CL, Tam AS, Llewellyn E, Cornell R, Cote K, Scarcelli JJ, Marshall JK, Tzvetkova B, Figueroa B, DiNino D, Sievers A, Lee C, Guo J, Mahan E, Francis C, Lam K, D'Antona AM, Zollner R, Zhu HL, Kriz R, Somers W, Lin L. Transient CHO expression platform for robust antibody production and its enhanced N-glycan sialylation on therapeutic glycoproteins. Biotechnol Prog 2018; 35:e2724. [PMID: 30299005 DOI: 10.1002/btpr.2724] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 09/24/2018] [Accepted: 09/24/2018] [Indexed: 12/22/2022]
Abstract
Large-scale transient expression in mammalian cells is a rapid protein production technology often used to shorten overall timelines for biotherapeutics drug discovery. In this study we demonstrate transient expression in a Chinese hamster ovary (CHO) host (ExpiCHO-S™) cell line capable of achieving high recombinant antibody expression titers, comparable to levels obtained using human embryonic kidney (HEK) 293 cells. For some antibodies, ExpiCHO-S™ cells generated protein materials with better titers and improved protein quality characteristics (i.e., less aggregation) than those from HEK293. Green fluorescent protein imaging data indicated that ExpiCHO-S™ displayed a delayed but prolonged transient protein expression process compared to HEK293. When therapeutic glycoproteins containing non-Fc N-linked glycans were expressed in transient ExpiCHO-S™, the glycan pattern was unexpectedly found to have few sialylated N-glycans, in contrast to glycans produced within a stable CHO expression system. To improve N-glycan sialylation in transient ExpiCHO-S™, we co-transfected galactosyltransferase and sialyltransferase genes along with the target genes, as well as supplemented the culture medium with glycan precursors. The authors have demonstrated that co-transfection of glycosyltransferases combined with medium addition of galactose and uridine led to increased sialylation content of N-glycans during transient ExpiCHO-S™ expression. These results have provided a scientific basis for developing a future transient CHO system with N-glycan compositions that are similar to those profiles obtained from stable CHO protein production systems. © 2018 American Institute of Chemical Engineers Biotechnol. Prog., 35: e2724, 2019.
Collapse
Affiliation(s)
- Xiaotian Zhong
- BioMedicine Design, Medicinal Sciences, Pfizer Worldwide R&D, Cambridge, Massachusetts, 02139
| | - Weijun Ma
- BioMedicine Design, Medicinal Sciences, Pfizer Worldwide R&D, Cambridge, Massachusetts, 02139
| | - Caryl L Meade
- BioMedicine Design, Medicinal Sciences, Pfizer Worldwide R&D, Cambridge, Massachusetts, 02139
| | - Amy S Tam
- BioMedicine Design, Medicinal Sciences, Pfizer Worldwide R&D, Cambridge, Massachusetts, 02139
| | - Eliza Llewellyn
- BioMedicine Design, Medicinal Sciences, Pfizer Worldwide R&D, Cambridge, Massachusetts, 02139
| | - Richard Cornell
- Analytical Research and Development, Biotherapeutics Pharmaceutical Sciences, Pfizer Inc., Andover, Massachusetts, 01810
| | - Kaffa Cote
- Analytical Research and Development, Biotherapeutics Pharmaceutical Sciences, Pfizer Inc., Andover, Massachusetts, 01810
| | - John J Scarcelli
- Cell Line Development, Biotherapeutics Pharmaceutical Sciences, Pfizer Inc., Andover, Massachusetts, 01810
| | - Jeffrey K Marshall
- Analytical Research and Development, Biotherapeutics Pharmaceutical Sciences, Pfizer Inc., Andover, Massachusetts, 01810
| | - Boriana Tzvetkova
- Analytical Research and Development, Biotherapeutics Pharmaceutical Sciences, Pfizer Inc., Andover, Massachusetts, 01810
| | - Bruno Figueroa
- Bioprocessing Research and Development, Biotherapeutics Pharmaceutical Sciences, Pfizer Inc., Andover, Massachusetts, 01810
| | - Dana DiNino
- Analytical Research and Development, Biotherapeutics Pharmaceutical Sciences, Pfizer Inc., Andover, Massachusetts, 01810
| | - Annette Sievers
- BioMedicine Design, Medicinal Sciences, Pfizer Worldwide R&D, Cambridge, Massachusetts, 02139
| | - Christopher Lee
- BioMedicine Design, Medicinal Sciences, Pfizer Worldwide R&D, Cambridge, Massachusetts, 02139
| | - Jane Guo
- BioMedicine Design, Medicinal Sciences, Pfizer Worldwide R&D, Cambridge, Massachusetts, 02139
| | - Evan Mahan
- BioMedicine Design, Medicinal Sciences, Pfizer Worldwide R&D, Cambridge, Massachusetts, 02139
| | - Christopher Francis
- BioMedicine Design, Medicinal Sciences, Pfizer Worldwide R&D, Cambridge, Massachusetts, 02139
| | - Khetemenee Lam
- BioMedicine Design, Medicinal Sciences, Pfizer Worldwide R&D, Cambridge, Massachusetts, 02139
| | - Aaron M D'Antona
- BioMedicine Design, Medicinal Sciences, Pfizer Worldwide R&D, Cambridge, Massachusetts, 02139
| | - Richard Zollner
- BioMedicine Design, Medicinal Sciences, Pfizer Worldwide R&D, Cambridge, Massachusetts, 02139
| | - Hongli L Zhu
- BioMedicine Design, Medicinal Sciences, Pfizer Worldwide R&D, Cambridge, Massachusetts, 02139
| | - Ron Kriz
- BioMedicine Design, Medicinal Sciences, Pfizer Worldwide R&D, Cambridge, Massachusetts, 02139
| | - Will Somers
- BioMedicine Design, Medicinal Sciences, Pfizer Worldwide R&D, Cambridge, Massachusetts, 02139
| | - Laura Lin
- BioMedicine Design, Medicinal Sciences, Pfizer Worldwide R&D, Cambridge, Massachusetts, 02139
| |
Collapse
|
28
|
Háda V, Bagdi A, Bihari Z, Timári SB, Fizil Á, Szántay C. Recent advancements, challenges, and practical considerations in the mass spectrometry-based analytics of protein biotherapeutics: A viewpoint from the biosimilar industry. J Pharm Biomed Anal 2018; 161:214-238. [PMID: 30205300 DOI: 10.1016/j.jpba.2018.08.024] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 08/08/2018] [Accepted: 08/10/2018] [Indexed: 01/22/2023]
Abstract
The extensive analytical characterization of protein biotherapeutics, especially of biosimilars, is a critical part of the product development and registration. High-resolution mass spectrometry became the primary analytical tool used for the structural characterization of biotherapeutics. Its high instrumental sensitivity and methodological versatility made it possible to use this technique to characterize both the primary and higher-order structure of these proteins. However, even by using high-end instrumentation, analysts face several challenges with regard to how to cope with industrial and regulatory requirements, that is, how to obtain accurate and reliable analytical data in a time- and cost-efficient way. New sample preparation approaches, measurement techniques and data evaluation strategies are available to meet those requirements. The practical considerations of these methods are discussed in the present review article focusing on hot topics, such as reliable and efficient sequencing strategies, minimization of artefact formation during sample preparation, quantitative peptide mapping, the potential of multi-attribute methodology, the increasing role of mass spectrometry in higher-order structure characterization and the challenges of MS-based identification of host cell proteins. On the basis of the opportunities in new instrumental techniques, methodological advancements and software-driven data evaluation approaches, for the future one can envision an even wider application area for mass spectrometry in the biopharmaceutical industry.
Collapse
Affiliation(s)
- Viktor Háda
- Analytical Department of Biotechnology, Gedeon Richter Plc, Hungary.
| | - Attila Bagdi
- Analytical Department of Biotechnology, Gedeon Richter Plc, Hungary
| | - Zsolt Bihari
- Analytical Department of Biotechnology, Gedeon Richter Plc, Hungary
| | | | - Ádám Fizil
- Analytical Department of Biotechnology, Gedeon Richter Plc, Hungary
| | - Csaba Szántay
- Spectroscopic Research Department, Gedeon Richter Plc, Hungary.
| |
Collapse
|
29
|
Borza B, Szigeti M, Szekrenyes A, Hajba L, Guttman A. Glycosimilarity assessment of biotherapeutics 1: Quantitative comparison of the N-glycosylation of the innovator and a biosimilar version of etanercept. J Pharm Biomed Anal 2018; 153:182-185. [PMID: 29499461 DOI: 10.1016/j.jpba.2018.02.021] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Revised: 02/06/2018] [Accepted: 02/08/2018] [Indexed: 11/25/2022]
Abstract
The carbohydrate moieties on the polypeptide chains in most glycoprotein based biotherapeutics and their biosimilars play essential roles in such major mechanisms of actions as antibody-dependent cell-mediated cytotoxicity, complement-dependent cytotoxicity, anti-inflammatory functions and serum clearance. In addition, alteration in glycosylation may influence the safety and efficacy of the product. Glycosylation, therefore, is considered as one of the important critical quality attributes of glycoprotein biotherapeutics, and consequently for their biosimilar counterparts. Thus, the carbohydrate moieties of such biopharmaceuticals (both innovator and biosimilar products) should be closely scrutinized during all stages of the manufacturing process. In this paper we introduce a rapid, capillary gel electrophoresis based process to quantitatively assess the glycosylation aspect of biosimilarity (referred to as glycosimilarity) between the innovator and a biosimilar version of etanercept (Enbrel® and Benepali®, respectively), based on their N-linked carbohydrate profiles. Differences in sialylated, core fucosylated, galactosylated and high mannose glycans were all quantified. Since the mechanism of action of etanercept is TNFα binding, only mannosylation was deemed as critical quality attribute for glycosimilarity assessment due to its influence on serum half-life.
Collapse
Affiliation(s)
- Beata Borza
- Horváth Csaba Laboratory of Bioseparation Sciences, University of Debrecen, Hungary
| | - Marton Szigeti
- Horváth Csaba Laboratory of Bioseparation Sciences, University of Debrecen, Hungary
| | - Akos Szekrenyes
- Horváth Csaba Laboratory of Bioseparation Sciences, University of Debrecen, Hungary
| | - Laszlo Hajba
- Research Institute for Biomolecular and Chemical Engineering, University of Pannonia, Veszprem, Hungary
| | - Andras Guttman
- Horváth Csaba Laboratory of Bioseparation Sciences, University of Debrecen, Hungary; Research Institute for Biomolecular and Chemical Engineering, University of Pannonia, Veszprem, Hungary; SCIEX, Brea, CA 92130, USA.
| |
Collapse
|