1
|
Sahu M, Vashishth S, Kukreti N, Gulia A, Russell A, Ambasta RK, Kumar P. Synergizing drug repurposing and target identification for neurodegenerative diseases. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2024; 205:111-169. [PMID: 38789177 DOI: 10.1016/bs.pmbts.2024.03.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2024]
Abstract
Despite dedicated research efforts, the absence of disease-curing remedies for neurodegenerative diseases (NDDs) continues to jeopardize human society and stands as a challenge. Drug repurposing is an attempt to find new functionality of existing drugs and take it as an opportunity to discourse the clinically unmet need to treat neurodegeneration. However, despite applying this approach to rediscover a drug, it can also be used to identify the target on which a drug could work. The primary objective of target identification is to unravel all the possibilities of detecting a new drug or repurposing an existing drug. Lately, scientists and researchers have been focusing on specific genes, a particular site in DNA, a protein, or a molecule that might be involved in the pathogenesis of the disease. However, the new era discusses directing the signaling mechanism involved in the disease progression, where receptors, ion channels, enzymes, and other carrier molecules play a huge role. This review aims to highlight how target identification can expedite the whole process of drug repurposing. Here, we first spot various target-identification methods and drug-repositioning studies, including drug-target and structure-based identification studies. Moreover, we emphasize various drug repurposing approaches in NDDs, namely, experimental-based, mechanism-based, and in silico approaches. Later, we draw attention to validation techniques and stress on drugs that are currently undergoing clinical trials in NDDs. Lastly, we underscore the future perspective of synergizing drug repurposing and target identification in NDDs and present an unresolved question to address the issue.
Collapse
Affiliation(s)
- Mehar Sahu
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University, Delhi, India
| | - Shrutikirti Vashishth
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University, Delhi, India
| | - Neha Kukreti
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University, Delhi, India
| | - Ashima Gulia
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University, Delhi, India
| | - Ashish Russell
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University, Delhi, India
| | - Rashmi K Ambasta
- Department of Biotechnology and Microbiology, SRM University, Sonepat, Haryana, India
| | - Pravir Kumar
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University, Delhi, India.
| |
Collapse
|
2
|
Conflitti P, Raniolo S, Limongelli V. Perspectives on Ligand/Protein Binding Kinetics Simulations: Force Fields, Machine Learning, Sampling, and User-Friendliness. J Chem Theory Comput 2023; 19:6047-6061. [PMID: 37656199 PMCID: PMC10536999 DOI: 10.1021/acs.jctc.3c00641] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Indexed: 09/02/2023]
Abstract
Computational techniques applied to drug discovery have gained considerable popularity for their ability to filter potentially active drugs from inactive ones, reducing the time scale and costs of preclinical investigations. The main focus of these studies has historically been the search for compounds endowed with high affinity for a specific molecular target to ensure the formation of stable and long-lasting complexes. Recent evidence has also correlated the in vivo drug efficacy with its binding kinetics, thus opening new fascinating scenarios for ligand/protein binding kinetic simulations in drug discovery. The present article examines the state of the art in the field, providing a brief summary of the most popular and advanced ligand/protein binding kinetics techniques and evaluating their current limitations and the potential solutions to reach more accurate kinetic models. Particular emphasis is put on the need for a paradigm change in the present methodologies toward ligand and protein parametrization, the force field problem, characterization of the transition states, the sampling issue, and algorithms' performance, user-friendliness, and data openness.
Collapse
Affiliation(s)
- Paolo Conflitti
- Faculty
of Biomedical Sciences, Euler Institute, Universitá della Svizzera italiana (USI), 6900 Lugano, Switzerland
| | - Stefano Raniolo
- Faculty
of Biomedical Sciences, Euler Institute, Universitá della Svizzera italiana (USI), 6900 Lugano, Switzerland
| | - Vittorio Limongelli
- Faculty
of Biomedical Sciences, Euler Institute, Universitá della Svizzera italiana (USI), 6900 Lugano, Switzerland
- Department
of Pharmacy, University of Naples “Federico
II”, 80131 Naples, Italy
| |
Collapse
|
3
|
Wolf S. Predicting Protein-Ligand Binding and Unbinding Kinetics with Biased MD Simulations and Coarse-Graining of Dynamics: Current State and Challenges. J Chem Inf Model 2023; 63:2902-2910. [PMID: 37133392 DOI: 10.1021/acs.jcim.3c00151] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The prediction of drug-target binding and unbinding kinetics that occur on time scales between milliseconds and several hours is a prime challenge for biased molecular dynamics simulation approaches. This Perspective gives a concise summary of the theory and the current state-of-the-art of such predictions via biased simulations, of insights into the molecular mechanisms defining binding and unbinding kinetics as well as of the extraordinary challenges predictions of ligand kinetics pose in comparison to binding free energy predictions.
Collapse
Affiliation(s)
- Steffen Wolf
- Biomolecular Dynamics, Institute of Physics, University of Freiburg, 79104 Freiburg, Germany
| |
Collapse
|
4
|
Metwally AA, Nayel AA, Hathout RM. In silico prediction of siRNA ionizable-lipid nanoparticles In vivo efficacy: Machine learning modeling based on formulation and molecular descriptors. Front Mol Biosci 2022; 9:1042720. [PMID: 36619167 PMCID: PMC9811823 DOI: 10.3389/fmolb.2022.1042720] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 12/07/2022] [Indexed: 12/24/2022] Open
Abstract
In silico prediction of the in vivo efficacy of siRNA ionizable-lipid nanoparticles is desirable as it can save time and resources dedicated to wet-lab experimentation. This study aims to computationally predict siRNA nanoparticles in vivo efficacy. A data set containing 120 entries was prepared by combining molecular descriptors of the ionizable lipids together with two nanoparticles formulation characteristics. Input descriptor combinations were selected by an evolutionary algorithm. Artificial neural networks, support vector machines and partial least squares regression were used for QSAR modeling. Depending on how the data set is split, two training sets and two external validation sets were prepared. Training and validation sets contained 90 and 30 entries respectively. The results showed the successful predictions of validation set log (siRNA dose) with Rval 2= 0.86-0.89 and 0.75-80 for validation sets one and two, respectively. Artificial neural networks resulted in the best Rval 2 for both validation sets. For predictions that have high bias, improvement of Rval 2 from 0.47 to 0.96 was achieved by selecting the training set lipids lying within the applicability domain. In conclusion, in vivo performance of siRNA nanoparticles was successfully predicted by combining cheminformatics with machine learning techniques.
Collapse
Affiliation(s)
- Abdelkader A. Metwally
- Department of Pharmaceutics, Faculty of Pharmacy, Health Sciences Center, Kuwait University, Kuwait City, Kuwait,Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt,*Correspondence: Abdelkader A. Metwally,
| | - Amira A. Nayel
- Clinical Pharmacy Department, Alexandria Ophthalmology Hospital, Alexandria, Egypt,Department of Clinical Pharmacy and Pharmacy Practice, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - Rania M. Hathout
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| |
Collapse
|
5
|
Kakoti BB, Bezbaruah R, Ahmed N. Therapeutic drug repositioning with special emphasis on neurodegenerative diseases: Threats and issues. Front Pharmacol 2022; 13:1007315. [PMID: 36263141 PMCID: PMC9574100 DOI: 10.3389/fphar.2022.1007315] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Accepted: 09/12/2022] [Indexed: 11/21/2022] Open
Abstract
Drug repositioning or repurposing is the process of discovering leading-edge indications for authorized or declined/abandoned molecules for use in different diseases. This approach revitalizes the traditional drug discovery method by revealing new therapeutic applications for existing drugs. There are numerous studies available that highlight the triumph of several drugs as repurposed therapeutics. For example, sildenafil to aspirin, thalidomide to adalimumab, and so on. Millions of people worldwide are affected by neurodegenerative diseases. According to a 2021 report, the Alzheimer's disease Association estimates that 6.2 million Americans are detected with Alzheimer's disease. By 2030, approximately 1.2 million people in the United States possibly acquire Parkinson's disease. Drugs that act on a single molecular target benefit people suffering from neurodegenerative diseases. Current pharmacological approaches, on the other hand, are constrained in their capacity to unquestionably alter the course of the disease and provide patients with inadequate and momentary benefits. Drug repositioning-based approaches appear to be very pertinent, expense- and time-reducing strategies for the enhancement of medicinal opportunities for such diseases in the current era. Kinase inhibitors, for example, which were developed for various oncology indications, demonstrated significant neuroprotective effects in neurodegenerative diseases. This review expounds on the classical and recent examples of drug repositioning at various stages of drug development, with a special focus on neurodegenerative disorders and the aspects of threats and issues viz. the regulatory, scientific, and economic aspects.
Collapse
Affiliation(s)
- Bibhuti Bhusan Kakoti
- Department of Pharmaceutical Sciences, Faculty of Science and Engineering, Dibrugarh University, Dibrugarh, India
| | | | | |
Collapse
|
6
|
Bray S, Tänzel V, Wolf S. Ligand Unbinding Pathway and Mechanism Analysis Assisted by Machine Learning and Graph Methods. J Chem Inf Model 2022; 62:4591-4604. [PMID: 36176219 DOI: 10.1021/acs.jcim.2c00634] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We present two methods to reveal protein-ligand unbinding mechanisms in biased unbinding simulations by clustering trajectories into ensembles representing unbinding paths. The first approach is based on a contact principal component analysis for reducing the dimensionality of the input data, followed by identification of unbinding paths and training a machine learning model for trajectory clustering. The second approach clusters trajectories according to their pairwise mean Euclidean distance employing the neighbor-net algorithm, which takes into account input data bias in the distances set and is superior to dendrogram construction. Finally, we describe a more complex case where the reaction coordinate relevant for path identification is a single intraligand hydrogen bond, highlighting the challenges involved in unbinding path reaction coordinate detection.
Collapse
Affiliation(s)
- Simon Bray
- Biomolecular Dynamics, Institute of Physics, University of Freiburg, 79104Freiburg, Germany.,Bioinformatics Group, Institute of Informatics, University of Freiburg, 79110Freiburg, Germany
| | - Victor Tänzel
- Biomolecular Dynamics, Institute of Physics, University of Freiburg, 79104Freiburg, Germany
| | - Steffen Wolf
- Biomolecular Dynamics, Institute of Physics, University of Freiburg, 79104Freiburg, Germany
| |
Collapse
|
7
|
Liu H, Su M, Lin HX, Wang R, Li Y. Public Data Set of Protein-Ligand Dissociation Kinetic Constants for Quantitative Structure-Kinetics Relationship Studies. ACS OMEGA 2022; 7:18985-18996. [PMID: 35694511 PMCID: PMC9178723 DOI: 10.1021/acsomega.2c02156] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 05/13/2022] [Indexed: 06/01/2023]
Abstract
Protein-ligand binding affinity reflects the equilibrium thermodynamics of the protein-ligand binding process. Binding/unbinding kinetics is the other side of the coin. Computational models for interpreting the quantitative structure-kinetics relationship (QSKR) aim at predicting protein-ligand binding/unbinding kinetics based on protein structure, ligand structure, or their complex structure, which in principle can provide a more rational basis for structure-based drug design. Thus far, most of the public data sets used for deriving such QSKR models are rather limited in sample size and structural diversity. To tackle this problem, we have compiled a set of 680 protein-ligand complexes with experimental dissociation rate constants (k off), which were mainly curated from the references accumulated for updating our PDBbind database. Three-dimensional structure of each protein-ligand complex in this data set was either retrieved from the Protein Data Bank or carefully modeled based on a proper template. The entire data set covers 155 types of protein, with their dissociation kinetic constants (k off) spanning nearly 10 orders of magnitude. To the best of our knowledge, this data set is the largest of its kind reported publicly. Utilizing this data set, we derived a random forest (RF) model based on protein-ligand atom pair descriptors for predicting k off values. We also demonstrated that utilizing modeled structures as additional training samples will benefit the model performance. The RF model with mixed structures can serve as a baseline for testifying other more sophisticated QSKR models. The whole data set, namely, PDBbind-koff-2020, is available for free download at our PDBbind-CN web site (http://www.pdbbind.org.cn/download.php).
Collapse
Affiliation(s)
- Huisi Liu
- Department of Chemistry, College of Sciences, Shanghai University, 99 Shangda Road, Shanghai 200444, People's Republic of China
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, People's Republic of China
| | - Minyi Su
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, People's Republic of China
| | - Hai-Xia Lin
- Department of Chemistry, College of Sciences, Shanghai University, 99 Shangda Road, Shanghai 200444, People's Republic of China
| | - Renxiao Wang
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai 201203, People's Republic of China
| | - Yan Li
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai 201203, People's Republic of China
| |
Collapse
|
8
|
Nguyen HL, Thai NQ, Li MS. Determination of Multidirectional Pathways for Ligand Release from the Receptor: A New Approach Based on Differential Evolution. J Chem Theory Comput 2022; 18:3860-3872. [PMID: 35512104 PMCID: PMC9202309 DOI: 10.1021/acs.jctc.1c01158] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
![]()
Steered molecular
dynamics (SMD) simulation is a powerful method
in computer-aided drug design as it can be used to access the relative
binding affinity with high precision but with low computational cost.
The success of SMD depends on the choice of the direction along which
the ligand is pulled from the receptor-binding site. In most simulations,
the unidirectional pathway was used, but in some cases, this choice
resulted in the ligand colliding with the complex surface of the exit
tunnel. To overcome this difficulty, several variants of SMD with
multidirectional pulling have been proposed, but they are not completely
devoid of disadvantages. Here, we have proposed to determine the direction
of pulling with a simple scoring function that minimizes the receptor–ligand
interaction, and an optimization algorithm called differential evolution
is used for energy minimization. The effectiveness of our protocol
was demonstrated by finding expulsion pathways of Huperzine A and
camphor from the binding site of Torpedo California acetylcholinesterase
and P450cam proteins, respectively, and comparing them with the previous
results obtained using memetic sampling and random acceleration molecular
dynamics. In addition, by applying this protocol to a set of ligands
bound with LSD1 (lysine specific demethylase 1), we obtained a much
higher correlation between the work of pulling force and experimental
data on the inhibition constant IC50 compared to that obtained using
the unidirectional approach based on minimal steric hindrance.
Collapse
Affiliation(s)
- Hoang Linh Nguyen
- Life Science Lab, Institute for Computational Science and Technology, QuangTrung Software City, Tan Chanh Hiep Ward, District 12, Ho Chi Minh City 729110, Vietnam.,Ho Chi Minh City University of Technology (HCMUT), Ho Chi Minh City 740500, Vietnam.,Vietnam National University, Ho Chi Minh City 71300, Vietnam
| | - Nguyen Quoc Thai
- Life Science Lab, Institute for Computational Science and Technology, QuangTrung Software City, Tan Chanh Hiep Ward, District 12, Ho Chi Minh City 729110, Vietnam.,Dong Thap University, 783 Pham Huu Lau Street, Ward 6, Cao Lanh City, Dong Thap 81100, Vietnam
| | - Mai Suan Li
- Institute of Physics, Polish Academy of Sciences, Al. Lotnikow 32/46, Warsaw 02-668, Poland
| |
Collapse
|
9
|
Abstract
Abstract
Machine learning (ML) has revolutionised the field of structure-based drug design (SBDD) in recent years. During the training stage, ML techniques typically analyse large amounts of experimentally determined data to create predictive models in order to inform the drug discovery process. Deep learning (DL) is a subfield of ML, that relies on multiple layers of a neural network to extract significantly more complex patterns from experimental data, and has recently become a popular choice in SBDD. This review provides a thorough summary of the recent DL trends in SBDD with a particular focus on de novo drug design, binding site prediction, and binding affinity prediction of small molecules.
Collapse
|
10
|
Wang Q, Zhang Q, Leung ELH, Chen Y, Yao X. Exploring the thermodynamic, kinetic and inhibitory mechanisms of 5-iTU targeting mitotic kinase haspin by integrated molecular dynamics. Phys Chem Chem Phys 2021; 23:18404-18413. [PMID: 34612381 DOI: 10.1039/d1cp02783b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
As a human mitotic kinase, haspin is considered as a promising target for various diseases including cancers. However, no inhibitors targeting haspin have entered clinical trials presently. 5-iTU (5-iodotubercidin) is a useful and classical chemical probe for the investigation of haspin activity, but its inhibitory mechanism remains unclear. In this study, integrated molecular dynamics (MD) of conventional MD, extended adaptive biasing force (eABF), random acceleration MD and well-tempered metadynamics were applied to investigate the thermodynamic and kinetic features of 5-iTU and three derivatives targeting haspin. To emphasize the importance of gatekeeper Phe605, two haspin mutants (F605Y and F605T) were also built. The results showed that the binding affinity of 5-iTU and haspin was highest in all wild type (WT) systems, relying on the strong halogen aromatic π interaction between 5-iTU and gatekeeper Phe605. Gatekeeper mutations, because of damage to this interaction, led to the rearrangement of water distributions at the binding site and the decrease of 5-iTU residence times. Additionally, compared with the smaller 5-fTU, 5-iTU dissociated from WT haspin with more difficulty through distinct unbinding pathways. These findings will provide crucial guidance for the design and development of novel haspin inhibitors and the rational modification of existing inhibitors.
Collapse
Affiliation(s)
- Qianqian Wang
- Chronic Disease Research Center, Medical College, Dalian University, Dalian 116622, China.
| | | | | | | | | |
Collapse
|
11
|
Stadmiller SS, Aguilar JS, Waudby CA, Pielak GJ. Rapid Quantification of Protein-Ligand Binding via 19F NMR Lineshape Analysis. Biophys J 2020; 118:2537-2548. [PMID: 32348722 PMCID: PMC7231920 DOI: 10.1016/j.bpj.2020.03.031] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 03/19/2020] [Indexed: 12/14/2022] Open
Abstract
Fluorine incorporation is ideally suited to many NMR techniques, and incorporation of fluorine into proteins and fragment libraries for drug discovery has become increasingly common. Here, we use one-dimensional 19F NMR lineshape analysis to quantify the kinetics and equilibrium thermodynamics for the binding of a fluorine-labeled Src homology 3 (SH3) protein domain to four proline-rich peptides. SH3 domains are one of the largest and most well-characterized families of protein recognition domains and have a multitude of functions in eukaryotic cell signaling. First, we showe that fluorine incorporation into SH3 causes only minor structural changes to both the free and bound states using amide proton temperature coefficients. We then compare the results from lineshape analysis of one-dimensional 19F spectra to those from two-dimensional 1H-15N heteronuclear single quantum coherence spectra. Their agreement demonstrates that one-dimensional 19F lineshape analysis is a robust, low-cost, and fast alternative to traditional heteronuclear single quantum coherence-based experiments. The data show that binding is diffusion limited and indicate that the transition state is highly similar to the free state. We also measured binding as a function of temperature. At equilibrium, binding is enthalpically driven and arises from a highly positive activation enthalpy for association with small entropic contributions. Our results agree with those from studies using different techniques, providing additional evidence for the utility of 19F NMR lineshape analysis, and we anticipate that this analysis will be an effective tool for rapidly characterizing the energetics of protein interactions.
Collapse
Affiliation(s)
| | - Jhoan S Aguilar
- Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina
| | - Christopher A Waudby
- Department of Structural and Molecular Biology, University College London, London, United Kingdom
| | - Gary J Pielak
- Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina; Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, North Carolina; Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina; Integrative Program for Biological and Genome Sciences, University of North Carolina, Chapel Hill, North Carolina.
| |
Collapse
|
12
|
Huang S, Chen L, Mei H, Zhang D, Shi T, Kuang Z, Heng Y, Xu L, Pan X. In Silico Prediction of the Dissociation Rate Constants of Small Chemical Ligands by 3D-Grid-Based VolSurf Method. Int J Mol Sci 2020; 21:ijms21072456. [PMID: 32252223 PMCID: PMC7177943 DOI: 10.3390/ijms21072456] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 03/30/2020] [Indexed: 12/26/2022] Open
Abstract
Accumulated evidence suggests that binding kinetic properties—especially dissociation rate constant or drug-target residence time—are crucial factors affecting drug potency. However, quantitative prediction of kinetic properties has always been a challenging task in drug discovery. In this study, the VolSurf method was successfully applied to quantitatively predict the koff values of the small ligands of heat shock protein 90α (HSP90α), adenosine receptor (AR) and p38 mitogen-activated protein kinase (p38 MAPK). The results showed that few VolSurf descriptors can efficiently capture the key ligand surface properties related to dissociation rate; the resulting models demonstrated to be extremely simple, robust and predictive in comparison with available prediction methods. Therefore, it can be concluded that the VolSurf-based prediction method can be widely applied in the ligand-receptor binding kinetics and de novo drug design researches.
Collapse
Affiliation(s)
- Shuheng Huang
- Key Laboratory of Biorheological Science and Technology (Ministry of Education), Chongqing University, Chongqing 400044, China; (S.H.); (L.C.)
- College of Bioengineering, Chongqing University, Chongqing 400044, China; (D.Z.); (T.S.); (Z.K.); (Y.H.); (L.X.)
| | - Linxin Chen
- Key Laboratory of Biorheological Science and Technology (Ministry of Education), Chongqing University, Chongqing 400044, China; (S.H.); (L.C.)
- College of Bioengineering, Chongqing University, Chongqing 400044, China; (D.Z.); (T.S.); (Z.K.); (Y.H.); (L.X.)
| | - Hu Mei
- Key Laboratory of Biorheological Science and Technology (Ministry of Education), Chongqing University, Chongqing 400044, China; (S.H.); (L.C.)
- College of Bioengineering, Chongqing University, Chongqing 400044, China; (D.Z.); (T.S.); (Z.K.); (Y.H.); (L.X.)
- Correspondence: (H.M.); (X.P.); Tel.: +86-23-65112677 (H.M.)
| | - Duo Zhang
- College of Bioengineering, Chongqing University, Chongqing 400044, China; (D.Z.); (T.S.); (Z.K.); (Y.H.); (L.X.)
| | - Tingting Shi
- College of Bioengineering, Chongqing University, Chongqing 400044, China; (D.Z.); (T.S.); (Z.K.); (Y.H.); (L.X.)
| | - Zuyin Kuang
- College of Bioengineering, Chongqing University, Chongqing 400044, China; (D.Z.); (T.S.); (Z.K.); (Y.H.); (L.X.)
| | - Yu Heng
- College of Bioengineering, Chongqing University, Chongqing 400044, China; (D.Z.); (T.S.); (Z.K.); (Y.H.); (L.X.)
| | - Lei Xu
- College of Bioengineering, Chongqing University, Chongqing 400044, China; (D.Z.); (T.S.); (Z.K.); (Y.H.); (L.X.)
| | - Xianchao Pan
- College of Bioengineering, Chongqing University, Chongqing 400044, China; (D.Z.); (T.S.); (Z.K.); (Y.H.); (L.X.)
- Department of Medicinal Chemistry, College of Pharmacy, Southwest Medical University, Luzhou 646000, China
- Correspondence: (H.M.); (X.P.); Tel.: +86-23-65112677 (H.M.)
| |
Collapse
|
13
|
Bruce NJ, Ganotra GK, Richter S, Wade RC. KBbox: A Toolbox of Computational Methods for Studying the Kinetics of Molecular Binding. J Chem Inf Model 2019; 59:3630-3634. [DOI: 10.1021/acs.jcim.9b00485] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Neil J. Bruce
- Heidelberg Institute for Theoretical Studies, Schloss-Wolfsbrunnenweg 35, 69118 Heidelberg, Germany
| | - Gaurav K. Ganotra
- Heidelberg Institute for Theoretical Studies, Schloss-Wolfsbrunnenweg 35, 69118 Heidelberg, Germany
- Heidelberg Graduate School of Mathematical and Computational Methods for the Sciences (HGS MathComp), Im Neuenheimer Feld 205, 69120 Heidelberg, Germany
| | - Stefan Richter
- Heidelberg Institute for Theoretical Studies, Schloss-Wolfsbrunnenweg 35, 69118 Heidelberg, Germany
| | - Rebecca C. Wade
- Heidelberg Institute for Theoretical Studies, Schloss-Wolfsbrunnenweg 35, 69118 Heidelberg, Germany
- Center for Molecular Biology (ZMBH), DKFZ-ZMBH Alliance, Heidelberg University, Im Neuenheimer Feld 282, 69120 Heidelberg, Germany
- Interdisciplinary Center for Scientific Computing (IWR), Heidelberg University, Im Neuenheimer Feld 205, 69120 Heidelberg, Germany
| |
Collapse
|