1
|
Najafipour H, Rostamzadeh F, Jafarinejad-Farsangi S, Bagheri-Hosseinabadi Z, Jafari E, Farsinejad A, Bagheri MM. Human platelet lysate combined with mesenchymal stem cells pretreated with platelet lysate improved cardiac function in rats with myocardial infarction. Sci Rep 2024; 14:27701. [PMID: 39533052 PMCID: PMC11557824 DOI: 10.1038/s41598-024-79050-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 11/06/2024] [Indexed: 11/16/2024] Open
Abstract
Myocardial infarction (MI) is a leading cause of heart failure, disability and mortality worldwide. In this study, the effects of intramyocardial injection of human platelet lysate (HPL), bone marrow mesenchymal stem cells pretreated with HPL (PMSCs), and PMSC lysate (lys), alone and in combination were investigated on MI-induced by LAD ligation in male Wistar rats. The experiment was carried out on sham, vehicle (Veh), HPL, PMSCs, PMSC lysate (PMSC lys), HPL + PMSCs, and HPL + PMSC lys groups. SBP, DBP, and ± dp/dt max were monitored by the PowerLab physiograph. The MSC characteristics and CD31, NKX2.5, and cardiac troponin I (cTnI) contents were determined by flow cytometry, immunohistochemistry, and immunofluorescence, respectively. SBP, DBP, and ± dp/dt max that decreased in the MI group were recovered by HPL, PMSC, PMSC lys, HPL + PMSC, and HPL + PMSC lys treatments. CD31 density was higher in all treated groups compared to the Veh group. CD31 density in the HPL + PMSCs and HPL + PMSC lys groups was higher than in the PMSCs group. The number of Dil+/NKX2.5 + and Dil+/cTnI + cells was higher in the HPL + PMSCs group compared to the PMSCs group. The HPL and PMSCs mitigates heart injuries and cardiac dysfunction after MI. HPL provides an appropriate environment for cardiomyocyte differentiation from PMSCs.
Collapse
Affiliation(s)
- Hamid Najafipour
- Cardiovascular Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran
| | - Farzaneh Rostamzadeh
- Physiology Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Boulevard Jihad, Ebne-Sina Avenue, 7619813159, Kerman, Iran.
| | - Seedieh Jafarinejad-Farsangi
- Endocrinology and Metabolism Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran
| | - Zahra Bagheri-Hosseinabadi
- Physiology-Pharmacology Research Center, Research Institute of Basic Medical Sciences, and Department of Clinical Biochemistry, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Elham Jafari
- Pathology and Stem Cell Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Alireza Farsinejad
- Stem Cell and Regenerative Medicine Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Mohmmad Mehdi Bagheri
- Gastroenterology and Hepatology Research Center, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
2
|
Akbar N, Razzaq SS, Salim A, Haneef K. Mesenchymal Stem Cell-Derived Exosomes and Their MicroRNAs in Heart Repair and Regeneration. J Cardiovasc Transl Res 2024; 17:505-522. [PMID: 37875715 DOI: 10.1007/s12265-023-10449-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 10/06/2023] [Indexed: 10/26/2023]
Abstract
Mesenchymal stem cells (MSCs) can be differentiated into cardiac, endothelial, and smooth muscle cells. Therefore, MSC-based therapeutic approaches have the potential to deal with the aftermaths of cardiac diseases. However, transplanted stem cells rarely survive in damaged myocardium, proposing that paracrine factors other than trans-differentiation may involve in heart regeneration. Apart from cytokines/growth factors, MSCs secret small, single-membrane organelles named exosomes. The MSC-secreted exosomes are enriched in lipids, proteins, nucleic acids, and microRNA (miRNA). There has been an increasing amount of data that confirmed that MSC-derived exosomes and their active molecule microRNA (miRNAs) regulate signaling pathways involved in heart repair/regeneration. In this review, we systematically present an overview of MSCs, their cardiac differentiation, and the role of MSC-derived exosomes and exosomal miRNAs in heart regeneration. In addition, biological functions regulated by MSC-derived exosomes and exosomal-derived miRNAs in the process of heart regeneration are reviewed.
Collapse
Affiliation(s)
- Nukhba Akbar
- Dr. Zafar H. Zaidi Center for Proteomics, University of Karachi, Karachi, 75270, Pakistan
| | - Syeda Saima Razzaq
- Dr. Zafar H. Zaidi Center for Proteomics, University of Karachi, Karachi, 75270, Pakistan
| | - Asmat Salim
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan
| | - Kanwal Haneef
- Dr. Zafar H. Zaidi Center for Proteomics, University of Karachi, Karachi, 75270, Pakistan.
| |
Collapse
|
3
|
Chimenti C, Magnocavallo M, Vetta G, Alfarano M, Manguso G, Ajmone F, Ballatore F, Costantino J, Ciaramella P, Severino P, Miraldi F, Lavalle C, Vizza CD. The Role of MicroRNA in the Myocarditis: a Small Actor for a Great Role. Curr Cardiol Rep 2023:10.1007/s11886-023-01888-5. [PMID: 37269474 DOI: 10.1007/s11886-023-01888-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/24/2023] [Indexed: 06/05/2023]
Abstract
PURPOSE OF REVIEW Myocarditis is an inflammation of the myocardium secondary to a variety of agents such as infectious pathogens, toxins, drugs, and autoimmune disorders. In our review, we provide an overview of miRNA biogenesis and their role in the etiology and pathogenesis of myocarditis, evaluating future directions for myocarditis management. RECENT FINDINGS Advances in genetic manipulation techniques allowed to demonstrate the important role of RNA fragments, especially microRNAs (miRNAs), in cardiovascular pathogenesis. miRNAs are small non-coding RNA molecules that regulate the post-transcriptional gene expression. Advances in molecular techniques allowed to identify miRNA's role in pathogenesis of myocarditis. miRNAs are related to viral infection, inflammation, fibrosis, and apoptosis of cardiomyocytes, making them not only promising diagnostic markers but also prognostics and therapeutic targets in myocarditis. Of course, further real-world studies will be needed to assess the diagnostic accuracy and applicability of miRNA in the myocarditis diagnosis.
Collapse
Affiliation(s)
- Cristina Chimenti
- Clinical, Anestesiologic and Cardiovascular Sciences, La Sapienza University of Rome, Rome, Italy.
| | - Michele Magnocavallo
- Cardiology Division, Arrhythmology Unit, S. Giovanni Calibita Hospital, Isola Tiberina, Rome, Italy
| | - Giampaolo Vetta
- Department of Clinical and Experimental Medicine, Cardiology Unit, University of Messina, Mesina, Italy
| | - Maria Alfarano
- Clinical, Anestesiologic and Cardiovascular Sciences, La Sapienza University of Rome, Rome, Italy
| | - Giulia Manguso
- Clinical, Anestesiologic and Cardiovascular Sciences, La Sapienza University of Rome, Rome, Italy
| | - Francesco Ajmone
- Clinical, Anestesiologic and Cardiovascular Sciences, La Sapienza University of Rome, Rome, Italy
| | - Federico Ballatore
- Clinical, Anestesiologic and Cardiovascular Sciences, La Sapienza University of Rome, Rome, Italy
| | - Jacopo Costantino
- Clinical, Anestesiologic and Cardiovascular Sciences, La Sapienza University of Rome, Rome, Italy
| | - Piera Ciaramella
- Clinical, Anestesiologic and Cardiovascular Sciences, La Sapienza University of Rome, Rome, Italy
| | - Paolo Severino
- Clinical, Anestesiologic and Cardiovascular Sciences, La Sapienza University of Rome, Rome, Italy
| | - Fabio Miraldi
- Clinical, Anestesiologic and Cardiovascular Sciences, La Sapienza University of Rome, Rome, Italy
| | - Carlo Lavalle
- Clinical, Anestesiologic and Cardiovascular Sciences, La Sapienza University of Rome, Rome, Italy
| | - Carmine Dario Vizza
- Clinical, Anestesiologic and Cardiovascular Sciences, La Sapienza University of Rome, Rome, Italy
| |
Collapse
|
4
|
Wang C, Yin S, Wang Q, Jiang M, Li S, Zhen W, Duan Y, Gu H. miR-409-3p Regulated by GATA2 Promotes Cardiac Fibrosis through Targeting Gpd1. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:8922246. [PMID: 36275896 PMCID: PMC9581711 DOI: 10.1155/2022/8922246] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 09/20/2022] [Indexed: 08/07/2023]
Abstract
Cardiac fibrosis is a hallmark of numerous chronic cardiovascular diseases that leads to heart failure. However, there is no validated therapy for it. Dysregulation of microRNAs has been confirmed to be involved in cardiac fibrosis development. However, the regulatory network was not well explored. This study was the first to highlight the role and molecular mechanism of miR-409-3p in cardiac fibrosis. We found that miR-409-3p was consistently increased in three fibrotic models, including heart tissues of postmyocardial infarction (MI) mice and neonatal rat cardiac fibroblasts treated with angiotensin II (Ang II) or transforming growth factor-β (TGF-β). Furthermore, myocardial infarction surgery-induced cardiac fibrosis and dysfunction were attenuated by systemic delivery of miR-409-3p antagomir. Notably, transfection with miR-409-3p mimics promoted the proliferation of cardiac fibroblasts and fibroblast-to-myofibroblast differentiation, accompanied by upregulated expression of Col1a1, Col3a1, and α-SMA. On the contrary, the miR-409-3p inhibitor exhibited the opposite effect. Following this, we verified Gpd1 as a direct target of miR-409-3p. Gpd1 siRNA abolished the antifibrotic effect of miR-409-3p inhibitor in neonatal rat cardiac fibroblasts, suggesting that miR-409-3p promotes cardiac fibrosis at least partially through Gpd1. Moreover, GATA2 was identified as a cardiac fibrosis-associated upstream positive transcription factor of miR-409-3p. Finally, these findings suggest that modulating miR-409-3p could be a potential therapeutic method for cardiac fibrosis.
Collapse
Affiliation(s)
- Chun Wang
- Department of Geriatrics, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, China
| | - Shengxia Yin
- Department of Infectious Diseases, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, China
| | - Qin Wang
- Department of Geriatrics, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, China
| | - Min Jiang
- Department of Geriatrics, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, China
| | - Shanshan Li
- Department of Geriatrics, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, China
| | - Wen Zhen
- Department of Geriatrics, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, China
| | - Yi Duan
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai 200080, China
| | - Huanyu Gu
- Department of Geriatrics, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, China
| |
Collapse
|
5
|
Estrada-Meza C, Torres-Copado A, Loreti González-Melgoza L, Ruiz-Manriquez LM, De Donato M, Sharma A, Pathak S, Banerjee A, Paul S. Recent insights into the microRNA and long non-coding RNA-mediated regulation of stem cell populations. 3 Biotech 2022; 12:270. [PMID: 36101546 PMCID: PMC9464284 DOI: 10.1007/s13205-022-03343-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 08/29/2022] [Indexed: 12/19/2022] Open
Abstract
Stem cells are undifferentiated cells that have multi-lineage differentiation. The transition from self-renewal to differentiation requires rapid and extensive gene expression alterations. Since different stem cells exhibit diverse non-coding RNAs (ncRNAs) expression profiles, the critical roles of ncRNAs in stem cell reprogramming, pluripotency maintenance, and differentiation have been widely investigated over the past few years. Hence, in this current review, the two main categories of ncRNAs, microRNAs (miRNAs) and long non-coding RNAs (lncRNAs), are discussed. While the primary way by which miRNAs restrict mRNA transcription is through miRNA-mRNA interaction, lncRNAs have a wide range of effects on mRNA functioning, including interactions with miRNAs. Both of these ncRNAs participate in the post-transcriptional regulation of crucial biological mechanisms, such as cell cycle regulation, apoptosis, aging, and cell fate decisions. These findings shed light on a previously unknown aspect of gene regulation in stem cell fate determination and behavior. Overall, we summarized the key roles of miRNAs (including exosomal miRNAs) and lncRNAs in the regulation of stem cell populations, such as cardiac, hematopoietic, mesenchymal, neural, and spermatogonial, as well ncRNAs' influence on malignancy through modulating cancer stem cells, which might significantly contribute to clinical stem cell therapy and in regenerative medicine.
Collapse
Affiliation(s)
- Carolina Estrada-Meza
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Queretaro, Av. Epigmenio Gonzalez, No. 500 Fracc. San Pablo, CP 76130 Queretaro, Mexico
| | - Andrea Torres-Copado
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Queretaro, Av. Epigmenio Gonzalez, No. 500 Fracc. San Pablo, CP 76130 Queretaro, Mexico
| | - Luisa Loreti González-Melgoza
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Queretaro, Av. Epigmenio Gonzalez, No. 500 Fracc. San Pablo, CP 76130 Queretaro, Mexico
| | - Luis M. Ruiz-Manriquez
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Queretaro, Av. Epigmenio Gonzalez, No. 500 Fracc. San Pablo, CP 76130 Queretaro, Mexico
| | - Marcos De Donato
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Queretaro, Av. Epigmenio Gonzalez, No. 500 Fracc. San Pablo, CP 76130 Queretaro, Mexico
| | - Ashutosh Sharma
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Queretaro, Av. Epigmenio Gonzalez, No. 500 Fracc. San Pablo, CP 76130 Queretaro, Mexico
| | - Surajit Pathak
- Chettinad Academy of Research and Education (CARE), Department of Medical Biotechnology, Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute (CHRI), Chennai, India
| | - Antara Banerjee
- Chettinad Academy of Research and Education (CARE), Department of Medical Biotechnology, Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute (CHRI), Chennai, India
| | - Sujay Paul
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Queretaro, Av. Epigmenio Gonzalez, No. 500 Fracc. San Pablo, CP 76130 Queretaro, Mexico
| |
Collapse
|
6
|
Wang J, Han B. Dysregulated CD4+ T Cells and microRNAs in Myocarditis. Front Immunol 2020; 11:539. [PMID: 32269577 PMCID: PMC7109299 DOI: 10.3389/fimmu.2020.00539] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 03/09/2020] [Indexed: 12/14/2022] Open
Abstract
Myocarditis is a polymorphic disease complicated with indeterminate etiology and pathogenesis, and represents one of the most challenging clinical problems lacking specific diagnosis and effective therapy. It is caused by a complex interplay of environmental and genetic factors, and causal links between dysregulated microribonucleic acids (miRNAs) and myocarditis have also been supported by recent epigenetic researches. Both dysregulated CD4+ T cells and miRNAs play critical roles in the pathogenesis of myocarditis, and the classic triphasic model of its pathogenesis consists of the acute infectious, subacute immune, and recovery/chronic myopathic phase. CD4+ T cells are key pathogenic factors underlying the development and progression of myocarditis, and the effector and regulatory subsets, respectively, promote and inhibit autoimmune responses. Furthermore, the reciprocal interplay of these subsets influences the pathogenesis as well. Dysregulated miRNAs along with their mRNA and protein targets have been identified in heart biopsies (intracellular miRNAs) and body fluids (circulating miRNAs) during myocarditis. These miRNAs show phase-dependent changes, and correlate with viral infection, immune status, fibrosis, destruction of cardiomyocytes, arrhythmias, cardiac functions, and outcomes. Thus, miRNAs are promising diagnostic markers and therapeutic targets in myocarditis. In this review, we review myocarditis with an emphasis on its pathogenesis, and present a summary of current knowledge of dysregulated CD4+ T cells and miRNAs in myocarditis.
Collapse
Affiliation(s)
- Jing Wang
- Department of Pediatric Cardiology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
| | - Bo Han
- Department of Pediatric Cardiology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
| |
Collapse
|
7
|
Fetal Hypoxia Impacts on Proliferation and Differentiation of Sca-1 + Cardiac Progenitor Cells and Maturation of Cardiomyocytes: A Role of MicroRNA-210. Genes (Basel) 2020; 11:genes11030328. [PMID: 32244901 PMCID: PMC7140790 DOI: 10.3390/genes11030328] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 03/16/2020] [Accepted: 03/18/2020] [Indexed: 02/06/2023] Open
Abstract
Hypoxia is one of the most frequent and severe stresses to an organism’s homeostatic mechanisms, and hypoxia during gestation has profound adverse effects on the heart development increasing the occurrence of congenital heart defects (CHDs). Cardiac progenitor cells (CPCs) are responsible for early heart development and the later occurrence of heart disease. However, the mechanism of how hypoxic stress affects CPC fate decisions and contributes to CHDs remains a topic of debate. Here we examined the effect of hypoxic stress on the regulations of CPC fate decisions and the potential mechanism. We found that experimental induction of hypoxic responses compromised CPC function by regulating CPC proliferation and differentiation and restraining cardiomyocyte maturation. In addition, echocardiography indicated that fetal hypoxia reduced interventricular septum thickness at diastole and the ejection time, but increased the heart rate, in mouse young adult offspring with a gender-related difference. Further study revealed that hypoxia upregulated microRNA-210 expression in Sca-1+ CPCs and impeded the cell differentiation. Blockage of microRNA-210 with LNA-anti-microRNA-210 significantly promoted differentiation of Sca-1+ CPCs into cardiomyocytes. Thus, the present findings provide clear evidence that hypoxia alters CPC fate decisions and reveal a novel mechanism of microRNA-210 in the hypoxic effect, raising the possibility of microRNA-210 as a potential therapeutic target for heart disease.
Collapse
|
8
|
Barreto S, Hamel L, Schiatti T, Yang Y, George V. Cardiac Progenitor Cells from Stem Cells: Learning from Genetics and Biomaterials. Cells 2019; 8:E1536. [PMID: 31795206 PMCID: PMC6952950 DOI: 10.3390/cells8121536] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 11/20/2019] [Accepted: 11/21/2019] [Indexed: 02/07/2023] Open
Abstract
Cardiac Progenitor Cells (CPCs) show great potential as a cell resource for restoring cardiac function in patients affected by heart disease or heart failure. CPCs are proliferative and committed to cardiac fate, capable of generating cells of all the cardiac lineages. These cells offer a significant shift in paradigm over the use of human induced pluripotent stem cell (iPSC)-derived cardiomyocytes owing to the latter's inability to recapitulate mature features of a native myocardium, limiting their translational applications. The iPSCs and direct reprogramming of somatic cells have been attempted to produce CPCs and, in this process, a variety of chemical and/or genetic factors have been evaluated for their ability to generate, expand, and maintain CPCs in vitro. However, the precise stoichiometry and spatiotemporal activity of these factors and the genetic interplay during embryonic CPC development remain challenging to reproduce in culture, in terms of efficiency, numbers, and translational potential. Recent advances in biomaterials to mimic the native cardiac microenvironment have shown promise to influence CPC regenerative functions, while being capable of integrating with host tissue. This review highlights recent developments and limitations in the generation and use of CPCs from stem cells, and the trends that influence the direction of research to promote better application of CPCs.
Collapse
Affiliation(s)
- Sara Barreto
- Guy Hilton Research Centre, School of Pharmacy & Bioengineering, Keele University, Staffordshire ST4 7QB, UK; (S.B.); (T.S.); (Y.Y.)
| | | | - Teresa Schiatti
- Guy Hilton Research Centre, School of Pharmacy & Bioengineering, Keele University, Staffordshire ST4 7QB, UK; (S.B.); (T.S.); (Y.Y.)
| | - Ying Yang
- Guy Hilton Research Centre, School of Pharmacy & Bioengineering, Keele University, Staffordshire ST4 7QB, UK; (S.B.); (T.S.); (Y.Y.)
| | - Vinoj George
- Guy Hilton Research Centre, School of Pharmacy & Bioengineering, Keele University, Staffordshire ST4 7QB, UK; (S.B.); (T.S.); (Y.Y.)
| |
Collapse
|
9
|
Mitochondrial MiRNA in Cardiovascular Function and Disease. Cells 2019; 8:cells8121475. [PMID: 31766319 PMCID: PMC6952824 DOI: 10.3390/cells8121475] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 11/13/2019] [Accepted: 11/18/2019] [Indexed: 12/19/2022] Open
Abstract
MicroRNAs (miRNAs) are small noncoding RNAs functioning as crucial post-transcriptional regulators of gene expression involved in cardiovascular development and health. Recently, mitochondrial miRNAs (mitomiRs) have been shown to modulate the translational activity of the mitochondrial genome and regulating mitochondrial protein expression and function. Although mitochondria have been verified to be essential for the development and as a therapeutic target for cardiovascular diseases, we are just beginning to understand the roles of mitomiRs in the regulation of crucial biological processes, including energy metabolism, oxidative stress, inflammation, and apoptosis. In this review, we summarize recent findings regarding how mitomiRs impact on mitochondrial gene expression and mitochondrial function, which may help us better understand the contribution of mitomiRs to both the regulation of cardiovascular function under physiological conditions and the pathogenesis of cardiovascular diseases.
Collapse
|
10
|
Ouyang S, Chen W, Zeng G, Lei C, Tian G, Zhu M, Liu Y, Yang M. MicroRNA-183-3p up-regulated by vagus nerve stimulation mitigates chronic systolic heart failure via the reduction of BNIP3L-mediated autophagy. Gene 2019; 726:144136. [PMID: 31629817 DOI: 10.1016/j.gene.2019.144136] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 09/17/2019] [Accepted: 09/17/2019] [Indexed: 02/06/2023]
Abstract
Chronic systolic heart failure (CSHF) was a complex syndrome. Recently, vagus nerve stimulation (VNS), a novel treatment method, has emerged for the treatment of CSHF. therefore the aim of this study was to explore the possible mechanism of VNS treatment alleviating CSHF in rats. Firstly, we found after VNS treatment for 72 h, the level of B-type natriuretic peptide in VNS group was lower than that in CSHF group. In addition, VNS treatment induced the elevated left ventricular ejection fraction level, reduced left ventricular end diastolic volume and left ventricular end systolic volume level in VNS group, suggesting a mitigation of CSHF by VNS. Then we found the level of miR-183-3p in CSHF group was much lower than that in VNS group by High-throughput sequencing. The further results indicated that Bcl-2 interacting protein 3 like (BNIP3L) was identified as the target gene of miR-183-3p, and the expression of BNIP3L was notably reduced in rats of VNS group compared with CSHF group. Moreover, the down-regulated expression of miR-183-3p increased BNIP3L-mediated autophagy in rats of CSHF group compared with VNS group. Further mechanism findings demonstrated that up-regulation of miR-183-3p reduced the expression of BNIP3L, while down-regulation of miR-183-3p facilitated the expression of BNIP3L in H9c2 cells. miR-183-3p could also regulate autophagy by targeting BNIP3L in vitro, which was manifested by overexpression of miR-183-3p to inhibit BNIP3L-mediated autophagy. Our data demonstrated that VNS treatment benefited CSHF via the up-regulation of miRNA-183-3p, which reduced the BNIP3L-mediated autophagy, providing a new therapeutic direction for CSHF.
Collapse
Affiliation(s)
- Shao Ouyang
- Department of Cardiovascular Medicine, The Second Affiliated Hospital, University of South China, Hengyang 421001, Hunan, PR China
| | - Wei Chen
- Department of Respiratory Medicine, The Second Affiliated Hospital, University of South China, Hengyang 421001, Hunan, PR China.
| | - Gaofeng Zeng
- Department of Cardiovascular Medicine, The Second Affiliated Hospital, University of South China, Hengyang 421001, Hunan, PR China
| | - Changcheng Lei
- Department of Cardiovascular Medicine, The Second Affiliated Hospital, University of South China, Hengyang 421001, Hunan, PR China
| | - Guoping Tian
- Department of Cardiovascular Medicine, The Second Affiliated Hospital, University of South China, Hengyang 421001, Hunan, PR China
| | - Mingyan Zhu
- Department of Cardiovascular Medicine, The Second Affiliated Hospital, University of South China, Hengyang 421001, Hunan, PR China
| | - Yang Liu
- Department of Cardiovascular Medicine, The Second Affiliated Hospital, University of South China, Hengyang 421001, Hunan, PR China
| | - Min Yang
- Department of Cardiovascular Medicine, The Second Affiliated Hospital, University of South China, Hengyang 421001, Hunan, PR China
| |
Collapse
|
11
|
Bonnet S, Boucherat O, Paulin R, Wu D, Hindmarch CCT, Archer SL, Song R, Moore JB, Provencher S, Zhang L, Uchida S. Clinical value of non-coding RNAs in cardiovascular, pulmonary, and muscle diseases. Am J Physiol Cell Physiol 2019; 318:C1-C28. [PMID: 31483703 DOI: 10.1152/ajpcell.00078.2019] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Although a majority of the mammalian genome is transcribed to RNA, mounting evidence indicates that only a minor proportion of these transcriptional products are actually translated into proteins. Since the discovery of the first non-coding RNA (ncRNA) in the 1980s, the field has gone on to recognize ncRNAs as important molecular regulators of RNA activity and protein function, knowledge of which has stimulated the expansion of a scientific field that quests to understand the role of ncRNAs in cellular physiology, tissue homeostasis, and human disease. Although our knowledge of these molecules has significantly improved over the years, we have limited understanding of their precise functions, protein interacting partners, and tissue-specific activities. Adding to this complexity, it remains unknown exactly how many ncRNAs there are in existence. The increased use of high-throughput transcriptomics techniques has rapidly expanded the list of ncRNAs, which now includes classical ncRNAs (e.g., ribosomal RNAs and transfer RNAs), microRNAs, and long ncRNAs. In addition, splicing by-products of protein-coding genes and ncRNAs, so-called circular RNAs, are now being investigated. Because there is substantial heterogeneity in the functions of ncRNAs, we have summarized the present state of knowledge regarding the functions of ncRNAs in heart, lungs, and skeletal muscle. This review highlights the pathophysiologic relevance of these ncRNAs in the context of human cardiovascular, pulmonary, and muscle diseases.
Collapse
Affiliation(s)
- Sébastien Bonnet
- Pulmonary Hypertension and Vascular Biology Research Group, Institut Universitaire de Cardiologie et de Pneumologie de Québec, Department of Medicine, Université Laval, Quebec City, Quebec, Canada.,Department of Medicine, Université Laval, Quebec City, Quebec, Canada
| | - Olivier Boucherat
- Pulmonary Hypertension and Vascular Biology Research Group, Institut Universitaire de Cardiologie et de Pneumologie de Québec, Department of Medicine, Université Laval, Quebec City, Quebec, Canada.,Department of Medicine, Université Laval, Quebec City, Quebec, Canada
| | - Roxane Paulin
- Pulmonary Hypertension and Vascular Biology Research Group, Institut Universitaire de Cardiologie et de Pneumologie de Québec, Department of Medicine, Université Laval, Quebec City, Quebec, Canada.,Department of Medicine, Université Laval, Quebec City, Quebec, Canada
| | - Danchen Wu
- Department of Medicine, Queen's University, Kingston, Ontario, Canada
| | - Charles C T Hindmarch
- Queen's Cardiopulmonary Unit, Translational Institute of Medicine, Department of Medicine, Queen's University, Kingston, Ontario, Canada
| | - Stephen L Archer
- Department of Medicine, Queen's University, Kingston, Ontario, Canada
| | - Rui Song
- Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California
| | - Joseph B Moore
- Diabetes and Obesity Center, University of Louisville, Louisville, Kentucky.,The Christina Lee Brown Envirome Institute, Department of Medicine, University of Louisville, Louisville, Kentucky
| | - Steeve Provencher
- Pulmonary Hypertension and Vascular Biology Research Group, Institut Universitaire de Cardiologie et de Pneumologie de Québec, Department of Medicine, Université Laval, Quebec City, Quebec, Canada.,Department of Medicine, Université Laval, Quebec City, Quebec, Canada
| | - Lubo Zhang
- Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California
| | - Shizuka Uchida
- Diabetes and Obesity Center, University of Louisville, Louisville, Kentucky.,The Christina Lee Brown Envirome Institute, Department of Medicine, University of Louisville, Louisville, Kentucky.,Cardiovascular Innovation Institute, University of Louisville, Louisville, Kentucky
| |
Collapse
|
12
|
Micheu MM, Scarlatescu AI, Scafa-Udriste A, Dorobantu M. The Winding Road of Cardiac Regeneration-Stem Cell Omics in the Spotlight. Cells 2018; 7:cells7120255. [PMID: 30544622 PMCID: PMC6315576 DOI: 10.3390/cells7120255] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 11/26/2018] [Accepted: 12/04/2018] [Indexed: 12/18/2022] Open
Abstract
Despite significant progress in treating ischemic cardiac disease and succeeding heart failure, there is still an unmet need to develop effective therapeutic strategies given the persistent high-mortality rate. Advances in stem cell biology hold great promise for regenerative medicine, particularly for cardiac regeneration. Various cell types have been used both in preclinical and clinical studies to repair the injured heart, either directly or indirectly. Transplanted cells may act in an autocrine and/or paracrine manner to improve the myocyte survival and migration of remote and/or resident stem cells to the site of injury. Still, the molecular mechanisms regulating cardiac protection and repair are poorly understood. Stem cell fate is directed by multifaceted interactions between genetic, epigenetic, transcriptional, and post-transcriptional mechanisms. Decoding stem cells’ “panomic” data would provide a comprehensive picture of the underlying mechanisms, resulting in patient-tailored therapy. This review offers a critical analysis of omics data in relation to stem cell survival and differentiation. Additionally, the emerging role of stem cell-derived exosomes as “cell-free” therapy is debated. Last but not least, we discuss the challenges to retrieve and analyze the huge amount of publicly available omics data.
Collapse
Affiliation(s)
- Miruna Mihaela Micheu
- Department of Cardiology, Clinical Emergency Hospital of Bucharest, Floreasca Street 8, 014461 Bucharest, Romania.
| | - Alina Ioana Scarlatescu
- Department of Cardiology, Clinical Emergency Hospital of Bucharest, Floreasca Street 8, 014461 Bucharest, Romania.
| | - Alexandru Scafa-Udriste
- Department of Cardiology, Clinical Emergency Hospital of Bucharest, Floreasca Street 8, 014461 Bucharest, Romania.
- Department 4-Cardiothoracic Pathology, University of Medicine and Pharmacy Carol Davila, Eroii Sanitari Bvd. 8, 050474 Bucharest, Romania.
| | - Maria Dorobantu
- Department of Cardiology, Clinical Emergency Hospital of Bucharest, Floreasca Street 8, 014461 Bucharest, Romania.
- Department 4-Cardiothoracic Pathology, University of Medicine and Pharmacy Carol Davila, Eroii Sanitari Bvd. 8, 050474 Bucharest, Romania.
| |
Collapse
|